Efecto de la incorporación de ceniza de bagazo de caña en las propiedades mecánicas y las emisiones de dióxido de carbono del hormigón preparado con residuos de vidrio
La producción de cemento agota los recursos naturales y emite enormes cantidades de CO2. El uso de residuos como sustitutos del cemento es una solución práctica para producir hormigón verde. La ceniza de bagazo de caña (CBC) y los residuos de vidrio (RV) tienen potencial como materiales cementantes....
- Autores:
-
Arbeláez Pérez, Oscar Felipe
Delgado Varela, Karen Alejandra
Castañeda Mena, Juan David
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2022
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/52419
- Acceso en línea:
- https://doi.org/10.1016/j.bsecv.2022.08.001
https://hdl.handle.net/20.500.12494/52419
- Palabra clave:
- Ceniza de caña de azúcar
Residuos agrícolas
Propiedades mecánicas
Residuos de vidrio
Emisiones de CO2
Sugar cane ash
Agricultural waste
Mechanical properties
Waste glass
CO2 emissions
- Rights
- closedAccess
- License
- Atribución – Sin Derivar
id |
COOPER2_718981a3cf29733921e0401f7fe7b6d8 |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/52419 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.none.fl_str_mv |
Efecto de la incorporación de ceniza de bagazo de caña en las propiedades mecánicas y las emisiones de dióxido de carbono del hormigón preparado con residuos de vidrio |
title |
Efecto de la incorporación de ceniza de bagazo de caña en las propiedades mecánicas y las emisiones de dióxido de carbono del hormigón preparado con residuos de vidrio |
spellingShingle |
Efecto de la incorporación de ceniza de bagazo de caña en las propiedades mecánicas y las emisiones de dióxido de carbono del hormigón preparado con residuos de vidrio Ceniza de caña de azúcar Residuos agrícolas Propiedades mecánicas Residuos de vidrio Emisiones de CO2 Sugar cane ash Agricultural waste Mechanical properties Waste glass CO2 emissions |
title_short |
Efecto de la incorporación de ceniza de bagazo de caña en las propiedades mecánicas y las emisiones de dióxido de carbono del hormigón preparado con residuos de vidrio |
title_full |
Efecto de la incorporación de ceniza de bagazo de caña en las propiedades mecánicas y las emisiones de dióxido de carbono del hormigón preparado con residuos de vidrio |
title_fullStr |
Efecto de la incorporación de ceniza de bagazo de caña en las propiedades mecánicas y las emisiones de dióxido de carbono del hormigón preparado con residuos de vidrio |
title_full_unstemmed |
Efecto de la incorporación de ceniza de bagazo de caña en las propiedades mecánicas y las emisiones de dióxido de carbono del hormigón preparado con residuos de vidrio |
title_sort |
Efecto de la incorporación de ceniza de bagazo de caña en las propiedades mecánicas y las emisiones de dióxido de carbono del hormigón preparado con residuos de vidrio |
dc.creator.fl_str_mv |
Arbeláez Pérez, Oscar Felipe Delgado Varela, Karen Alejandra Castañeda Mena, Juan David |
dc.contributor.author.none.fl_str_mv |
Arbeláez Pérez, Oscar Felipe Delgado Varela, Karen Alejandra Castañeda Mena, Juan David |
dc.subject.none.fl_str_mv |
Ceniza de caña de azúcar Residuos agrícolas Propiedades mecánicas Residuos de vidrio Emisiones de CO2 |
topic |
Ceniza de caña de azúcar Residuos agrícolas Propiedades mecánicas Residuos de vidrio Emisiones de CO2 Sugar cane ash Agricultural waste Mechanical properties Waste glass CO2 emissions |
dc.subject.other.none.fl_str_mv |
Sugar cane ash Agricultural waste Mechanical properties Waste glass CO2 emissions |
description |
La producción de cemento agota los recursos naturales y emite enormes cantidades de CO2. El uso de residuos como sustitutos del cemento es una solución práctica para producir hormigón verde. La ceniza de bagazo de caña (CBC) y los residuos de vidrio (RV) tienen potencial como materiales cementantes. Este trabajo presenta el efecto de la incorporación de ceniza de bagazo de caña sobre las propiedades mecánicas y las emisiones de CO2 del hormigón preparado con residuos de vidrio. Se prepararon mezclas con relaciones CBC:RV 0:1, 1:3, 1:2, 1:1, 2:1, 3:1 y 1:0 (CBC + RV = 20% en masa) en reemplazo del cemento. Se encontró que el asentamiento disminuyó con el aumento de CBC y de RV. La incorporación de CBC y RV no afectó directamente la densidad del hormigón debido a la similitud en sus densidades. La resistencia a compresión aumentó con la incorporación de CBC; la mezcla 3:1 presentó la mayor resistencia a compresión. Las emisiones de CO2 disminuyeron con la incorporación de ceniza. El hormigón modificado con ceniza de bagazo de caña y residuos de vidrio es una opción potencial para el aprovechamiento de residuos y reducir las emisiones de CO2 en la industria del hormigón. |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-09-22 |
dc.date.accessioned.none.fl_str_mv |
2023-08-14T15:15:41Z |
dc.date.available.none.fl_str_mv |
2023-08-14T15:15:41Z 2027-08-11 |
dc.type.none.fl_str_mv |
Artículos Científicos |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
: 2173-0431 |
dc.identifier.uri.none.fl_str_mv |
https://doi.org/10.1016/j.bsecv.2022.08.001 https://hdl.handle.net/20.500.12494/52419 |
dc.identifier.bibliographicCitation.none.fl_str_mv |
Oscar Felipe Arbeláez Pérez, Karen Alejandra Delgado Varela, Juan David Castañeda Mena, Efecto de la incorporación de ceniza de bagazo de caña en las propiedades mecánicas y las emisiones de dióxido de carbono del hormigón preparado con residuos de vidrio, Boletín de la Sociedad Española de Cerámica y Vidrio, 2022, , ISSN 0366-3175, https://doi.org/10.1016/j.bsecv.2022.08.001. (https://www.sciencedirect.com/science/article/pii/S0366317522000462) |
identifier_str_mv |
: 2173-0431 Oscar Felipe Arbeláez Pérez, Karen Alejandra Delgado Varela, Juan David Castañeda Mena, Efecto de la incorporación de ceniza de bagazo de caña en las propiedades mecánicas y las emisiones de dióxido de carbono del hormigón preparado con residuos de vidrio, Boletín de la Sociedad Española de Cerámica y Vidrio, 2022, , ISSN 0366-3175, https://doi.org/10.1016/j.bsecv.2022.08.001. (https://www.sciencedirect.com/science/article/pii/S0366317522000462) |
url |
https://doi.org/10.1016/j.bsecv.2022.08.001 https://hdl.handle.net/20.500.12494/52419 |
dc.relation.isversionof.none.fl_str_mv |
https://www-sciencedirect-com.bbibliograficas.ucc.edu.co/science/article/pii/S0366317522000462 |
dc.relation.ispartofjournal.none.fl_str_mv |
Boletin de la sociedad española de ceramica y vidrio |
dc.relation.references.none.fl_str_mv |
[1] K. Ullah, M. Irshad Qureshi, A. Ahmad, Z. Ullah, Substitution potential of plastic fine aggregate in concrete for sustainable production, Structures. 35 (2022) 622–637. [2] M.A. Khalaf, C.C. Ban, M. Ramli, The constituents, properties and application of heavyweight concrete: A review, Constr. Build. Mater. 215 (2019) 73–89. [3] N. Jaiboon, W. Wongsapai, S. Daroon, R. Bunchuaidee, C. Ritkrerkkrai, D. Damrongsak, Greenhouse gas mitigation potential from waste heat recovery for power generation in cement industry: The case of Thailand, Energy Reports. 7 (2021) 638–643. [4] F.N. Costa, D. V. Ribeiro, Reduction in CO2 emissions during production of cement, with partial replacement of traditional raw materials by civil construction waste (CCW), J. Clean. Prod. 276 (2020) 123302. [5] A. Souto-Martinez, J.H. Arehart, W. V. Srubar, Cradle-to-gate CO2e emissions vs. in situ CO2 sequestration of structural concrete elements, Energy Build. 167 (2018) 301–311. [6] Z. Syahida Adnan, N.F. Ariffin, S.M. Syed Mohsin, N.H. Abdul Shukor Lim, Review paper: Performance of rice husk ash as a material for partial cement replacement in concrete, Mater. Today Proc. (2021). [7] A. Alsalman, L.N. Assi, R.S. Kareem, K. Carter, P. Ziehl, Energy and CO2 emission assessments of alkali-activated concrete and Ordinary Portland Cement concrete: A comparative analysis of different grades of concrete, Clean. Environ. Syst. 3 (2021) 100047. [8] S. Nie, J. Zhou, F. Yang, M. Lan, J. Li, Z. Zhang, Z. Chen, M. Xu, H. Li, J.G. Sanjayan, Analysis of theoretical carbon dioxide emissions from cement production: Methodology and application, J. Clean. Prod. 334 (2022) 130270. [9] J. Krithika, G.B. Ramesh Kumar, Influence of fly ash on concrete - A systematic review, Mater. Today Proc. 33 (2020) 906–911. [10] R. Siddique, Utilization of silica fume in concrete: Review of hardened properties, Resour. Conserv. Recycl. 55 (2011) 923–932. [11] Z. Syahida Adnan, N.F. Ariffin, S.M. Syed Mohsin, N.H. Abdul Shukor Lim, Review paper: Performance of rice husk ash as a material for partial cement replacement in concrete, Mater. Today Proc. 48 (2022) 842–848. [12] E. Aprianti, P. Shafigh, S. Bahri, J.N. Farahani, Supplementary cementitious materials origin from agricultural wastes - A review, Constr. Build. Mater. 74 (2015) 176–187. [13] B.S. Thomas, J. Yang, A. Bahurudeen, J.A. Abdalla, R.A. Hawileh, H.M. Hamada, S. Nazar, V. Jittin, D.K. Ashish, Sugarcane bagasse ash as supplementary cementitious material in concrete – a review, Mater. Today Sustain. 15 (2021) 100086. [14] A. Joshaghani, M.A. Moeini, Evaluating the effects of sugar cane bagasse ash (SCBA) and nanosilica on the mechanical and durability properties of mortar, Constr. Build. Mater. 152 (2017) 818–831. [15] R. Srinivasan, K. Sathiya, Experimental Study on Bagasse Ash in Concrete, Int. J. Serv. Learn. Eng. Humanit. Eng. Soc. Entrep. 5 (2010) 60–66. [16] E. S. Srivastava, K. Kumar, E. Kumar, E. Kumar, Studies on Partial Replacement of Cement by Bagasse Ash in Concrete, IJRST 2 (2015) 43-45. [17] M. Azarudeen, Experimental Investigation on Strengthening of Beams using Retrofitting with Partial Replacement of Cement by Sugarcane Bagasse Ash in Concrete, Int. J. Res. Appl. Sci. Eng. Technol. 6 (2018) 2204–2208. [18] P. Jha, A.K. Sachan, R.P. Singh, Agro-waste sugarcane bagasse ash (ScBA) as partial replacement of binder material in concrete, Mater. Today Proc. 44 (2021) 419–427. [19] M.O. de Paula, I.F.F. Tinôco, C.S. Rodrigues, J.A.O. Saraz, Sugarcane bagasse ash as a partial-port-land-cement-replacement material | Ceniza de bagazo de caña de azúcar como material de sustitución parcial del cemento portland, DYNA. 77 (2010) 47–54. [20] V. Tanwar, K. Bisht, K.I.S. Ahmed Kabeer, P. V. Ramana, Experimental investigation of mechanical properties and resistance to acid and sulphate attack of GGBS based concrete mixes with beverage glass waste as fine aggregate, J. Build. Eng. 41 (2021) 102372. [21] C. Farinha, J. de Brito, R. Veiga, Incorporation of fine sanitary ware aggregates in coating mortars, Constr. Build. Mater. 83 (2015) 194–206. [22] B. Qin, M. Lin, Z. Xu, J. Ruan, Preparing Ultra-Thin Glass from Waste Glass Containing Impurities of Household Waste by the Combined Technology of In-Situ Deposition and Vacuum Pyrolysis, SSRN Electron. J. 185 (2022) 106451. [23] Y. Jani, W. Hogland, Waste glass in the production of cement and concrete - A review, J. Environ. Chem. Eng. 2 (2014) 1767-1775. [24] J. Esmaeili, A. Oudah Al-Mwanes, A review: Properties of eco-friendly ultra-high-performance concrete incorporated with waste glass as a partial replacement for cement, Mater. Today Proc. 42 (2021) 1958–1965. [25] A.S. Raju, K.B. Anand, P. Rakesh, Partial replacement of Ordinary Portland cement by LCD glass powder in concrete, Mater. Today Proc. (2020). [26] M. Kamali, A. Ghahremaninezhad, Effect of glass powders on the mechanical and durability properties of cementitious materials, Constr. Build. Mater. 98 (2015) 407–416. [27] J.M. Alducin-Ochoa, J.J. Martín-del-Río, M. Torres-González, V. Flores-Alés, D. Hernández-Cruz, Performance of mortars based on recycled glass as aggregate by accelerated decay tests (ADT), Constr. Build. Mater. 300 (2021) 124057. [28] R. Rajendran, A. Sathishkumar, K. Perumal, N. Pannirselvam, N. Lingeshwaran, S. Babu Madavarapu, An experiment on concrete replacing binding material as waste glass powder, Mater. Today Proc. 47 (2021) 5447–5450. [29] H.A. Elaqra, M.A.A. Haloub, R.N. Rustom, Effect of new mixing method of glass powder as cement replacement on mechanical behavior of concrete, Constr. Build. Mater. 203 (2019) 75–82. [30] T.H. Kim, C.U. Chae, G.H. Kim, H.J. Jang, Analysis of CO2 emission characteristics of concrete used at construction sites, Sustain. 8 (2016) 2-14. [31] J.P. Rodriguez, M. Ruiz, A. Meneses, Revisión de los factores de emisión en las metodologías de huella de carbono en Colombia, Espacios. 41 (2020) 74–84. [32] K.I.M. Ibrahim, Recycled waste glass powder as a partial replacement of cement in concrete containing silica fume and fly ash, Case Stud. Constr. Mater. 15 (2021) e00630. [33] R.U.D. Nassar, P. Soroushian, M. Sufyan-Ud-Din, Long-term field performance of concrete produced with powder waste glass as partial replacement of cement, Case Stud. Constr. Mater. 15 (2021) e00745. [34] A.R. Pourkhorshidi, M. Najimi, T. Parhizkar, F. Jafarpour, B. Hillemeier, Cement & Concrete Composites Applicability of the standard specifications of ASTM C618 for evaluation of natural pozzolans, Cem. Concr. Compos. 32 (2010) 794–800. [35] M.F. Alnahhal, U.J. Alengaram, M.Z. Jumaat, F. Abutaha, M.A. Alqedra, R.R. Nayaka, Assessment on engineering properties and CO2 emissions of recycled aggregate concrete incorporating waste products as supplements to Portland cement, J. Clean. Prod. 203 (2018) 822–835. [36] S. Xue, H. Xie, H. Pink, Q. Li, B. Su, Z, Fu. Induced Transformation of Amorphous Silica to Cristobalite on Bacterial Surface. RSC Adv. 88 (2015) 71844-71848 [37] V. Torres de Sande, M. Sadique, P. Pineda, A. Bras, W. Atherton, M. Riley, Potential use of sugar cane bagasse ash as sand replacement for durable concrete, J. Build. Eng. 39 (2021) 102277. [38] J.C. Arenas-Piedrahita, P. Montes-García, J.M. Mendoza-Rangel, H.Z. López Calvo, P.L. Valdez-Tamez, J. Martínez-Reyes, Mechanical and durability properties of mortars prepared with untreated sugarcane bagasse ash and untreated fly ash, Constr. Build. Mater. 105 (2016) 69–81. [39] J. da S. Andrade Neto, M.J.S. de França, N.S. de Amorim Júnior, D.V. Ribeiro, Effects of adding sugarcane bagasse ash on the properties and durability of concrete, Constr. Build. Mater. 266 (2021) 120959 [40] R. Somna, C. Jaturapitakkul, P. Rattanachu, W. Chalee, Effect of ground bagasse ash on mechanical and durability properties of recycled aggregate concrete, Mater. Des. 36 (2012) 597–603. [41] N. Chusilp, C. Jaturapitakkul, K. Kiattikomol, Utilization of bagasse ash as a pozzolanic material in concrete, Constr. Build. Mater. 23 (2009) 3352–3358. [42] K.H. Tan, H. Du, Use of waste glass as sand in mortar: Part i - Fresh, mechanical and durability properties, Cem. Concr. Compos. 35 (2013) 109–117. [43] N. Tamanna, R. Tuladhar, N. Sivakugan, Performance of recycled waste glass sand as partial replacement of sand in concrete, Constr. Build. Mater. 239 (2020) 117804. [44] G.C. Cordeiro, R.D. Toledo Filho, L.M. Tavares, E. de M.R. Fairbairn, Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete, Cem. Concr. Res. 39 (2009) 110–115. [45] R. Idir, M. Cyr, A. Tagnit-Hamou, Pozzolanic properties of fine and coarse color-mixed glass cullet, Cem. Concr. Compos. 33 (2011) 19–29. [46] G.C. Cordeiro, R.D. Toledo Filho, L.M. Tavares, E. de M.R. Fairbairn, Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete, Cem. Concr. Res. 39 (2009) 110–115. [47] D.J.M. Flower, J.G. Sanjayan, Green house gas emissions due to concrete manufacture, Int. J. Life Cycle Assess. 12 (2007) 282–288. [48] A. Adesina, Recent advances in the concrete industry to reduce its carbon dioxide emissions, Environ. Challenges. 1 (2020) 100004. [49] M.Ö. Arıoğlu Akan, D.G. Dhavale, J. Sarkis, Greenhouse gas emissions in the construction industry: An analysis and evaluation of a concrete supply chain, J. Clean. Prod. 167 (2017) 1195–1207. [50] J.W. Lee, Y. Il Jang, W.S. Park, H. Do Yun, S.W. Kim, The Effect of Fly Ash and Recycled Aggregate on the Stre |
dc.rights.license.none.fl_str_mv |
Atribución – Sin Derivar |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/closedAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
rights_invalid_str_mv |
Atribución – Sin Derivar http://purl.org/coar/access_right/c_14cb |
eu_rights_str_mv |
closedAccess |
dc.publisher.none.fl_str_mv |
Universidad Cooperativa de Colombia |
dc.publisher.program.none.fl_str_mv |
Ingeniería Civil |
dc.publisher.place.none.fl_str_mv |
Medellín |
publisher.none.fl_str_mv |
Universidad Cooperativa de Colombia |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/57ae0305-1c92-45dd-ac3e-c099e3e472bd/download https://repository.ucc.edu.co/bitstreams/29f41e0b-b973-447c-b969-a791aad4a198/download https://repository.ucc.edu.co/bitstreams/14d4b2e6-d2ac-471a-94dd-899081e74fcb/download https://repository.ucc.edu.co/bitstreams/9b848d93-8f1d-4a8b-9040-86dcf378f4fb/download |
bitstream.checksum.fl_str_mv |
3bce4f7ab09dfc588f126e1e36e98a45 09fa7df9399efe9d9c0362942ab81fba 7c10f041130e93496ec99b7b4fe1e973 2ac5b425486950e27265de70193fcbff |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1811565560630083584 |
spelling |
Arbeláez Pérez, Oscar FelipeDelgado Varela, Karen AlejandraCastañeda Mena, Juan David2023-08-14T15:15:41Z2023-08-14T15:15:41Z2027-08-112022-09-22: 2173-0431https://doi.org/10.1016/j.bsecv.2022.08.001https://hdl.handle.net/20.500.12494/52419Oscar Felipe Arbeláez Pérez, Karen Alejandra Delgado Varela, Juan David Castañeda Mena, Efecto de la incorporación de ceniza de bagazo de caña en las propiedades mecánicas y las emisiones de dióxido de carbono del hormigón preparado con residuos de vidrio, Boletín de la Sociedad Española de Cerámica y Vidrio, 2022, , ISSN 0366-3175, https://doi.org/10.1016/j.bsecv.2022.08.001. (https://www.sciencedirect.com/science/article/pii/S0366317522000462)La producción de cemento agota los recursos naturales y emite enormes cantidades de CO2. El uso de residuos como sustitutos del cemento es una solución práctica para producir hormigón verde. La ceniza de bagazo de caña (CBC) y los residuos de vidrio (RV) tienen potencial como materiales cementantes. Este trabajo presenta el efecto de la incorporación de ceniza de bagazo de caña sobre las propiedades mecánicas y las emisiones de CO2 del hormigón preparado con residuos de vidrio. Se prepararon mezclas con relaciones CBC:RV 0:1, 1:3, 1:2, 1:1, 2:1, 3:1 y 1:0 (CBC + RV = 20% en masa) en reemplazo del cemento. Se encontró que el asentamiento disminuyó con el aumento de CBC y de RV. La incorporación de CBC y RV no afectó directamente la densidad del hormigón debido a la similitud en sus densidades. La resistencia a compresión aumentó con la incorporación de CBC; la mezcla 3:1 presentó la mayor resistencia a compresión. Las emisiones de CO2 disminuyeron con la incorporación de ceniza. El hormigón modificado con ceniza de bagazo de caña y residuos de vidrio es una opción potencial para el aprovechamiento de residuos y reducir las emisiones de CO2 en la industria del hormigón.The production of cement depletes natural resources and emits huge amounts of CO2. Using waste materials as replacement for cement is a practical solution to produce green concrete. Cane bagasse ash (CBA) and waste glass (WG) have great potential as supplementary cementitious materials. This work presents the effect of the incorporation of cane bagasse ash on mechanical properties and CO2 emissions of concrete prepared waste glass. Different CBA:WG mass ratio 0:1, 1:3, 1:2, 1:1, 2:1, 3:1 and 1:0 (CBA + WG = 20%) as cement replacement were prepared. The slump decreased with an increase of waste glass and sugar cane bagasse. The incorporation of sugarcane bagasse ash and waste glass it is not related with the density of concrete due to similar density between cementitious materials. The relative compressive strength increased with inclusion of CBA, the 3:1 mixture exhibited the highest relative compressive strength. The CO2 emissions were reduced when WG and CBA were incorporated. The addition of cane bagasse ash to concrete prepared with waste glass may be a potential option to mitigate the impact of residues and to reduce the CO2 emissions in concrete industry.http://orcid.org/0000-0001-7644-8555oscar.arbelaez@campusucc.edu.coJuan David Castañeda Menakaren.delgadova@campusucc.edu.cohttps://scholar.google.com/citations?user=wrvlwQIAAAAJ&hl=esUniversidad Cooperativa de ColombiaIngeniería CivilMedellínhttps://www-sciencedirect-com.bbibliograficas.ucc.edu.co/science/article/pii/S0366317522000462Boletin de la sociedad española de ceramica y vidrio[1] K. Ullah, M. Irshad Qureshi, A. Ahmad, Z. Ullah, Substitution potential of plastic fine aggregate in concrete for sustainable production, Structures. 35 (2022) 622–637. [2] M.A. Khalaf, C.C. Ban, M. Ramli, The constituents, properties and application of heavyweight concrete: A review, Constr. Build. Mater. 215 (2019) 73–89. [3] N. Jaiboon, W. Wongsapai, S. Daroon, R. Bunchuaidee, C. Ritkrerkkrai, D. Damrongsak, Greenhouse gas mitigation potential from waste heat recovery for power generation in cement industry: The case of Thailand, Energy Reports. 7 (2021) 638–643. [4] F.N. Costa, D. V. Ribeiro, Reduction in CO2 emissions during production of cement, with partial replacement of traditional raw materials by civil construction waste (CCW), J. Clean. Prod. 276 (2020) 123302. [5] A. Souto-Martinez, J.H. Arehart, W. V. Srubar, Cradle-to-gate CO2e emissions vs. in situ CO2 sequestration of structural concrete elements, Energy Build. 167 (2018) 301–311. [6] Z. Syahida Adnan, N.F. Ariffin, S.M. Syed Mohsin, N.H. Abdul Shukor Lim, Review paper: Performance of rice husk ash as a material for partial cement replacement in concrete, Mater. Today Proc. (2021). [7] A. Alsalman, L.N. Assi, R.S. Kareem, K. Carter, P. Ziehl, Energy and CO2 emission assessments of alkali-activated concrete and Ordinary Portland Cement concrete: A comparative analysis of different grades of concrete, Clean. Environ. Syst. 3 (2021) 100047. [8] S. Nie, J. Zhou, F. Yang, M. Lan, J. Li, Z. Zhang, Z. Chen, M. Xu, H. Li, J.G. Sanjayan, Analysis of theoretical carbon dioxide emissions from cement production: Methodology and application, J. Clean. Prod. 334 (2022) 130270. [9] J. Krithika, G.B. Ramesh Kumar, Influence of fly ash on concrete - A systematic review, Mater. Today Proc. 33 (2020) 906–911. [10] R. Siddique, Utilization of silica fume in concrete: Review of hardened properties, Resour. Conserv. Recycl. 55 (2011) 923–932. [11] Z. Syahida Adnan, N.F. Ariffin, S.M. Syed Mohsin, N.H. Abdul Shukor Lim, Review paper: Performance of rice husk ash as a material for partial cement replacement in concrete, Mater. Today Proc. 48 (2022) 842–848. [12] E. Aprianti, P. Shafigh, S. Bahri, J.N. Farahani, Supplementary cementitious materials origin from agricultural wastes - A review, Constr. Build. Mater. 74 (2015) 176–187. [13] B.S. Thomas, J. Yang, A. Bahurudeen, J.A. Abdalla, R.A. Hawileh, H.M. Hamada, S. Nazar, V. Jittin, D.K. Ashish, Sugarcane bagasse ash as supplementary cementitious material in concrete – a review, Mater. Today Sustain. 15 (2021) 100086. [14] A. Joshaghani, M.A. Moeini, Evaluating the effects of sugar cane bagasse ash (SCBA) and nanosilica on the mechanical and durability properties of mortar, Constr. Build. Mater. 152 (2017) 818–831. [15] R. Srinivasan, K. Sathiya, Experimental Study on Bagasse Ash in Concrete, Int. J. Serv. Learn. Eng. Humanit. Eng. Soc. Entrep. 5 (2010) 60–66. [16] E. S. Srivastava, K. Kumar, E. Kumar, E. Kumar, Studies on Partial Replacement of Cement by Bagasse Ash in Concrete, IJRST 2 (2015) 43-45. [17] M. Azarudeen, Experimental Investigation on Strengthening of Beams using Retrofitting with Partial Replacement of Cement by Sugarcane Bagasse Ash in Concrete, Int. J. Res. Appl. Sci. Eng. Technol. 6 (2018) 2204–2208. [18] P. Jha, A.K. Sachan, R.P. Singh, Agro-waste sugarcane bagasse ash (ScBA) as partial replacement of binder material in concrete, Mater. Today Proc. 44 (2021) 419–427. [19] M.O. de Paula, I.F.F. Tinôco, C.S. Rodrigues, J.A.O. Saraz, Sugarcane bagasse ash as a partial-port-land-cement-replacement material | Ceniza de bagazo de caña de azúcar como material de sustitución parcial del cemento portland, DYNA. 77 (2010) 47–54. [20] V. Tanwar, K. Bisht, K.I.S. Ahmed Kabeer, P. V. Ramana, Experimental investigation of mechanical properties and resistance to acid and sulphate attack of GGBS based concrete mixes with beverage glass waste as fine aggregate, J. Build. Eng. 41 (2021) 102372. [21] C. Farinha, J. de Brito, R. Veiga, Incorporation of fine sanitary ware aggregates in coating mortars, Constr. Build. Mater. 83 (2015) 194–206. [22] B. Qin, M. Lin, Z. Xu, J. Ruan, Preparing Ultra-Thin Glass from Waste Glass Containing Impurities of Household Waste by the Combined Technology of In-Situ Deposition and Vacuum Pyrolysis, SSRN Electron. J. 185 (2022) 106451. [23] Y. Jani, W. Hogland, Waste glass in the production of cement and concrete - A review, J. Environ. Chem. Eng. 2 (2014) 1767-1775. [24] J. Esmaeili, A. Oudah Al-Mwanes, A review: Properties of eco-friendly ultra-high-performance concrete incorporated with waste glass as a partial replacement for cement, Mater. Today Proc. 42 (2021) 1958–1965. [25] A.S. Raju, K.B. Anand, P. Rakesh, Partial replacement of Ordinary Portland cement by LCD glass powder in concrete, Mater. Today Proc. (2020). [26] M. Kamali, A. Ghahremaninezhad, Effect of glass powders on the mechanical and durability properties of cementitious materials, Constr. Build. Mater. 98 (2015) 407–416. [27] J.M. Alducin-Ochoa, J.J. Martín-del-Río, M. Torres-González, V. Flores-Alés, D. Hernández-Cruz, Performance of mortars based on recycled glass as aggregate by accelerated decay tests (ADT), Constr. Build. Mater. 300 (2021) 124057. [28] R. Rajendran, A. Sathishkumar, K. Perumal, N. Pannirselvam, N. Lingeshwaran, S. Babu Madavarapu, An experiment on concrete replacing binding material as waste glass powder, Mater. Today Proc. 47 (2021) 5447–5450. [29] H.A. Elaqra, M.A.A. Haloub, R.N. Rustom, Effect of new mixing method of glass powder as cement replacement on mechanical behavior of concrete, Constr. Build. Mater. 203 (2019) 75–82. [30] T.H. Kim, C.U. Chae, G.H. Kim, H.J. Jang, Analysis of CO2 emission characteristics of concrete used at construction sites, Sustain. 8 (2016) 2-14. [31] J.P. Rodriguez, M. Ruiz, A. Meneses, Revisión de los factores de emisión en las metodologías de huella de carbono en Colombia, Espacios. 41 (2020) 74–84. [32] K.I.M. Ibrahim, Recycled waste glass powder as a partial replacement of cement in concrete containing silica fume and fly ash, Case Stud. Constr. Mater. 15 (2021) e00630. [33] R.U.D. Nassar, P. Soroushian, M. Sufyan-Ud-Din, Long-term field performance of concrete produced with powder waste glass as partial replacement of cement, Case Stud. Constr. Mater. 15 (2021) e00745. [34] A.R. Pourkhorshidi, M. Najimi, T. Parhizkar, F. Jafarpour, B. Hillemeier, Cement & Concrete Composites Applicability of the standard specifications of ASTM C618 for evaluation of natural pozzolans, Cem. Concr. Compos. 32 (2010) 794–800. [35] M.F. Alnahhal, U.J. Alengaram, M.Z. Jumaat, F. Abutaha, M.A. Alqedra, R.R. Nayaka, Assessment on engineering properties and CO2 emissions of recycled aggregate concrete incorporating waste products as supplements to Portland cement, J. Clean. Prod. 203 (2018) 822–835. [36] S. Xue, H. Xie, H. Pink, Q. Li, B. Su, Z, Fu. Induced Transformation of Amorphous Silica to Cristobalite on Bacterial Surface. RSC Adv. 88 (2015) 71844-71848 [37] V. Torres de Sande, M. Sadique, P. Pineda, A. Bras, W. Atherton, M. Riley, Potential use of sugar cane bagasse ash as sand replacement for durable concrete, J. Build. Eng. 39 (2021) 102277. [38] J.C. Arenas-Piedrahita, P. Montes-García, J.M. Mendoza-Rangel, H.Z. López Calvo, P.L. Valdez-Tamez, J. Martínez-Reyes, Mechanical and durability properties of mortars prepared with untreated sugarcane bagasse ash and untreated fly ash, Constr. Build. Mater. 105 (2016) 69–81. [39] J. da S. Andrade Neto, M.J.S. de França, N.S. de Amorim Júnior, D.V. Ribeiro, Effects of adding sugarcane bagasse ash on the properties and durability of concrete, Constr. Build. Mater. 266 (2021) 120959 [40] R. Somna, C. Jaturapitakkul, P. Rattanachu, W. Chalee, Effect of ground bagasse ash on mechanical and durability properties of recycled aggregate concrete, Mater. Des. 36 (2012) 597–603. [41] N. Chusilp, C. Jaturapitakkul, K. Kiattikomol, Utilization of bagasse ash as a pozzolanic material in concrete, Constr. Build. Mater. 23 (2009) 3352–3358. [42] K.H. Tan, H. Du, Use of waste glass as sand in mortar: Part i - Fresh, mechanical and durability properties, Cem. Concr. Compos. 35 (2013) 109–117. [43] N. Tamanna, R. Tuladhar, N. Sivakugan, Performance of recycled waste glass sand as partial replacement of sand in concrete, Constr. Build. Mater. 239 (2020) 117804. [44] G.C. Cordeiro, R.D. Toledo Filho, L.M. Tavares, E. de M.R. Fairbairn, Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete, Cem. Concr. Res. 39 (2009) 110–115. [45] R. Idir, M. Cyr, A. Tagnit-Hamou, Pozzolanic properties of fine and coarse color-mixed glass cullet, Cem. Concr. Compos. 33 (2011) 19–29. [46] G.C. Cordeiro, R.D. Toledo Filho, L.M. Tavares, E. de M.R. Fairbairn, Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete, Cem. Concr. Res. 39 (2009) 110–115. [47] D.J.M. Flower, J.G. Sanjayan, Green house gas emissions due to concrete manufacture, Int. J. Life Cycle Assess. 12 (2007) 282–288. [48] A. Adesina, Recent advances in the concrete industry to reduce its carbon dioxide emissions, Environ. Challenges. 1 (2020) 100004. [49] M.Ö. Arıoğlu Akan, D.G. Dhavale, J. Sarkis, Greenhouse gas emissions in the construction industry: An analysis and evaluation of a concrete supply chain, J. Clean. Prod. 167 (2017) 1195–1207. [50] J.W. Lee, Y. Il Jang, W.S. Park, H. Do Yun, S.W. Kim, The Effect of Fly Ash and Recycled Aggregate on the StreCeniza de caña de azúcarResiduos agrícolasPropiedades mecánicasResiduos de vidrioEmisiones de CO2Sugar cane ashAgricultural wasteMechanical propertiesWaste glassCO2 emissionsEfecto de la incorporación de ceniza de bagazo de caña en las propiedades mecánicas y las emisiones de dióxido de carbono del hormigón preparado con residuos de vidrioArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribución – Sin Derivarinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/57ae0305-1c92-45dd-ac3e-c099e3e472bd/download3bce4f7ab09dfc588f126e1e36e98a45MD51ORIGINAL2023_ceniza_bagazo_cana.pdfapplication/pdf370151https://repository.ucc.edu.co/bitstreams/29f41e0b-b973-447c-b969-a791aad4a198/download09fa7df9399efe9d9c0362942ab81fbaMD52TEXT2023_ceniza_bagazo_cana.pdf.txt2023_ceniza_bagazo_cana.pdf.txtExtracted texttext/plain47407https://repository.ucc.edu.co/bitstreams/14d4b2e6-d2ac-471a-94dd-899081e74fcb/download7c10f041130e93496ec99b7b4fe1e973MD53THUMBNAIL2023_ceniza_bagazo_cana.pdf.jpg2023_ceniza_bagazo_cana.pdf.jpgGenerated Thumbnailimage/jpeg8247https://repository.ucc.edu.co/bitstreams/9b848d93-8f1d-4a8b-9040-86dcf378f4fb/download2ac5b425486950e27265de70193fcbffMD5420.500.12494/52419oai:repository.ucc.edu.co:20.500.12494/524192024-08-10 21:02:34.84open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo= |