Specklegramas de fibra óptica analizados mediante procesamiento digital de imágenes

Los sensores basados en el análisis de la distribución de intensidades del patrón de interferencia modal a la salida de una fibra óptica son conocidos como sensores ópticos basados en specklegramas de fibra óptica (Fiber Specklegram Sensors, FSSs). En este trabajo se muestran los specklegramas, simu...

Full description

Autores:
Vélez Hoyos, Francisco Javier
Aristizábal Tique, Víctor Hugo
Gómez López, Jorge Alberto
Quijano Pérez, Jairo Camilo
Herrera Ramírez, Jorge Alexis
Hoyos Sánchez, Alejandro
Da Silva Nunes, Luiz Carlos
Gutiérrez Gutiérrez, Luis Carlos
Castaño Escobar, Luis Fernando
Tipo de recurso:
Investigation report
Fecha de publicación:
2018
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/15419
Acceso en línea:
https://doi.org/10.18257/raccefyn.608
https://hdl.handle.net/20.500.12494/15419
Palabra clave:
Specklegramas de fibra óptica
Perturbaciones físicas
Sensores de fibra óptica
Simulación numérica
Fiber Specklegram Sensors
Physical Perturbations
Optical Fiber sensors
Numerical simulation
Rights
openAccess
License
Atribución – No comercial – Compartir igual
id COOPER2_73b3835c128781ac7fad74415d57faa5
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/15419
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Specklegramas de fibra óptica analizados mediante procesamiento digital de imágenes
title Specklegramas de fibra óptica analizados mediante procesamiento digital de imágenes
spellingShingle Specklegramas de fibra óptica analizados mediante procesamiento digital de imágenes
Specklegramas de fibra óptica
Perturbaciones físicas
Sensores de fibra óptica
Simulación numérica
Fiber Specklegram Sensors
Physical Perturbations
Optical Fiber sensors
Numerical simulation
title_short Specklegramas de fibra óptica analizados mediante procesamiento digital de imágenes
title_full Specklegramas de fibra óptica analizados mediante procesamiento digital de imágenes
title_fullStr Specklegramas de fibra óptica analizados mediante procesamiento digital de imágenes
title_full_unstemmed Specklegramas de fibra óptica analizados mediante procesamiento digital de imágenes
title_sort Specklegramas de fibra óptica analizados mediante procesamiento digital de imágenes
dc.creator.fl_str_mv Vélez Hoyos, Francisco Javier
Aristizábal Tique, Víctor Hugo
Gómez López, Jorge Alberto
Quijano Pérez, Jairo Camilo
Herrera Ramírez, Jorge Alexis
Hoyos Sánchez, Alejandro
Da Silva Nunes, Luiz Carlos
Gutiérrez Gutiérrez, Luis Carlos
Castaño Escobar, Luis Fernando
dc.contributor.author.none.fl_str_mv Vélez Hoyos, Francisco Javier
Aristizábal Tique, Víctor Hugo
Gómez López, Jorge Alberto
Quijano Pérez, Jairo Camilo
Herrera Ramírez, Jorge Alexis
Hoyos Sánchez, Alejandro
Da Silva Nunes, Luiz Carlos
Gutiérrez Gutiérrez, Luis Carlos
Castaño Escobar, Luis Fernando
dc.subject.spa.fl_str_mv Specklegramas de fibra óptica
Perturbaciones físicas
Sensores de fibra óptica
Simulación numérica
topic Specklegramas de fibra óptica
Perturbaciones físicas
Sensores de fibra óptica
Simulación numérica
Fiber Specklegram Sensors
Physical Perturbations
Optical Fiber sensors
Numerical simulation
dc.subject.other.spa.fl_str_mv Fiber Specklegram Sensors
Physical Perturbations
Optical Fiber sensors
Numerical simulation
description Los sensores basados en el análisis de la distribución de intensidades del patrón de interferencia modal a la salida de una fibra óptica son conocidos como sensores ópticos basados en specklegramas de fibra óptica (Fiber Specklegram Sensors, FSSs). En este trabajo se muestran los specklegramas, simulados numéricamente mediante el método de los elementos finitos, de una fibra óptica Thorlabs 1550BHP perturbada mecánicamente, y se hace uso de la información global o de regiones del specklegrama mediante el procesamiento digital de imágenes a través de un análisis de correlación. Los resultados muestran como la correlación entre imágenes se puede usar como valor de cuantificación para la medición de fuerzas, y cómo la división del patrón por zonas de interés puede mejorar las características metrológicas del sensor.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018-06-28
dc.date.accessioned.none.fl_str_mv 2019-12-05T17:14:15Z
dc.date.available.none.fl_str_mv 2019-12-05T17:14:15Z
dc.type.none.fl_str_mv Avance de investigación financiada
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_93fc
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_18ws
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/report
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_18ws
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 23824980
dc.identifier.uri.spa.fl_str_mv https://doi.org/10.18257/raccefyn.608
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/15419
dc.identifier.bibliographicCitation.spa.fl_str_mv Gutiérrez, L. C., Castaño, L. F., Gómez, J. A., Quijano, J. C., Herrera-Ramírez, J. A., Hoyos, A., Da Silva Nunez, L. C., Vélez, F. J., & Aristizabal, V. H. (2018). Specklegramas de fibra óptica analizados mediante procesamiento digital de imágenes. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 42(163), 182-188.
identifier_str_mv 23824980
Gutiérrez, L. C., Castaño, L. F., Gómez, J. A., Quijano, J. C., Herrera-Ramírez, J. A., Hoyos, A., Da Silva Nunez, L. C., Vélez, F. J., & Aristizabal, V. H. (2018). Specklegramas de fibra óptica analizados mediante procesamiento digital de imágenes. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 42(163), 182-188.
url https://doi.org/10.18257/raccefyn.608
https://hdl.handle.net/20.500.12494/15419
dc.relation.isversionof.spa.fl_str_mv https://www.raccefyn.co/index.php/raccefyn/article/view/608
dc.relation.ispartofjournal.spa.fl_str_mv Revista de la Academia Colombiana de Ciencias Exactas Físicas y Naturales
dc.relation.references.spa.fl_str_mv Aristizabal, V. H., Hoyos, A., Rueda, E., Gomez, N. D., & Gomez, J. A. (2015). Effect of wavelength on metrological characteristics of non-holographic fiber specklegram sensor. Photonic Sensors, 5 (1). http://doi.org/10.1007/s13320-014-0210-3
Arístizabal, V. H., Vélez, F. J., Rueda, E., Gómez, N. D., & Gómez, J. A. (2016). Numerical modeling of fiber specklegram sensors by using finite element method (FEM). Optics Express, 24 (24): 27225-27238. http://doi.org/10.1364/OE.24.027225
Aristizabal, V. H., Velez, F. J., & Torres, P. (2006). Numerical model and analysis of optical fibers with internal electrodes. Revista Colombiana de Física. 38 (1): 173-176. Retrieved from http://revcolfis.org/publicaciones/vol38_1/resumenes/3801173.htm
Aristizabal, V. H., Vélez, F. J., & Torres, P. (2004). Modeling of photonic crystal fibers with the Scalar Finite Element Method. In Proceedings of SPIE - The International Society for Optical Engineering (Vol. 5622). http://doi.org/10.1117/12.59105
Aristizabal, V. H., Vélez, F. J., & Torres, P. (2006). Analysis of photonic crystal fibers: Scalar solution and polarization correction. Optics Express. 14 (24). http://doi.org/10.1364/OE.14.011848
Crammond, G., Boyd, S. W., & Dulieu-Barton, J. M. (2013). Speckle pattern quality assessment for digital image correlation. Optics and Lasers in Engineering. 51 (12): 1368-1378. http://doi.org/10.1016/j.optlaseng.2013.03.014
Darío Gómez, N., & Gómez, J. A. (2013). Effects of the speckle size on non-holographic fiber specklegram sensors. Optics and Lasers in Engineering. 51 (11): 1291-1295. http://doi.org/10.1016/j.optlaseng.2013.05.007
Efendioglu, H. S. (2017). A Review of Fiber-Optic Modal Modulated Sensors: Specklegram and Modal Power Distri-bution Sensing. IEEE Sensors Journal. 17 (7): 2055-2064. http://doi.org/10.1109/JSEN.2017.2658683
Fujiwara, E., Marques dos Santos, M. F., & Suzuki, C. K.(2017). Optical fiber specklegram sensor analysis by speckle pattern division. Applied Optics. 56 (6): 1585. http://doi.org/10.1364/AO.56.001585
Fujiwara, E., Wu, Y. T., dos Santos, M. F. M., Schenkel, E. A., & Suzuki, C. K. (2017). Development of a tactile sensor based on optical fiber specklegram analysis and sensor data fusion technique. Sensors and Actuators A: Physical. 263:677-686. http://doi.org/10.1016/j.sna.2017.07.031
Fujiwara, E., Wu, Y. T., & Suzuki, C. K. (2012). Vibration-based specklegram fiber sensor for measurement of properties of liquids. Optics and Lasers in Engineering. 50 (12): 1726-1730. http://doi.org/10.1016/j.optlaseng.2012.06.018
Gasvik, K. J. (2002). Optical Metrology (3rd ed.). Chichester, England: John Wiley & Sons Ltd
Gianino, P. D., & Bendow, B. (1981). Calculations of stress-induced changes in the transverse refractive-index profile of optical fibers. Applied Optics. 20 (3): 430. http://doi.org/10.1364/AO.20.000430
Gómez, J. A., Lorduy G., H., & Salazar, Á. (2011). Improvement of the dynamic range of a fiber speckleg\ram sensor based on volume speckle recording in photorefractive materials. Optics and Lasers in Engineering. 49 (3): 473-480. http://doi.org/10.1016/j.optlaseng.2010.11.017
Gómez, J. A., Lorduy G., H., & Salazar, Á. (2011). Influence of the volume speckle on fiber specklegram sensors based on four-wave mixing in photorefractive materials. Optics Communications. 284 (4): 1008-1014. http://doi.org/10.1016/j.optcom.2010.10.037
Gómez, J. A., & Salazar, Á. (2012). Self-correlation fiber speckle-gram sensor using volume characteristics of speckle patterns. Optics and Lasers in Engineering. 50 (5): 812-815. http://doi.org/10.1016/j.optlaseng.2012.01.002
Gubarev, F., Li, L., Klenovskii, M., & Glotov, A. (2016). Speckle pattern processing by digital image correlation. MATEC Web of Conferences. 48: 4003. http://doi.org/10.1051/matecconf/20164804003
Hung, Y. Y. (1978). Displacement and strain measurement. In R. K. Erf (Ed.), Speckle metrology (pp. 51-71). New York: Academic Press, Inc
Kumar, A., Varshney, R. K., Antony C, S., & Sharma, P. (2003). Transmission characteristics of SMS fiber optic sensor structures. Optics Communications. 219 (1-6): 215-219. http://doi.org/10.1016/S0030-4018(03)01289-6
Li, J., Cai, H., Geng, J., Qu, R., & Fang, Z. (2007). Specklegram in a multiple-mode fiber and its dependence on longitudinal modes of the laser source. Applied Optics. 46 (17): 3572. http://doi.org/10.1364/AO.46.003572
Liu, Y., & Wei, L. (2007). Low-cost high-sensitivity strain and temperature sensing using graded-index multimode fibers. Applied Optics. 46 (13): 2516-2519. http://doi.org/10.1364/AO.46.002516
Malki, A., Gafsi, R., Michel, L., Labarrère, M., & Lecoy, P. (1996). Impact and vibration detection in composite materials by using intermodal interference in multimode optical fibers. Applied Optics. 35 (25): 5198. http://doi.org/10.1364/AO.35.005198
Mase, G. T., & Mase, G. E. (1999). Continuum for Engineers. New York (2 Ed). Boca Raton: CRC Press.
R. Jones and C. Wykes. (1989). Holographic and Speckle Interferometry. Cambridge University Press. http://doi.org/10.1017/CBO9780511622465
Rodriguez-Cobo, L., Lomer, M., & Lopez-Higuera, J.-M.(2015). Fiber Specklegram-Multiplexed Sensor. Journal of Lightwave Technology. 33 (12): 2591-2597. http://doi.org/10.1109/JLT.2014.2364318
Saleh, B. E. a, & Teich, M. C. (1991). Fundamentals of Photonics (Vol. 5). New York, USA: John Wiley & Sons, Inc. http://doi.org/10.1002/0471213748
Torres, P., Aristizábal, V. H., & Andrés, M. V. (2011). Modeling of photonic crystal fibers from the scalar wave equation with a purely transverse linearly polarized vector potential. Journal of the Optical Society of America B: Optical Physics. 28 (4). http://doi.org/10.1364/JOSAB.28.000787
Wang, B., Guo, R., Yin, S., & Yu, F. T. S. (2004). Chemical Sensing with Hetero-Core Fiber Specklegram. Journal of Holography and Speckle. 1 (1): 53-57. http://doi.org/10. 1166/jhs.2004.008
Wang, B., Huang, C., Guo, R., & Yu, F. T. S. (2003). A novel fiber chemical sensor using inner-product multimode fiber speckle fields. In F. T. S. Yu, R. Guo, & S. Yin (Eds.), Proceedings of SPIE - The International Society for Optical Engineering (p. 299). http://doi.org/10.1117/12.515977
Wang, Y., Cai, H., Qu, R., Fang, Z., Marin, E., & Meunier, J.-P. (2008). Specklegram in a grapefruit fiber and its response to external mechanical disturbance in a single-multiple-single mode fiber structure. Applied Optics. 47 (20): 3543. http:// doi.org/10.1364/AO.47.003543
Wu, S., Yin, S., & Yu, F. T. S. (1991). Sensing with fiber specklegrams. Applied Optics. 30 (31): 4468. http://doi. org/10.1364/AO.30.004468
Yu, F. T. S., Wen, M., Yin, S., & Uang, C.-M. (1993). Submicrometer displacement sensing using inner-product multimode fiber speckle fields. Applied Optics. 32 (25): 4685. http:// doi.org/10.1364/AO.32.004685
Yu, F. T. S., & Yin, S. (2002). Fiber Optic Sensors. New York: Marcel Dekker, Inc.
Yu, F. T. S., Yin, S., Zhang, J., & Guo, R. (1994). Application of a fiber-speckle hologram to fiber sensing. Applied Optics. 33 (22): 5202. http://doi.org/10.1364/AO.33.005202
Yu, F. T. S., Zhang, J., Yin, S., & Ruffin, P. B. (1995). Analysis of a fiber specklegram sensor by using coupled-mode theory. Applied Optics. 34 (16): 3018. http://doi.org/10.1364/AO. 34.003018
Zhang, Z., & Ansari, F. (2006). Fiber-optic laser speckleintensity crack sensor for embedment in concrete. Sensors and Actuators A: Physical. 126 (1): 107-111. http://doi. org/10.1016/j.sna.2005.10.002
dc.rights.license.none.fl_str_mv Atribución – No comercial – Compartir igual
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Compartir igual
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 182-188
dc.coverage.temporal.spa.fl_str_mv vol.42 No. 163
dc.publisher.spa.fl_str_mv Comité editorial Raccefyn
https://www.ucc.edu.co/programas-academicos/medellin/Paginas/pregrado-ingenieria-civil.aspx
dc.publisher.program.spa.fl_str_mv Ingeniería Civil
dc.publisher.place.spa.fl_str_mv Medellín
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/b3acf6a3-96e3-4639-9ccb-03bb9e0998a4/download
https://repository.ucc.edu.co/bitstreams/39e4dee7-4c29-4374-b588-aa4456e01110/download
https://repository.ucc.edu.co/bitstreams/0b3359a3-74c5-4ee0-9e16-3c648b6794fc/download
https://repository.ucc.edu.co/bitstreams/1e754146-0251-48de-9713-ba3f75df89fe/download
bitstream.checksum.fl_str_mv 691380b7221e6b2bdc4c547305089679
3bce4f7ab09dfc588f126e1e36e98a45
e2974ff2ca12fdc865f7ce3dc719a229
3c92e760a2162a6cb64b77d4dbcd8606
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814247232074940416
spelling Vélez Hoyos, Francisco JavierAristizábal Tique, Víctor HugoGómez López, Jorge AlbertoQuijano Pérez, Jairo CamiloHerrera Ramírez, Jorge AlexisHoyos Sánchez, AlejandroDa Silva Nunes, Luiz CarlosGutiérrez Gutiérrez, Luis CarlosCastaño Escobar, Luis Fernandovol.42 No. 1632019-12-05T17:14:15Z2019-12-05T17:14:15Z2018-06-2823824980https://doi.org/10.18257/raccefyn.608https://hdl.handle.net/20.500.12494/15419Gutiérrez, L. C., Castaño, L. F., Gómez, J. A., Quijano, J. C., Herrera-Ramírez, J. A., Hoyos, A., Da Silva Nunez, L. C., Vélez, F. J., & Aristizabal, V. H. (2018). Specklegramas de fibra óptica analizados mediante procesamiento digital de imágenes. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 42(163), 182-188.Los sensores basados en el análisis de la distribución de intensidades del patrón de interferencia modal a la salida de una fibra óptica son conocidos como sensores ópticos basados en specklegramas de fibra óptica (Fiber Specklegram Sensors, FSSs). En este trabajo se muestran los specklegramas, simulados numéricamente mediante el método de los elementos finitos, de una fibra óptica Thorlabs 1550BHP perturbada mecánicamente, y se hace uso de la información global o de regiones del specklegrama mediante el procesamiento digital de imágenes a través de un análisis de correlación. Los resultados muestran como la correlación entre imágenes se puede usar como valor de cuantificación para la medición de fuerzas, y cómo la división del patrón por zonas de interés puede mejorar las características metrológicas del sensor.Fiber Specklegram Sensors (FSSs) are sensors based on the analysis of specklegrams, i.e., the intensity distribution of the modal interference pattern at the output of an optical fiber. By using a finite element method, this work shows numerically simulated specklegrams of an optical fiber Thorlabs 1550BHP under a mechanical perturbation. We employ digital image correlation to analyze the behavior of these specklegrams with different applied forces. The image correlation analysis is applied over the whole specklegram or over selected regions. The results show that the correlation between images is a suitable quantifier of the applied force. We also show that the analysis of selected regions improves the metrological parameters of these sensors.https://scienti.colciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00004482220000-0002-4267-042Xhttps://scienti.colciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000005961francisco.velezh@campusucc.edu.covictor.aristizabalt@campusucc.edu.cojagomez@elpoli.edu.cojcquijano@elpoli.edu.cojorgeherrerar@itm.edu.coalejandro_hoyos91103@elpoli.edu.coluizcsn@id.uff.brluis_gutierrez91131@elpoli.edu.coluisfernandoharry@hotmail.comhttps://scholar.google.com/citations?user=CLkAM5AAAAAJ&hl=es&oi=ao182-188Comité editorial Raccefynhttps://www.ucc.edu.co/programas-academicos/medellin/Paginas/pregrado-ingenieria-civil.aspxIngeniería CivilMedellínhttps://www.raccefyn.co/index.php/raccefyn/article/view/608Revista de la Academia Colombiana de Ciencias Exactas Físicas y NaturalesAristizabal, V. H., Hoyos, A., Rueda, E., Gomez, N. D., & Gomez, J. A. (2015). Effect of wavelength on metrological characteristics of non-holographic fiber specklegram sensor. Photonic Sensors, 5 (1). http://doi.org/10.1007/s13320-014-0210-3Arístizabal, V. H., Vélez, F. J., Rueda, E., Gómez, N. D., & Gómez, J. A. (2016). Numerical modeling of fiber specklegram sensors by using finite element method (FEM). Optics Express, 24 (24): 27225-27238. http://doi.org/10.1364/OE.24.027225Aristizabal, V. H., Velez, F. J., & Torres, P. (2006). Numerical model and analysis of optical fibers with internal electrodes. Revista Colombiana de Física. 38 (1): 173-176. Retrieved from http://revcolfis.org/publicaciones/vol38_1/resumenes/3801173.htmAristizabal, V. H., Vélez, F. J., & Torres, P. (2004). Modeling of photonic crystal fibers with the Scalar Finite Element Method. In Proceedings of SPIE - The International Society for Optical Engineering (Vol. 5622). http://doi.org/10.1117/12.59105Aristizabal, V. H., Vélez, F. J., & Torres, P. (2006). Analysis of photonic crystal fibers: Scalar solution and polarization correction. Optics Express. 14 (24). http://doi.org/10.1364/OE.14.011848Crammond, G., Boyd, S. W., & Dulieu-Barton, J. M. (2013). Speckle pattern quality assessment for digital image correlation. Optics and Lasers in Engineering. 51 (12): 1368-1378. http://doi.org/10.1016/j.optlaseng.2013.03.014Darío Gómez, N., & Gómez, J. A. (2013). Effects of the speckle size on non-holographic fiber specklegram sensors. Optics and Lasers in Engineering. 51 (11): 1291-1295. http://doi.org/10.1016/j.optlaseng.2013.05.007Efendioglu, H. S. (2017). A Review of Fiber-Optic Modal Modulated Sensors: Specklegram and Modal Power Distri-bution Sensing. IEEE Sensors Journal. 17 (7): 2055-2064. http://doi.org/10.1109/JSEN.2017.2658683Fujiwara, E., Marques dos Santos, M. F., & Suzuki, C. K.(2017). Optical fiber specklegram sensor analysis by speckle pattern division. Applied Optics. 56 (6): 1585. http://doi.org/10.1364/AO.56.001585Fujiwara, E., Wu, Y. T., dos Santos, M. F. M., Schenkel, E. A., & Suzuki, C. K. (2017). Development of a tactile sensor based on optical fiber specklegram analysis and sensor data fusion technique. Sensors and Actuators A: Physical. 263:677-686. http://doi.org/10.1016/j.sna.2017.07.031Fujiwara, E., Wu, Y. T., & Suzuki, C. K. (2012). Vibration-based specklegram fiber sensor for measurement of properties of liquids. Optics and Lasers in Engineering. 50 (12): 1726-1730. http://doi.org/10.1016/j.optlaseng.2012.06.018Gasvik, K. J. (2002). Optical Metrology (3rd ed.). Chichester, England: John Wiley & Sons LtdGianino, P. D., & Bendow, B. (1981). Calculations of stress-induced changes in the transverse refractive-index profile of optical fibers. Applied Optics. 20 (3): 430. http://doi.org/10.1364/AO.20.000430Gómez, J. A., Lorduy G., H., & Salazar, Á. (2011). Improvement of the dynamic range of a fiber speckleg\ram sensor based on volume speckle recording in photorefractive materials. Optics and Lasers in Engineering. 49 (3): 473-480. http://doi.org/10.1016/j.optlaseng.2010.11.017Gómez, J. A., Lorduy G., H., & Salazar, Á. (2011). Influence of the volume speckle on fiber specklegram sensors based on four-wave mixing in photorefractive materials. Optics Communications. 284 (4): 1008-1014. http://doi.org/10.1016/j.optcom.2010.10.037Gómez, J. A., & Salazar, Á. (2012). Self-correlation fiber speckle-gram sensor using volume characteristics of speckle patterns. Optics and Lasers in Engineering. 50 (5): 812-815. http://doi.org/10.1016/j.optlaseng.2012.01.002Gubarev, F., Li, L., Klenovskii, M., & Glotov, A. (2016). Speckle pattern processing by digital image correlation. MATEC Web of Conferences. 48: 4003. http://doi.org/10.1051/matecconf/20164804003Hung, Y. Y. (1978). Displacement and strain measurement. In R. K. Erf (Ed.), Speckle metrology (pp. 51-71). New York: Academic Press, IncKumar, A., Varshney, R. K., Antony C, S., & Sharma, P. (2003). Transmission characteristics of SMS fiber optic sensor structures. Optics Communications. 219 (1-6): 215-219. http://doi.org/10.1016/S0030-4018(03)01289-6Li, J., Cai, H., Geng, J., Qu, R., & Fang, Z. (2007). Specklegram in a multiple-mode fiber and its dependence on longitudinal modes of the laser source. Applied Optics. 46 (17): 3572. http://doi.org/10.1364/AO.46.003572Liu, Y., & Wei, L. (2007). Low-cost high-sensitivity strain and temperature sensing using graded-index multimode fibers. Applied Optics. 46 (13): 2516-2519. http://doi.org/10.1364/AO.46.002516Malki, A., Gafsi, R., Michel, L., Labarrère, M., & Lecoy, P. (1996). Impact and vibration detection in composite materials by using intermodal interference in multimode optical fibers. Applied Optics. 35 (25): 5198. http://doi.org/10.1364/AO.35.005198Mase, G. T., & Mase, G. E. (1999). Continuum for Engineers. New York (2 Ed). Boca Raton: CRC Press.R. Jones and C. Wykes. (1989). Holographic and Speckle Interferometry. Cambridge University Press. http://doi.org/10.1017/CBO9780511622465Rodriguez-Cobo, L., Lomer, M., & Lopez-Higuera, J.-M.(2015). Fiber Specklegram-Multiplexed Sensor. Journal of Lightwave Technology. 33 (12): 2591-2597. http://doi.org/10.1109/JLT.2014.2364318Saleh, B. E. a, & Teich, M. C. (1991). Fundamentals of Photonics (Vol. 5). New York, USA: John Wiley & Sons, Inc. http://doi.org/10.1002/0471213748Torres, P., Aristizábal, V. H., & Andrés, M. V. (2011). Modeling of photonic crystal fibers from the scalar wave equation with a purely transverse linearly polarized vector potential. Journal of the Optical Society of America B: Optical Physics. 28 (4). http://doi.org/10.1364/JOSAB.28.000787Wang, B., Guo, R., Yin, S., & Yu, F. T. S. (2004). Chemical Sensing with Hetero-Core Fiber Specklegram. Journal of Holography and Speckle. 1 (1): 53-57. http://doi.org/10. 1166/jhs.2004.008Wang, B., Huang, C., Guo, R., & Yu, F. T. S. (2003). A novel fiber chemical sensor using inner-product multimode fiber speckle fields. In F. T. S. Yu, R. Guo, & S. Yin (Eds.), Proceedings of SPIE - The International Society for Optical Engineering (p. 299). http://doi.org/10.1117/12.515977Wang, Y., Cai, H., Qu, R., Fang, Z., Marin, E., & Meunier, J.-P. (2008). Specklegram in a grapefruit fiber and its response to external mechanical disturbance in a single-multiple-single mode fiber structure. Applied Optics. 47 (20): 3543. http:// doi.org/10.1364/AO.47.003543Wu, S., Yin, S., & Yu, F. T. S. (1991). Sensing with fiber specklegrams. Applied Optics. 30 (31): 4468. http://doi. org/10.1364/AO.30.004468Yu, F. T. S., Wen, M., Yin, S., & Uang, C.-M. (1993). Submicrometer displacement sensing using inner-product multimode fiber speckle fields. Applied Optics. 32 (25): 4685. http:// doi.org/10.1364/AO.32.004685Yu, F. T. S., & Yin, S. (2002). Fiber Optic Sensors. New York: Marcel Dekker, Inc.Yu, F. T. S., Yin, S., Zhang, J., & Guo, R. (1994). Application of a fiber-speckle hologram to fiber sensing. Applied Optics. 33 (22): 5202. http://doi.org/10.1364/AO.33.005202Yu, F. T. S., Zhang, J., Yin, S., & Ruffin, P. B. (1995). Analysis of a fiber specklegram sensor by using coupled-mode theory. Applied Optics. 34 (16): 3018. http://doi.org/10.1364/AO. 34.003018Zhang, Z., & Ansari, F. (2006). Fiber-optic laser speckleintensity crack sensor for embedment in concrete. Sensors and Actuators A: Physical. 126 (1): 107-111. http://doi. org/10.1016/j.sna.2005.10.002Specklegramas de fibra ópticaPerturbaciones físicasSensores de fibra ópticaSimulación numéricaFiber Specklegram SensorsPhysical PerturbationsOptical Fiber sensorsNumerical simulationSpecklegramas de fibra óptica analizados mediante procesamiento digital de imágenesAvance de investigación financiadahttp://purl.org/coar/resource_type/c_18wshttp://purl.org/coar/resource_type/c_93fcinfo:eu-repo/semantics/reportinfo:eu-repo/semantics/acceptedVersionAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINAL2018-Gutierrez_et_all-specklegramas_fibra_óptica_analizados_procesamiento_digital.pdf2018-Gutierrez_et_all-specklegramas_fibra_óptica_analizados_procesamiento_digital.pdfArticuloapplication/pdf736856https://repository.ucc.edu.co/bitstreams/b3acf6a3-96e3-4639-9ccb-03bb9e0998a4/download691380b7221e6b2bdc4c547305089679MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/39e4dee7-4c29-4374-b588-aa4456e01110/download3bce4f7ab09dfc588f126e1e36e98a45MD52THUMBNAIL2018-Gutierrez_et_all-specklegramas_fibra_óptica_analizados_procesamiento_digital.pdf.jpg2018-Gutierrez_et_all-specklegramas_fibra_óptica_analizados_procesamiento_digital.pdf.jpgGenerated Thumbnailimage/jpeg5763https://repository.ucc.edu.co/bitstreams/0b3359a3-74c5-4ee0-9e16-3c648b6794fc/downloade2974ff2ca12fdc865f7ce3dc719a229MD53TEXT2018-Gutierrez_et_all-specklegramas_fibra_óptica_analizados_procesamiento_digital.pdf.txt2018-Gutierrez_et_all-specklegramas_fibra_óptica_analizados_procesamiento_digital.pdf.txtExtracted texttext/plain30375https://repository.ucc.edu.co/bitstreams/1e754146-0251-48de-9713-ba3f75df89fe/download3c92e760a2162a6cb64b77d4dbcd8606MD5420.500.12494/15419oai:repository.ucc.edu.co:20.500.12494/154192024-08-10 21:03:22.21open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=