Factores de emisión de concretos modificados con residuos de vidrio en reemplazo de los agregados finos

Se generan grandes cantidades de residuos de vidrio cada año y su eliminación inadecuada crea un problema creciente que debe abordarse. El objetivo de esta investigación es utilizar residuos de vidrio como reemplazo parcial de los agregados finos en la preparación de concretos con el fin de ahorrar...

Full description

Autores:
Arbeláez Pérez, Oscar Felipe
Agudelo Pino, Juan José
Acevedo Diosa, Mateo
Valencia Ciro, Santiago
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/52486
Acceso en línea:
http://dx.doi.org/10.4067/S0718-33052022000200368
https://hdl.handle.net/20.500.12494/52486
Palabra clave:
Concretos modificados
Residuos de vidrio
Emisión de CO2
Modified concrete
Glass waste
CO2 emission
Rights
closedAccess
License
Atribución
id COOPER2_72f21d80b7c09bcadd82d0b0fdd85d2c
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/52486
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.none.fl_str_mv Factores de emisión de concretos modificados con residuos de vidrio en reemplazo de los agregados finos
title Factores de emisión de concretos modificados con residuos de vidrio en reemplazo de los agregados finos
spellingShingle Factores de emisión de concretos modificados con residuos de vidrio en reemplazo de los agregados finos
Concretos modificados
Residuos de vidrio
Emisión de CO2
Modified concrete
Glass waste
CO2 emission
title_short Factores de emisión de concretos modificados con residuos de vidrio en reemplazo de los agregados finos
title_full Factores de emisión de concretos modificados con residuos de vidrio en reemplazo de los agregados finos
title_fullStr Factores de emisión de concretos modificados con residuos de vidrio en reemplazo de los agregados finos
title_full_unstemmed Factores de emisión de concretos modificados con residuos de vidrio en reemplazo de los agregados finos
title_sort Factores de emisión de concretos modificados con residuos de vidrio en reemplazo de los agregados finos
dc.creator.fl_str_mv Arbeláez Pérez, Oscar Felipe
Agudelo Pino, Juan José
Acevedo Diosa, Mateo
Valencia Ciro, Santiago
dc.contributor.author.none.fl_str_mv Arbeláez Pérez, Oscar Felipe
Agudelo Pino, Juan José
Acevedo Diosa, Mateo
Valencia Ciro, Santiago
dc.subject.none.fl_str_mv Concretos modificados
Residuos de vidrio
Emisión de CO2
topic Concretos modificados
Residuos de vidrio
Emisión de CO2
Modified concrete
Glass waste
CO2 emission
dc.subject.other.none.fl_str_mv Modified concrete
Glass waste
CO2 emission
description Se generan grandes cantidades de residuos de vidrio cada año y su eliminación inadecuada crea un problema creciente que debe abordarse. El objetivo de esta investigación es utilizar residuos de vidrio como reemplazo parcial de los agregados finos en la preparación de concretos con el fin de ahorrar recursos naturales de forma eficaz y resolver problemas de contaminación ambiental. Se elaboraron diferentes mezclas reemplazando los agregados finos por 5%, 10%, 15%, 20%, 25% y 50% en peso de residuos de vidrio. Se elaboraron especímenes cilíndricos de concreto de 0,15 m de diámetro y 0,3 m de longitud, se evaluó el asentamiento y la resistencia a la compresión. Los resultados experimentales indicaron que el asentamiento disminuye con el aumento del porcentaje de vidrio. Se encontró que el mejor espécimen (20% de reemplazo) presentó un aumento del 5,5% en la resistencia a la compresión. La evaluación de los aspectos económicos y ambientales mostraron para este mismo espécimen se observó un ahorro del 0,7% en el costo de la preparación y una disminución del 6,4% en las emisiones de dióxido de carbono en comparación con el concreto tradicional. Los resultados demuestran que los agregados finos pueden ser reemplazados por residuos de vidrio en la elaboración de concreto. Este enfoque ofrece una solución amigable con el medio ambiente para el problema actual de los residuos de vidrio.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-01-15
dc.date.accessioned.none.fl_str_mv 2023-08-18T19:49:14Z
dc.date.available.none.fl_str_mv 2023-08-18T19:49:14Z
2027-08-15
dc.type.none.fl_str_mv Artículos Científicos
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0718-3305
dc.identifier.uri.none.fl_str_mv http://dx.doi.org/10.4067/S0718-33052022000200368
https://hdl.handle.net/20.500.12494/52486
dc.identifier.bibliographicCitation.none.fl_str_mv Arbelaez Pérez, Oscar Felipe, Agudelo Pino, Juan José, Acevedo Diosa, Mateo, & Valencia Ciro, Santiago. (2022). Factores de emisión de concretos modificados con residuos de vidrio en reemplazo de los agregados finos. Ingeniare. Revista chilena de ingeniería, 30(2), 368-377. https://dx.doi.org/10.4067/S0718-33052022000200368
identifier_str_mv 0718-3305
Arbelaez Pérez, Oscar Felipe, Agudelo Pino, Juan José, Acevedo Diosa, Mateo, & Valencia Ciro, Santiago. (2022). Factores de emisión de concretos modificados con residuos de vidrio en reemplazo de los agregados finos. Ingeniare. Revista chilena de ingeniería, 30(2), 368-377. https://dx.doi.org/10.4067/S0718-33052022000200368
url http://dx.doi.org/10.4067/S0718-33052022000200368
https://hdl.handle.net/20.500.12494/52486
dc.relation.isversionof.none.fl_str_mv https://www.scielo.cl/pdf/ingeniare/v30n2/0718-3305-ingeniare-30-02-368.pdf
dc.relation.references.none.fl_str_mv [1] J. Hong, G. Q. Shen, Y. Feng, W. S. T. Lau, C. Mao, “Greenhouse gas emissions during the construction phase of a building: A case study in China,” Journal of Cleaner Production. Vol. 103, pp. 249–259, 2015. ISSN: 0959-6526. DOI: 10.1016/j.jclepro.2014.11.023. [2] W. Zhang, Q. Zheng, A. Ashour, and B. Han, “Self-healing cement concrete composites for resilient infrastructures : A review,” Composites. Part B.Vol. 189, No. June 2019, p. 107892, 2020. ISSN: 1359-8368 DOI: 10.1016/j.compositesb.2020. [3] W. Shen, Y. Liu, B. Yan, J. Wang, P. He, C. Zhou, X. Huo, W. Zhang, G. Xu, “Cement industry of China: Driving force, environment impact and sustainable development,” Renewable and Sustainable Energy Reviews. Vol. 75, No. July, pp. 618–628, 2017.ISSN: 1364-0321. DOI: 10.1016/j.rser.2016.11.033. [4] S. Monkman, M. MacDonald, “On carbon dioxide utilization as a means to improve the sustainability of ready-mixed concrete,” Journal of Cleaner Production. Vol. 167, pp. 365–375, 2017. ISSN: 0959-6526. DOI: 10.1016/j.jclepro.2017.08.194. [5] P. Purnell, Response to the comment on “material Nature versus Structural Nurture: The Embodied Carbon of Fundamental Structural Elements,” Environ. Sci. Technol. 46 (2012) 3597–3598. doi:10.1021/es3007595. [6] M. Kalpana, A. Tayu, “Light weight steel fibre reinforced concrete: A review,” Materials Today: Proceedings. Vol. 22, pp. 884–886, 2020. ISSN: 2214-7853. DOI: 10.1016/j.matpr.2019.11.096 [7] A. Mehta, D. K. Ashish, “Silica fume and waste glass in cement concrete production: A review,” Journal of Building Engineering. Vol. 29, No. July 2019, pp. 100888, 2020. ISSN: 2352-7102. DOI: 10.1016/j.jobe.2019.100888. [8] C. A. Cadere, M. Barbuta, B. Rosca, A. A. Serbanoiu, A. Burlacu, I. Oancea, “Engineering properties of concrete with polystyrene granules,” Procedia Manufacturing. Vol. 22, pp. 288–293, 2018. ISSN: 2351-9789 DOI: 10.1016/j.promfg.2018.03.044. [9] K. Rashid, A. Yazdanbakhsh, and M. Ul, “Sustainable selection of the concrete incorporating recycled tire aggregate to be used as medium to low strength material,” Journal of Cleaner Production. Vol. 224, pp. 396–410, 2019. ISSN: 0959-6526. DOI: 10.1016/j.jclepro.2019.03.197 [10] A. Akhtar, A. K. Sarmah, “Construction and demolition waste generation and properties of recycled aggregate concrete: A global perspective,” Journal of Cleaner Production. Vol. 186, pp. 262–281, 2018. ISSN: 0959-6526. DOI: 10.1016/j.jclepro.2018.03.085. [11] B. Cantero, I. F. Sáez del Bosque, A. Matías, M. I. Sánchez de Rojas, C. Medina, “Inclusion of construction and demolition waste as a coarse aggregate and a cement addition in structural concrete design,” Archives of Civil and Mechanical Engineering. Vol. 19, No. 4, pp. 1338–1352, 2019. ISSN: 16449665. DOI: 10.1016/j.acme.2019.08.004. [12] P. Guo, W. Meng, H. Nassif, H. Gou, Y. Bao, “New perspectives on recycling waste glass in manufacturing concrete for sustainable civil infrastructure,” Construction and Building Materials. Vol. 257, pp. 119579, 2020. 10.1016/j.conbuildmat.2020.119579. [13] K. L. Jain, G. Sancheti, L. K. Gupta, “Durability performance of waste granite and glass powder added concrete,” Construction and Building Materials. vol. 252, pp. 119075, 2020. ISSN: 09500618. DOI: 10.1016/j.conbuildmat.2020.119075. [14] A. Mohajerani, J. Vajna, T. H. H. Cheung, H. Kurmus, A. Arulrajah, S. Horpibulsuk, “Practical recycling applications of crushed waste glass in construction materials: A review,” Construction and Building Materials. Vol. 156, pp. 443–467, 2017. ISSN: 09500618. DOI: 10.1016/j.conbuildmat.2017.09.005. [15] A. A. Aliabdo, A. E. M. Abd Elmoaty, A. Y. Aboshama, “Utilization of waste glass powder in the production of cement and concrete,” Construction and Building Materials. Vol. 124, pp. 866–877, 2016. ISSN: 09500618. DOI: 10.1016/j.conbuildmat.2016.08.016. [16] N. Tamanna, R. Tuladhar, N. Sivakugan, 'Performance of recycled waste glass sand as partial replacement of sand in concrete," Construction and Building Materials. Vol. 239, pp. 17804, 2020, DOI:10.1016/j.conbuildmat.2019.117804. [17] Z. Z. Ismail, E. A. AL-Hashmi, “Recycling of waste glass as a partial replacement for fine aggregate in concrete,” Waste Management. Vol. 29, No. 2, pp. 655–659, 2009. ISSN: 0956053X. DOI:10.1016/j.wasman.2008.08.012. [18] W. Song, J. Yi, H. Wu, X. He, Q. Song, J. Yin, “Effect of carbon fiber on mechanical properties and dimensional stability of concrete incorporated with granulated-blast furnace slag,” Journal of Cleaner Production. Vol. 238, pp. 117819, 2019. ISSN: 09596526 DOI: 10.1016/j.jclepro.2019.117819 [19] E. Crossin, “The greenhouse gas implications of using ground granulated blast furnace slag as a cement substitute,” Journal of Cleaner Production. Vol. 95, pp. 101–108, 2015. ISSN: 09596526. DOI: 10.1016/j.jclepro.2015.02.082. [20] D. J. M. Flower, J. G. Sanjayan, “Green house gas emissions due to concrete manufacture,” The International Journal of Life Cycle Assessment. Vol. 12, No. 5, pp. 282–288, 2007. ISSN: 0948-3349. DOI: 10.1007/s11367-007-0327-3. [21] C. Herath, C. Gunasekara, D. W. Law, S. Setunge, “Performance of high volume fly ash concrete incorporating additives: A systematic literature review,” Construction and Building Materials. Vol. 258, pp. 120606, 2020. ISSN: 09500618. DOI: 10.1016/j.conbuildmat.2020.120606. [22] J. P. Valencia Villegas, A. M. González Mesa, O. F. Arbelaez Perez, “Evaluación de las propiedades mecánicas de concretos modificados con microesferas de vidrio y residuos de llantas,” Lámpsakos, No. 22, pp. 16, 2019. ISSN: 2145-4086. DOI: 10.21501/21454086.3283 [23] N. G. Kulkarni, A. B. Rao, “Carbon footprint of solid clay bricks fired in clamps of India,” Journal of Cleaner Production. Vol. 135, pp. 1396–1406, 2016. ISSN: 09596526. DOI: 10.1016/j.jclepro.2016.06.152 [24] M. Ö. Arıoğlu Akan, D. G. Dhavale, J. Sarkis, “Greenhouse gas emissions in the construction industry: An analysis and evaluation of a concrete supply chain,” Journal Cleaner Production. Vol. 167, pp. 1195–1207, 2017. ISSN: 09596526. DOI: 10.1016/j.jclepro.2017.07.225. [25] H. H. Ghayeb, H. A. Razak, N. H. R. Sulong, “Evaluation of the CO2 emissions of an innovative composite precast concrete structure building frame,” Journal of Cleaner Production. Vol. 242, pp. 118567, 2020. ISSN: 09596526 DOI: 10.1016/j.jclepro.2019.118567. [26] Unidad de Planeacion Minero Energetica. "Factores de emisión del sistema interconectado nacional. Fecha de consulta: 10 de Septiembre de 2020. URL: https://www.google.com/search?q=factor+de+emision+de+la+energia+electrica&oq=factor+de+emision+de+la+energia+electrica&aqs=chrome..69i57j0l6.8424j0j15&sourceid=chrome&ie=UTF-8. [27] M. Hassanpour, P. Shafigh, H. Bin Mahmud, “Lightweight aggregate concrete fiber reinforcement - A review,” Construction and Building Materials. Vol. 37, pp. 452–461, 2012. ISSN: 09500618. DOI: 10.1016/j.conbuildmat.2012.07.071. [28] S. Ramdani, A. Guettala, M. L. Benmalek, J. B. Aguiar, “Physical and mechanical performance of concrete made with waste rubber aggregate, glass powder and silica sand powder,” Journal of Building Engineering. Vol. 21, No. June, 2018, pp. 302–311, 2019. ISSN: 23527102. DOI: 10.1016/j.jobe.2018.11.003 [29] M. Adaway, Y. Wang, "Recycled glass as a partial replacement for fine aggregate in structural concrete -Effects on compressive strength", Electronic Journal Structural Engineering. Vol. 14. No 1. 2015. pp. 116-122. ISSN: 1443-9255. DOI: 10.1377/hlthaff.2013.0625. [30] I.M. Metwally, "Investigations on the performance of concrete made with blended finely milled waste glass", Advances in Structural Engineering. Vol. 10. No 10. pp. 47-53. 2007. DOI:10.1260/136943307780150823. [31] M. Batayneh, I. Marie, I. Asi, "Use of selected waste materials in concrete mixes", Waste Management. Vol. 27. No. 12. pp. 1870-1876. 2007. DOI:10.1016/j.wasman.2006.07.026. [32] S. Arivalagan, V. Sethuraman, "Experimental study on the mechanical properties of concrete by partial replacement of glass powder as fine aggregate: An environmental friendly approach", Materials Today Proceedings. Vol. 45. No. 7. pp. 6035-6041. 2020. DOI:10.1016/j.matpr.2020.09.722. [33] M. F. Alnahhal, U. J. Alengaram, M. Z. Jumaat, F. Abutaha, M. A. Alqedra, R. R. Nayaka, “Assessment on engineering properties and CO2 emissions of recycled aggregate concrete incorporating waste products as supplements to Portland cement,” Journal of Cleaner Production. Vol. 203, pp. 822–835, 2018. ISSN: 09596526 DOI: 10.1016/j.jclepro.2018.08.292. [34] Dane. “Estadísticas de concreto premezclado”. Fecha de consulta: 10 de Septiembre. URL:https://www.dane.gov.co/files/investigaciones/boletines/concreto/Bol_concreto_mar_19.pdf
dc.rights.license.none.fl_str_mv Atribución
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_14cb
rights_invalid_str_mv Atribución
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.coverage.temporal.none.fl_str_mv 30 p.
dc.publisher.none.fl_str_mv Universidad Cooperativa de Colombia
dc.publisher.program.none.fl_str_mv Ingeniería Civil
dc.publisher.place.none.fl_str_mv Medellín
publisher.none.fl_str_mv Universidad Cooperativa de Colombia
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/d48e9304-8ddd-4999-89c6-4294933ef5e3/download
https://repository.ucc.edu.co/bitstreams/3965b108-48ba-4ca6-b34e-f80bba7c303c/download
https://repository.ucc.edu.co/bitstreams/e226cb54-59bc-4a3a-ba1a-2cab5d38115b/download
https://repository.ucc.edu.co/bitstreams/0ff3b52a-41c8-466d-b71c-d44d7065fe4e/download
bitstream.checksum.fl_str_mv 3bce4f7ab09dfc588f126e1e36e98a45
44e1b7b8a03b31135c2eee93cb449be5
ab4de7f044d71af37d19d7d7e6392258
a7327a1729a65ba754455233177aeb3b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1811565634081783808
spelling Arbeláez Pérez, Oscar FelipeAgudelo Pino, Juan JoséAcevedo Diosa, MateoValencia Ciro, Santiago30 p.2023-08-18T19:49:14Z2027-08-152023-08-18T19:49:14Z2022-01-150718-3305http://dx.doi.org/10.4067/S0718-33052022000200368https://hdl.handle.net/20.500.12494/52486Arbelaez Pérez, Oscar Felipe, Agudelo Pino, Juan José, Acevedo Diosa, Mateo, & Valencia Ciro, Santiago. (2022). Factores de emisión de concretos modificados con residuos de vidrio en reemplazo de los agregados finos. Ingeniare. Revista chilena de ingeniería, 30(2), 368-377. https://dx.doi.org/10.4067/S0718-33052022000200368Se generan grandes cantidades de residuos de vidrio cada año y su eliminación inadecuada crea un problema creciente que debe abordarse. El objetivo de esta investigación es utilizar residuos de vidrio como reemplazo parcial de los agregados finos en la preparación de concretos con el fin de ahorrar recursos naturales de forma eficaz y resolver problemas de contaminación ambiental. Se elaboraron diferentes mezclas reemplazando los agregados finos por 5%, 10%, 15%, 20%, 25% y 50% en peso de residuos de vidrio. Se elaboraron especímenes cilíndricos de concreto de 0,15 m de diámetro y 0,3 m de longitud, se evaluó el asentamiento y la resistencia a la compresión. Los resultados experimentales indicaron que el asentamiento disminuye con el aumento del porcentaje de vidrio. Se encontró que el mejor espécimen (20% de reemplazo) presentó un aumento del 5,5% en la resistencia a la compresión. La evaluación de los aspectos económicos y ambientales mostraron para este mismo espécimen se observó un ahorro del 0,7% en el costo de la preparación y una disminución del 6,4% en las emisiones de dióxido de carbono en comparación con el concreto tradicional. Los resultados demuestran que los agregados finos pueden ser reemplazados por residuos de vidrio en la elaboración de concreto. Este enfoque ofrece una solución amigable con el medio ambiente para el problema actual de los residuos de vidrio.Large quantities of waste glass are generated every year and inappropriate disposal creates an increasing problem that needs to be addressed. The aim of this research is to use glass waste as a partial replacement for fine aggregates in the preparation of concretes, in order to save natural resources and solve environmental pollution problems. Different mixes were produced by replacing fine aggregates with 5%, 10%, 15%, 20%, 25% and 50% of waste glass. Concrete specimens of 0,15 m in diameter and 0,3 m in length were fabricated and tested in slump and compression strength. The experimental results indicated that slump decreases with the increase of the percentage of glass. It was found the best specimen (20% replacement) exhibited an increasing 5,5% in compressive strength. The assessment of economical and environmental aspects reveals that the same sample can provide to 0,7% savings in cost and 6,4% in emitted carbon dioxide as compared with traditional concrete. The results demonstrate that fine aggregates can be replaced by waste glass to manufacture concrete. This approach offers an environmental friendly solution to the ongoing problem of waste glassoscar.arbelaez@campusucc.edu.cojuan.agudelop@campusucc.edu.comateo.acevedod@campusucc.edu.cosantiago.valenciac@campusucc.edu.coUniversidad Cooperativa de ColombiaIngeniería CivilMedellínhttps://www.scielo.cl/pdf/ingeniare/v30n2/0718-3305-ingeniare-30-02-368.pdf[1] J. Hong, G. Q. Shen, Y. Feng, W. S. T. Lau, C. Mao, “Greenhouse gas emissions during the construction phase of a building: A case study in China,” Journal of Cleaner Production. Vol. 103, pp. 249–259, 2015. ISSN: 0959-6526. DOI: 10.1016/j.jclepro.2014.11.023. [2] W. Zhang, Q. Zheng, A. Ashour, and B. Han, “Self-healing cement concrete composites for resilient infrastructures : A review,” Composites. Part B.Vol. 189, No. June 2019, p. 107892, 2020. ISSN: 1359-8368 DOI: 10.1016/j.compositesb.2020. [3] W. Shen, Y. Liu, B. Yan, J. Wang, P. He, C. Zhou, X. Huo, W. Zhang, G. Xu, “Cement industry of China: Driving force, environment impact and sustainable development,” Renewable and Sustainable Energy Reviews. Vol. 75, No. July, pp. 618–628, 2017.ISSN: 1364-0321. DOI: 10.1016/j.rser.2016.11.033. [4] S. Monkman, M. MacDonald, “On carbon dioxide utilization as a means to improve the sustainability of ready-mixed concrete,” Journal of Cleaner Production. Vol. 167, pp. 365–375, 2017. ISSN: 0959-6526. DOI: 10.1016/j.jclepro.2017.08.194. [5] P. Purnell, Response to the comment on “material Nature versus Structural Nurture: The Embodied Carbon of Fundamental Structural Elements,” Environ. Sci. Technol. 46 (2012) 3597–3598. doi:10.1021/es3007595. [6] M. Kalpana, A. Tayu, “Light weight steel fibre reinforced concrete: A review,” Materials Today: Proceedings. Vol. 22, pp. 884–886, 2020. ISSN: 2214-7853. DOI: 10.1016/j.matpr.2019.11.096 [7] A. Mehta, D. K. Ashish, “Silica fume and waste glass in cement concrete production: A review,” Journal of Building Engineering. Vol. 29, No. July 2019, pp. 100888, 2020. ISSN: 2352-7102. DOI: 10.1016/j.jobe.2019.100888. [8] C. A. Cadere, M. Barbuta, B. Rosca, A. A. Serbanoiu, A. Burlacu, I. Oancea, “Engineering properties of concrete with polystyrene granules,” Procedia Manufacturing. Vol. 22, pp. 288–293, 2018. ISSN: 2351-9789 DOI: 10.1016/j.promfg.2018.03.044. [9] K. Rashid, A. Yazdanbakhsh, and M. Ul, “Sustainable selection of the concrete incorporating recycled tire aggregate to be used as medium to low strength material,” Journal of Cleaner Production. Vol. 224, pp. 396–410, 2019. ISSN: 0959-6526. DOI: 10.1016/j.jclepro.2019.03.197 [10] A. Akhtar, A. K. Sarmah, “Construction and demolition waste generation and properties of recycled aggregate concrete: A global perspective,” Journal of Cleaner Production. Vol. 186, pp. 262–281, 2018. ISSN: 0959-6526. DOI: 10.1016/j.jclepro.2018.03.085. [11] B. Cantero, I. F. Sáez del Bosque, A. Matías, M. I. Sánchez de Rojas, C. Medina, “Inclusion of construction and demolition waste as a coarse aggregate and a cement addition in structural concrete design,” Archives of Civil and Mechanical Engineering. Vol. 19, No. 4, pp. 1338–1352, 2019. ISSN: 16449665. DOI: 10.1016/j.acme.2019.08.004. [12] P. Guo, W. Meng, H. Nassif, H. Gou, Y. Bao, “New perspectives on recycling waste glass in manufacturing concrete for sustainable civil infrastructure,” Construction and Building Materials. Vol. 257, pp. 119579, 2020. 10.1016/j.conbuildmat.2020.119579. [13] K. L. Jain, G. Sancheti, L. K. Gupta, “Durability performance of waste granite and glass powder added concrete,” Construction and Building Materials. vol. 252, pp. 119075, 2020. ISSN: 09500618. DOI: 10.1016/j.conbuildmat.2020.119075. [14] A. Mohajerani, J. Vajna, T. H. H. Cheung, H. Kurmus, A. Arulrajah, S. Horpibulsuk, “Practical recycling applications of crushed waste glass in construction materials: A review,” Construction and Building Materials. Vol. 156, pp. 443–467, 2017. ISSN: 09500618. DOI: 10.1016/j.conbuildmat.2017.09.005. [15] A. A. Aliabdo, A. E. M. Abd Elmoaty, A. Y. Aboshama, “Utilization of waste glass powder in the production of cement and concrete,” Construction and Building Materials. Vol. 124, pp. 866–877, 2016. ISSN: 09500618. DOI: 10.1016/j.conbuildmat.2016.08.016. [16] N. Tamanna, R. Tuladhar, N. Sivakugan, 'Performance of recycled waste glass sand as partial replacement of sand in concrete," Construction and Building Materials. Vol. 239, pp. 17804, 2020, DOI:10.1016/j.conbuildmat.2019.117804. [17] Z. Z. Ismail, E. A. AL-Hashmi, “Recycling of waste glass as a partial replacement for fine aggregate in concrete,” Waste Management. Vol. 29, No. 2, pp. 655–659, 2009. ISSN: 0956053X. DOI:10.1016/j.wasman.2008.08.012. [18] W. Song, J. Yi, H. Wu, X. He, Q. Song, J. Yin, “Effect of carbon fiber on mechanical properties and dimensional stability of concrete incorporated with granulated-blast furnace slag,” Journal of Cleaner Production. Vol. 238, pp. 117819, 2019. ISSN: 09596526 DOI: 10.1016/j.jclepro.2019.117819 [19] E. Crossin, “The greenhouse gas implications of using ground granulated blast furnace slag as a cement substitute,” Journal of Cleaner Production. Vol. 95, pp. 101–108, 2015. ISSN: 09596526. DOI: 10.1016/j.jclepro.2015.02.082. [20] D. J. M. Flower, J. G. Sanjayan, “Green house gas emissions due to concrete manufacture,” The International Journal of Life Cycle Assessment. Vol. 12, No. 5, pp. 282–288, 2007. ISSN: 0948-3349. DOI: 10.1007/s11367-007-0327-3. [21] C. Herath, C. Gunasekara, D. W. Law, S. Setunge, “Performance of high volume fly ash concrete incorporating additives: A systematic literature review,” Construction and Building Materials. Vol. 258, pp. 120606, 2020. ISSN: 09500618. DOI: 10.1016/j.conbuildmat.2020.120606. [22] J. P. Valencia Villegas, A. M. González Mesa, O. F. Arbelaez Perez, “Evaluación de las propiedades mecánicas de concretos modificados con microesferas de vidrio y residuos de llantas,” Lámpsakos, No. 22, pp. 16, 2019. ISSN: 2145-4086. DOI: 10.21501/21454086.3283 [23] N. G. Kulkarni, A. B. Rao, “Carbon footprint of solid clay bricks fired in clamps of India,” Journal of Cleaner Production. Vol. 135, pp. 1396–1406, 2016. ISSN: 09596526. DOI: 10.1016/j.jclepro.2016.06.152 [24] M. Ö. Arıoğlu Akan, D. G. Dhavale, J. Sarkis, “Greenhouse gas emissions in the construction industry: An analysis and evaluation of a concrete supply chain,” Journal Cleaner Production. Vol. 167, pp. 1195–1207, 2017. ISSN: 09596526. DOI: 10.1016/j.jclepro.2017.07.225. [25] H. H. Ghayeb, H. A. Razak, N. H. R. Sulong, “Evaluation of the CO2 emissions of an innovative composite precast concrete structure building frame,” Journal of Cleaner Production. Vol. 242, pp. 118567, 2020. ISSN: 09596526 DOI: 10.1016/j.jclepro.2019.118567. [26] Unidad de Planeacion Minero Energetica. "Factores de emisión del sistema interconectado nacional. Fecha de consulta: 10 de Septiembre de 2020. URL: https://www.google.com/search?q=factor+de+emision+de+la+energia+electrica&oq=factor+de+emision+de+la+energia+electrica&aqs=chrome..69i57j0l6.8424j0j15&sourceid=chrome&ie=UTF-8. [27] M. Hassanpour, P. Shafigh, H. Bin Mahmud, “Lightweight aggregate concrete fiber reinforcement - A review,” Construction and Building Materials. Vol. 37, pp. 452–461, 2012. ISSN: 09500618. DOI: 10.1016/j.conbuildmat.2012.07.071. [28] S. Ramdani, A. Guettala, M. L. Benmalek, J. B. Aguiar, “Physical and mechanical performance of concrete made with waste rubber aggregate, glass powder and silica sand powder,” Journal of Building Engineering. Vol. 21, No. June, 2018, pp. 302–311, 2019. ISSN: 23527102. DOI: 10.1016/j.jobe.2018.11.003 [29] M. Adaway, Y. Wang, "Recycled glass as a partial replacement for fine aggregate in structural concrete -Effects on compressive strength", Electronic Journal Structural Engineering. Vol. 14. No 1. 2015. pp. 116-122. ISSN: 1443-9255. DOI: 10.1377/hlthaff.2013.0625. [30] I.M. Metwally, "Investigations on the performance of concrete made with blended finely milled waste glass", Advances in Structural Engineering. Vol. 10. No 10. pp. 47-53. 2007. DOI:10.1260/136943307780150823. [31] M. Batayneh, I. Marie, I. Asi, "Use of selected waste materials in concrete mixes", Waste Management. Vol. 27. No. 12. pp. 1870-1876. 2007. DOI:10.1016/j.wasman.2006.07.026. [32] S. Arivalagan, V. Sethuraman, "Experimental study on the mechanical properties of concrete by partial replacement of glass powder as fine aggregate: An environmental friendly approach", Materials Today Proceedings. Vol. 45. No. 7. pp. 6035-6041. 2020. DOI:10.1016/j.matpr.2020.09.722. [33] M. F. Alnahhal, U. J. Alengaram, M. Z. Jumaat, F. Abutaha, M. A. Alqedra, R. R. Nayaka, “Assessment on engineering properties and CO2 emissions of recycled aggregate concrete incorporating waste products as supplements to Portland cement,” Journal of Cleaner Production. Vol. 203, pp. 822–835, 2018. ISSN: 09596526 DOI: 10.1016/j.jclepro.2018.08.292. [34] Dane. “Estadísticas de concreto premezclado”. Fecha de consulta: 10 de Septiembre. URL:https://www.dane.gov.co/files/investigaciones/boletines/concreto/Bol_concreto_mar_19.pdfConcretos modificadosResiduos de vidrioEmisión de CO2Modified concreteGlass wasteCO2 emissionFactores de emisión de concretos modificados con residuos de vidrio en reemplazo de los agregados finosArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/d48e9304-8ddd-4999-89c6-4294933ef5e3/download3bce4f7ab09dfc588f126e1e36e98a45MD51ORIGINAL2023-Factores_Emisión_Concretos .pdfapplication/pdf354349https://repository.ucc.edu.co/bitstreams/3965b108-48ba-4ca6-b34e-f80bba7c303c/download44e1b7b8a03b31135c2eee93cb449be5MD52TEXT2023-Factores_Emisión_Concretos .pdf.txt2023-Factores_Emisión_Concretos .pdf.txtExtracted texttext/plain37090https://repository.ucc.edu.co/bitstreams/e226cb54-59bc-4a3a-ba1a-2cab5d38115b/downloadab4de7f044d71af37d19d7d7e6392258MD53THUMBNAIL2023-Factores_Emisión_Concretos .pdf.jpg2023-Factores_Emisión_Concretos .pdf.jpgGenerated Thumbnailimage/jpeg15884https://repository.ucc.edu.co/bitstreams/0ff3b52a-41c8-466d-b71c-d44d7065fe4e/downloada7327a1729a65ba754455233177aeb3bMD5420.500.12494/52486oai:repository.ucc.edu.co:20.500.12494/524862024-08-10 21:02:40.297restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.com