Designing Microflowreactors for Photocatalysis Using Sonochemistry: ASystematic Review Article

El uso de la sonicación para diseñar y fabricar reactores, especialmente la deposición de catalizadores dentro de un microreactor, es un enfoque moderno. Hay muchos informes que prueban que un microreactor es una mejor configuración en comparación con los reactores de lotes para llevar a cabo reacci...

Full description

Autores:
Pradhan, Swaraj Rashmi
Colmenares Quintero, Ramón Fernando
Colmenares Quintero, Juan Carlos
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/17439
Acceso en línea:
https://doi.org/10.3390/molecules24183315
https://hdl.handle.net/20.500.12494/17439
Palabra clave:
Ultrasonido
Microreactor de flujo 
Fotocatálisis
Desintoxicación de agua/aire 
Síntesis orgánica  
Semiconductor
Ultrasound
Flow microreactor
Photocatalysis
Water/air detoxification
Organic synthesis
Semiconductor
Rights
openAccess
License
Atribución
id COOPER2_710022e4076b60637972265393719a65
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/17439
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Designing Microflowreactors for Photocatalysis Using Sonochemistry: ASystematic Review Article
title Designing Microflowreactors for Photocatalysis Using Sonochemistry: ASystematic Review Article
spellingShingle Designing Microflowreactors for Photocatalysis Using Sonochemistry: ASystematic Review Article
Ultrasonido
Microreactor de flujo 
Fotocatálisis
Desintoxicación de agua/aire 
Síntesis orgánica  
Semiconductor
Ultrasound
Flow microreactor
Photocatalysis
Water/air detoxification
Organic synthesis
Semiconductor
title_short Designing Microflowreactors for Photocatalysis Using Sonochemistry: ASystematic Review Article
title_full Designing Microflowreactors for Photocatalysis Using Sonochemistry: ASystematic Review Article
title_fullStr Designing Microflowreactors for Photocatalysis Using Sonochemistry: ASystematic Review Article
title_full_unstemmed Designing Microflowreactors for Photocatalysis Using Sonochemistry: ASystematic Review Article
title_sort Designing Microflowreactors for Photocatalysis Using Sonochemistry: ASystematic Review Article
dc.creator.fl_str_mv Pradhan, Swaraj Rashmi
Colmenares Quintero, Ramón Fernando
Colmenares Quintero, Juan Carlos
dc.contributor.author.none.fl_str_mv Pradhan, Swaraj Rashmi
Colmenares Quintero, Ramón Fernando
Colmenares Quintero, Juan Carlos
dc.subject.spa.fl_str_mv Ultrasonido
Microreactor de flujo 
Fotocatálisis
Desintoxicación de agua/aire 
Síntesis orgánica  
Semiconductor
topic Ultrasonido
Microreactor de flujo 
Fotocatálisis
Desintoxicación de agua/aire 
Síntesis orgánica  
Semiconductor
Ultrasound
Flow microreactor
Photocatalysis
Water/air detoxification
Organic synthesis
Semiconductor
dc.subject.other.spa.fl_str_mv Ultrasound
Flow microreactor
Photocatalysis
Water/air detoxification
Organic synthesis
Semiconductor
description El uso de la sonicación para diseñar y fabricar reactores, especialmente la deposición de catalizadores dentro de un microreactor, es un enfoque moderno. Hay muchos informes que prueban que un microreactor es una mejor configuración en comparación con los reactores de lotes para llevar a cabo reacciones catalíticas. Los microreactores tienen una mayor eficiencia energética, velocidad de reacción, seguridad, un grado mucho más fino de control del proceso, mejor difusión molecular y propiedades de transferencia de calor en comparación con el reactor discontinuo convencional. También se está considerando que el uso de microreactores para reacciones fotocatalíticas es la configuración adecuada del reactor debido a su mejor perfil de irradiación, mejor penetración de la luz en toda la profundidad del reactor y mayor homogeneidad de la iluminación espacial. Los ultrasonidos se han utilizado eficazmente para la síntesis de materiales, la degradación de compuestos orgánicos y la producción de combustible, entre otras aplicaciones. El reciente aumento de la demanda de energía, así como el riguroso estrés ambiental debido a la contaminación, han dado lugar a la necesidad de desarrollar procesos basados en la química verde para generar y eliminar los contaminantes de una manera más ecológica y rentable. Es posible llevar a cabo la síntesis y la deposición de catalizadores dentro del reactor utilizando el método promovido por los ultrasonidos en el sistema microfluídico. Además, el efecto sinérgico generado por la fotocatálisis y la sonoquímica en un microreactor puede utilizarse para la producción de diferentes productos químicos, que tienen un alto valor en las industrias farmacéutica y química. En el presente examen se destaca la utilización tanto de la fotocatálisis como de la sonoquímica para el desarrollo de microreactores y sus aplicaciones
publishDate 2019
dc.date.issued.none.fl_str_mv 2019-09-12
dc.date.accessioned.none.fl_str_mv 2020-04-21T19:22:37Z
dc.date.available.none.fl_str_mv 2020-04-21T19:22:37Z
dc.type.none.fl_str_mv Artículo
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 14203049
dc.identifier.uri.spa.fl_str_mv https://doi.org/10.3390/molecules24183315
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/17439
dc.identifier.bibliographicCitation.spa.fl_str_mv Rashmi Pradhan, S., Colmenares-Quintero, RF y Colmenares Quintero, JC (2019). Diseño de microfluctores para fotocatálisis mediante sonoquímica: un artículo de revisión sistemática. Moléculas , 24 (18), 3315. doi: 10.3390 / moléculas24183315
identifier_str_mv 14203049
Rashmi Pradhan, S., Colmenares-Quintero, RF y Colmenares Quintero, JC (2019). Diseño de microfluctores para fotocatálisis mediante sonoquímica: un artículo de revisión sistemática. Moléculas , 24 (18), 3315. doi: 10.3390 / moléculas24183315
url https://doi.org/10.3390/molecules24183315
https://hdl.handle.net/20.500.12494/17439
dc.relation.isversionof.spa.fl_str_mv https://www.mdpi.com/1420-3049/24/18/3315
dc.relation.ispartofjournal.spa.fl_str_mv Molecules
dc.relation.references.spa.fl_str_mv Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: New York, NY, USA, 1998
Meng,X.;Zhang,Z.;Li,X.Synergeticphotoelectrocatalyticreactorsforenvironmentalremediation: Areview. J. Photochem. Photobiol. C Photochem. Rev. 2015, 24, 83–101. [CrossRef]
Colmenares, J.C.; Lisowski, P.; Łomot, D. A novel biomass-based support (Starbon) for TiO2 hybrid photocatalysts: A versatile green tool for water purification. RSC Adv. 2013, 3, 20186–20192. [CrossRef]
Yang, Z.; Liu, M.; Lin, C. Photocatalytic activity and scale-up effect in liquid-solid mini-fluidized bed reactor. Chem. Eng. J. 2016, 291, 254–268. [CrossRef]
Yao, X.; Zhang, Y.; Du, L.; Liu, J.; Yao, J. Review of the applications of microreactors. Renew. Sustain. Energy Rev. 2015, 47, 519–539. [CrossRef]
Colmenares, J.C.; Varma, R.S.; Nair, V. Selective photocatalysis of lignin-inspired chemicals by integrating hybrid nanocatalysis in microfluidic reactors. Chem. Soc. Rev. 2017, 46, 6675–6686. [CrossRef] [PubMed]
Aljbour, S.; Tagawa, T.; Yamada, H. Ultrasound-assisted capillary microreactor for aqueous-organic multiphase reactions. J. Ind. Eng. Chem. 2009, 15, 829–834. [CrossRef]
Knowles, J.P.; Elliott, L.D.; Booker-Milburn, K.I. Flow photochemistry: Old light through new windows. Beilstein J. Org. Chem. 2012, 8, 2025–2052. [CrossRef]
Munirathinam, R.; Huskens, J.; Verboom, W. Supported catalysis in continuous-flow microreactors. Adv. Synth. Catal. 2015, 357, 1093–1123. [CrossRef]
Yue, J. Multiphase flow processing in microreactors combined with heterogeneous catalysis for efficient and sustainable chemical synthesis. Catal. Today 2018, 308, 3–19. [CrossRef]
Dimov, S.; Gasenko, O. Catalytic combustion and steam reforming of hydrocarbons in microreactor. MATEC Web Conf. 2017, 115, 03011. [CrossRef]
Seeberger,P.H.Highlyefficientcontinuousflowreactionsusingsingletoxygenasa“green”reagent. Org.Lett. 2011, 13, 5008–5011.
Wang, X.; Cuny, G.D.; Noel, T. A mild, one-pot Stadler–Ziegler synthesis of arylsulfides facilitated by photoredox catalysis in batch and continuous-flow. Angew. Chem. Int. Ed. 2013, 52, 7860–7864. [CrossRef]
Carlos, J. Sonication-induced pathways in the synthesis of light-active catalysts for photocatalytic oxidation of organic contaminants. ChemSusChem 2014, 7, 1512–1527.
Tang, Z.R.; Yin, X.; Zhang, Y.; Xu, Y.J. One-pot, high-yield synthesis of one-dimensional ZnO nanorods with well-defined morphology as a highly selective photocatalyst. RSC Adv. 2013, 3, 5956–5965. [CrossRef]
Chatel, G.; Valange, S.; Behling, R.; Carlos, J. A combined approach using sonochemistry and photocatalysis: How to apply sonophotocatalysis for biomass conversion? ChemCatChem 2017, 9, 2615–2621. [CrossRef]
Xu, H.; Zeiger, B.W.; Suslick, K.S. Sonochemical synthesis of nanomaterials. Chem. Soc. Rev. 2013, 2555–2567. [CrossRef]
Bora, M.; Shusteff, M. Efficient coupling of acoustic modes in microfluidic channel devices. Lab Chip 2015, 15, 3192–3202. [CrossRef]
John,J.J.;Kuhn,S.;Braeken,L.;VanGerven,T.Ultrasoundassistedliquid-liquidextractioninmicrochannels–A direct contact method. Chem. Eng. Process. Process Intensif. 2016, 102, 37–46. [CrossRef]
Thangavadivel, K.; Konagaya, M.; Okitsu, K.; Ashokkumar, M. Ultrasound-assisted degradation of methyl orange in a micro reactor. J. Environ. Chem. Eng. 2014, 2, 1841–1845. [CrossRef]
Sathishkumar, P.; Viswanathan, R. Review on the recent improvements in sonochemical and combined sonochemical oxidation processes—A powerful tool for destruction of environmental contaminants. Renew. Sustain. Energy Rev. 2016, 55, 426–454. [CrossRef]
Licklider, L.; Kuhr, W.G. Optimization of on-line peptide mapping by capillary zone electrophoresis. Anal. Chem. 1994, 66, 4400–4407. [CrossRef]
Rossi, D.; Jamshidi, R.; Sa, N.; Kuhn, S.; Gavriilidis, A.; Mazzei, L. Continuous-flow sonocrystallization in droplet-based micro fluidics. Cryst. Growth Des. 2015, 15, 5519–5529. [CrossRef]
Jiang, M.; Papageorgiou, C.D.; Waetzig, J.; Hardy, A.; Langston, M.; Braatz, R.D. Indirect ultrasonication in continuous slug-flow crystallization. Cryst. Growth Des. 2015, 15, 2486–2492. [CrossRef]
Rivas, D.F.; Castro-Hernández, E.; Villanueva Perales, A.L.; van der Meer, W. Evaluation method for process intensification alternatives. Chem. Eng. Process. Process Intensif. 2018, 123, 221–232. [CrossRef]
Wang, M.; Rajendran, V. Kinetics for dichlorocyclopropanation of 1,7-octadiene under the influence of ultrasound assisted phase-transfer catalysis conditions. J. Mol. Catal. A Chem. 2007, 273, 5–13. [CrossRef]
Hyun, S.; Hyang, J.; Cho, D. An analysis method for degradation kinetics of lowly concentrated PAH solutions under UV light and ultrasonication. J. Ind. Eng. Chem. 2009, 15, 157–162.
Thompson, L.H.; Doraiswamy, L.K. Sonochemistry: Science and engineering. Ind. Eng. Chem. Res. 1999, 38, 1215–1249. [CrossRef]
Laudadio, G.; Gemoets, H.P.L.; Hessel, V.; Noe, T. Flow synthesis of diaryliodonium triflates. J. Org. Chem. 2017, 82, 11735–11741. [CrossRef]
Joseph, J.; Kuhn, S.; Braeken, L.; Van Gerven, T. Ultrasound assisted liquid-liquid extraction with a novel interval-contact reactor. Chem. Eng. Process. Process Intensif. 2017, 113, 35–41.
Rizkin, B.A.; Popovic, F.G.; Hartman, R.L.; Rizkin, B.A.; Popovic, F.G.; Hartman, R.L. Spectroscopic microreactors for heterogeneous catalysis. J. Vac. Sci. Tehnol. A Vac. Surf. Films 2019, 37, 050801. [CrossRef]
Nge, P.N.; Rogers, C.I.; Woolley, A.T. Advances in microfluidic materials, functions, integration, and applications. Chem. Rev. 2013, 113, 2550–2583. [CrossRef] [PubMed]
Sohrabi, S.; Keshavarz Moraveji, M.; Iranshahi, D. A review on the design and development of photocatalyst synthesis and application in microfluidic reactors: Challenges and opportunities. Rev. Chem. Eng. 2019, 0, 1–36. [CrossRef]
Aran, H.C.; Salamon, D.; Rijnaarts, T.; Mul, G.; Wessling, M.; Lammertink, R.G.H. Porous photocatalytic membrane microreactor (P2M2): A new reactor concept for photochemistry. J. Photochem. Photobiol. A Chem. 2011, 225, 36–41. [CrossRef]
Worz, O.; Jackel, K.P.; Richter, T.; Wolf, A. Microreactors–A new efficient tool forreactor development. Chem. Eng. Technol. 2001, 24, 138–142. [CrossRef]
Krivec, M.; Žagar, K.; Suhadolnik, L.; ˇCeh, M.; Dražic´, G. Highly efficient TiO2-based microreactor for photocatalytic applications. ACS Appl. Mater. Interfaces 2013, 5, 9088–9094. [CrossRef] [PubMed]
Eskandarloo,H.;Badiei,A.;Behnajady,M.A.;Ziarani,G.M.UV-LEDsassistedpreparationofsilverdeposited TiO2 catalyst bed inside microchannels as a high efficiency microphotoreactor for cleaning polluted water. Chem. Eng. J. 2015, 270, 158–167. [CrossRef]
Fernandez Rivas, D.; Kuhn, S. Synergy of microfluidics and ultrasound: Process intensification challenges and opportunities. Top. Curr. Chem. 2016, 374, 70. [CrossRef]
Fernandez Rivas, D.; Cintas, P.; Gardeniers, H.J.G.E. Merging microfluidics and sonochemistry: Towards greener and more efficient micro-sono-reactors. Chem. Commun. 2012, 48, 10935–10947. [CrossRef]
Wood, R.J.; Lee, J.; Bussemaker, M.J. A parametric review of sonochemistry: Control and augmentation of sonochemical activity in aqueous solutions. Ultrason. Sonochem. 2017, 38, 351–370. [CrossRef]
Cintas, P. Ultrasound and green chemistry–Further comments. Ultrason. Sonochem. 2016, 28, 257–258. [CrossRef] [PubMed]
Dong,Z.;Zhao,S.;Zhang,Y.;Yao,C.;Chen,G.;Yuan,Q.Mixingandresidencetimedistributioninultrasonic microreactors. AIChE J. 2017, 63, 1404–1418. [CrossRef]
Wang, H.; Nakamura, H.; Uehara, M.; Miyazaki, M.; Maeda, H. Preparation of titania particles utilizing the insoluble phase interface in a microchannel reactor. Chem. Commun. 2002, 2, 1462–1463. [CrossRef] [PubMed]
Chandrasekhar,D.;Borra,S.;Kapure,J.S.;Shivaji,G.S.;Srinivasulu,G.;Maurya,R.A.Visible-lightphotoredox catalysis: Direct synthesis of fused β-carbolines through an oxidation/[3 + 2] cycloaddition/oxidative aromatization reaction cascade in batch and flow microreactors. Org. Chem. Front. 2015, 2, 1308–1312. [CrossRef]
Matsushita, Y.; Ichimura, T.; Ohba, N.; Kumada, S.; Sakeda, K.; Suzuki, T.; Tanibata, H.; Murata, T. Recent progress on photoreactions in microreactors. Pure Appl. Chem. 2007, 79, 1959–1968. [CrossRef]
Oelgemoeller, M. Highlights of photochemical reactions in microflow reactors. Chem. Eng. Technol. 2012, 35, 1144–1152. [CrossRef]
Pandoli, O.; del Rosso, T.; Santos, V.M.; Rezende, R.D.S.; Marinkovic, B.A. Prototyping of photocatalitic microrreators and photodegradation tests of organic colors prototyping of photocatalytic microreactor and testing of photodegradation of organic. Quim. Nova 2015, 38, 859–863.
Ren, K.; Zhou, J.; Wu, H. Materials for microfluidic chip fabrication. Acc. Chem. Res. 2013, 46, 2396–2406. [CrossRef]
Wang, N.; Lei, L.; Zhang, X.M.; Tsang, Y.H.; Chen, Y.; Chan, H.L.W. A comparative study of preparation methods of nanoporous TiO2 films for microfluidic photocatalysis. Microelectron. Eng. 2011, 88, 2797–2799. [CrossRef]
Cambié, D.; Bottecchia, C.; Straathof, N.J.W.; Hessel, V.; Noël, T. Applications of continuous-flow photochemistryinorganicsynthesis,materialscience,andwatertreatment. Chem. Rev. 2016,116,10276–10341. [CrossRef]
Noël, T.; Naber, J.R.; Hartman, R.L.; Mcmullen, J.P.; Jensen, K.F.; Buchwald, S.L. Palladium-catalyzed aminationreactionsinflow: Overcomingthechallengesofcloggingviaacousticirradiation. Chem. Sci. 2011, 2, 287–290. [CrossRef]
Nair,V.;Colmenares,J.C.;Lisovytskiy,D.UltrasoundassistedZnOcoatinginamicroflowbasedphotoreactor for selective oxidation of benzyl alcohol to benzaldehyde. Green Chem. 2019, 21, 1241–1246. [CrossRef]
Aljbour, S.; Yamada, H.; Tagawa, T. Ultrasound-assisted phase transfer catalysis in a capillary microreactor. Chem. Eng. Process. Process Intensif. 2009, 48, 1167–1172. [CrossRef]
Hartman, R.L.; Naber, J.R.; Zaborenko, N.; Buchwald, S.L.; Jensen, K.F. Overcoming the challenges of solid bridgingandconstrictionduringPd-catalyzedC-Nbondformationinmicroreactorsabstract: Weinvestigate themechanismsthatgovernplugginginmicroreactors. Org. ProcessRes. Dev. 2010,14,1347–1357. [CrossRef]
Colmenares, J.C.; Ouyang, W.; Ojeda, M.; Kuna, E.; Chernyayeva, O.; Lisovytskiy, D.; De, S.; Luque, R.; Balu, A.M. Mild ultrasound-assisted synthesis of TiO2 supported on magnetic nanocomposites for selective photo-oxidation of benzyl alcohol. Appl. Catal. B Environ. 2016, 183, 107–112. [CrossRef]
Pol, V.G.; Grisaru, H.; Gedanken, A. Coating noble metal nanocrystals (Ag, Au, Pd, and Pt) on polystyrene spheres via ultrasound irradiation. Langmuir 2005, 21, 3635–3640. [CrossRef]
Zhong, Z.; Mastai, Y.; Koltypin, Y.; Zhao, Y.; Gedanken, A. Sonochemical coating of nanosized nickel on alumina submicrospheres and the interaction between the nickel and nickel oxide with the substrate. Chem. Mater. 1999, 11, 2350–2359. [CrossRef]
Liu,S.;Guo,Z.;Qian,X.;Zhang,J.;Liu,J.;Lin,J.SonochemicaldepositionofultrafinemetallicPtnanoparticles on CdS for efficient photocatalytic hydrogen evolution. Sustain. Energy Fuels 2019, 3, 1048–1054. [CrossRef]
Qiu, P.; Park, B.; Choi, J.; Thokchom, B.; Pandit, A.B. A review on heterogeneous sonocatalyst for treatment of organic pollutants in aqueous phase based on catalytic mechanism. Ultrason. Sonochem. 2018, 45, 29–49. [CrossRef]
Yang, C.; Yeong, T.; Ching, J. An application of ultrasound technology in synthesis of titania-based photocatalyst for degrading pollutant. Chem. Eng. J. 2017, 317, 586–612.
Yu, J.C.; Zhang, L.; Yu, J. Rapid synthesis of mesoporous TiO2 with high photocatalytic activity by ultrasound-induced agglomeration. New J. Chem. 2002, 26, 416–420. [CrossRef]
Das, S.; Srivastava, V.C. Microfluidic-based photocatalytic microreactor for environmental application: A review of fabrication substrates and techniques, and operating parameters. Photochem. Photobiol. Sci. 2016, 15, 714–730. [CrossRef]
Tao, S.; Yang, M.; Chen, H.; Ren, M.; Chen, G. Microfluidic synthesis of Ag @ Cu2O core-shell nanoparticles with enhanced photocatalytic activity. J. Colloid Interface Sci. 2017, 486, 16–26. [CrossRef]
Sachdev, S.; Maugi, R.; Kirk, C.; Zhou, Z.; Christie, S.D.R.; Platt, M. Synthesis and assembly of gold and iron oxide particles within an emulsion droplet; Facile production of core @ shell particles. Colloid Interface Sci. Commun. 2017, 16, 14–18. [CrossRef]
Jas, G.; Kirschning, A. Continuous flow techniques in organic synthesis. Chem. Eur. J. 2003, 9, 5708–5723. [CrossRef]
Baxendale,I.R.;Schou,S.C.;Sedelmeier,J.;Ley,S.V.Multi-stepsynthesisbyusingmodularflowreactors: The preparation of yne–ones and their use in heterocycle synthesis. Communication 2010, 16, 89–94. [CrossRef]
Mcmullen, J.P.; Jensen, K.F. Rapid determination of reaction kinetics with an automated microfluidic system. Org. Process Res. Dev. 2011, 15, 398–407. [CrossRef]
Kreutz,J.E.;Shukhaev,A.;Du,W.;Druskin,S.;Daugulis,O.;Ismagilov,R.F.Evolutionofcatalystsdirectedby genetic algorithms in a plug-based microfluidic device tested with oxidation of methane by oxygen. J. Am. Chem. Soc. 2010, 132, 128–3132. [CrossRef]
Pastre, J.C.; Browne, D.L.; Ley, S.V. Flow chemistry syntheses of natural products. Chem. Soc. Rev. 2013, 42, 8849–8869. [CrossRef]
Shchukin, D.G.; Sviridov, D.V. Photocatalytic processes in spatially confined micro- and nanoreactors. J. Photochem. Photobiol. C Photochem. Rev. 2006, 7, 23–39. [CrossRef]
Meng, X.; Zhang, Z.; Li, X. Ce Pt T; Elsevier Ireland Ltd.: Shannon, Ireland, 2015; ISBN 2227404701.
Lakerveld, R.; Sturm, G.S.J.; Stankiewicz, A.I.; Stefanidis, G.D. Integrated design of microwave and photocatalytic reactors. Where are we now? Curr. Opin. Chem. Eng. 2014, 5, 37–41. [CrossRef]
Saien,J.;Soleymani,A.R.Feasibilityofusingaslurryfallingfilmphoto-reactorforindividualandhybridized AOPs. J. Ind. Eng. Chem. 2012, 18, 1683–1688. [CrossRef]
Leblebici,M.E.;Stefanidis,G.D.;VanGerven,T.Comparisonofphotocatalyticspace-timeyieldsof12reactor designs for wastewater treatment. Chem. Eng. Process. Process Intensif. 2015, 97, 106–111. [CrossRef]
Heggo, D.; Ookawara, S. Multiphase photocatalytic microreactors. Chem. Eng. Sci. 2017, 169, 67–77. [CrossRef]
Shen, C.; Wang, Y.J.; Xu, J.H.; Luo, G.S. Glass capillaries with TiO2 supported on inner wall as microchannel reactors. Chem. Eng. J. 2015, 277, 48–55. [CrossRef]
Liu, M.; Zhu, X.; Chen, R.; Liao, Q.; Feng, H.; Li, L. Catalytic membrane microreactor with Pd/γ-Al2 O3 coated PDMS film modified by dopamine for hydrogenation of nitrobenzene. Chem. Eng. J. 2016, 301, 35–41. [CrossRef]
Stephan,B.;Ludovic,L.;Dominique,W.Modellingofafallingthinfilmdepositedphotocatalyticstepreactor for water purification: Pesticide treatment. Chem. Eng. J. 2011, 169, 216–225. [CrossRef]
Chen, Y.; Dionysiou, D.D. Effect of calcination temperature on the photocatalytic activity and adhesion of TiO2 films prepared by the P-25 powder-modified sol–gel method. J. Mol. Catal. A Chem. 2006, 244, 73–82. [CrossRef]
Charles, G.; Roques-Carmes, T.; Becheikh, N.; Falk, L.; Commenge, J.; Corbel, S. Determination of kinetic constants of a photocatalytic reaction in micro-channel reactors in the presence of mass-transfer limitation and axial dispersion. J. Photochem. Photobiol. A Chem. 2011, 223, 202–211. [CrossRef]
Corbel, S.; Becheikh, N.; Roques-Carmes, T.; Zahraa, O. Mass transfer measurements and modeling in a microchannel photocatalytic reactor. Chem. Eng. Res. Des. 2013, 92, 657–662. [CrossRef]
Oelgemöller, M.; Shvydkiv, O. Recent advances in microflow photochemistry. Molecules 2011, 16, 7522–7550. [CrossRef]
Ramos, B.; Ookawara, S.; Matsushita, Y.; Yoshikawa, S. Low-cost polymeric photocatalytic microreactors: Catalyst deposition and performance for phenol degradation. J. Environ. Chem. Eng. 2014, 2, 1487–1494. [CrossRef]
Padoin,N.;Andrade,L.;Angelo,J.;Mendes,A.;Moreira,R.D.F.P.M.;Soares,C.Intensificationofphotocatalytic pollutant abatement in microchannel reactor using TiO2 and TiO2-graphene. AIChE J. 2016, 62, 2794–2802. [CrossRef]
Liao, W.; Wang, N.; Wang, T.; Xu, J.; Han, X. Biomimetic microchannels of planar reactors for optimized photocatalytic efficiency of water purification. Biomicrofluidics 2016, 10, 014123. [CrossRef]
Wilms, D.; Klos, J.; Frey, H. Trends in polymer science microstructured reactors for polymer synthesis: A renaissance of continuous flow processes for tailor-made macromolecules? Macromol. Chem. Phys. 2008, 209, 343–356. [CrossRef]
Kumar,M.;Rao,N.;Khandekar,S.;Kunzru,D.Distributedhydrogenproductionfromethanolinamicrofuel processor: Issues and challenges. Renew. Sustain. Energy Rev. 2011, 15, 524–533.
Hornung, C.H.; Hallmark, B.; Baumann, M.; Baxendale, I.R.; Ley, S.V.; Hester, P.; Clayton, P.; MacKley, M.R. Multiple microcapillary reactor for organic synthesis. Ind. Eng. Chem. Res. 2010, 49, 4576–4582. [CrossRef]
Davis, G. Microfluidics: Its impact on drug discovery. Innov. Pharm. Technol. 2008, 25, 24–27.
Microfluidics, D.; Song, H.; Chen, D.L.; Ismagilov, R.F. Reactions in droplets in microfluidic channels. Angew. Chem. Int. Ed. 2006, 45, 7336–7356.
Mcmullen, J.P.; Stone, M.T.; Buchwald, S.L.; Jensen, K.F. An integrated microreactor system for self-optimization of a heck reaction: From micro- to mesoscale flow systems. Angew. Chem. Int. Ed. 2010, 49, 7076–7080. [CrossRef]
Naber, J.R.; Buchwald, S.L. Packed-bed reactors for continuous-flow C-N cross-coupling. Angew. Chem. Int. Ed. 2010, 49, 9469–9474. [CrossRef]
Okawa, A.; Yoshida, R.; Isozaki, T.; Shigesato, Y.; Matsushita, Y.; Suzuki, T. Photocatalytic oxidation of benzene in a microreactor with immobilized TiO2 thin films deposited by sputtering. Catal. Commun. 2017, 100, 1–4. [CrossRef]
Hawkins, A.R.; Schmidt, H. Handbook of Optofluidics; Taylor and Francis Group: Boca Raton, FL, USA, 2010.
Ohering, M. Materials Science of Thin Films, Deposition and Structure; Academic Press: San Diego, CA, USA, 2002.
Visan, A.; Rafieian, D.; Ogieglo, W.; Lammertink, R.G.H. Modeling intrinsic kinetics in immobilized photocatalytic microreactors. Appl. Catal. B Environ. 2014, 150, 93–100. [CrossRef]
Pierson, H.O. Handbook of Chemical Vapor Deposition: Technology, and Applications; Noyes Publications: Norwich, NY, USA, 2001.
Grosso, D.; Marie, P. How to exploit the full potential of the dip-coating process to better control film formation. J. Mater. Chem. 2011, 21, 17033–17038. [CrossRef]
Taylor,P.;Edler,K.J.;Roser,S.J.Growthandcharacterizationofmesoporoussilicafilms. Int. Rev. Phys. Chem. 2001, 20, 387–466.
Meng,Z.;Zhang,X.;Qin,J.Ahighefficiencymicrofluidic-basedphotocatalyticmicroreactorusingelectrospun nanofibrous TiO2 as a photocatalyst. Nanoscale 2013, 4687–4690. [CrossRef]
Ra, D.; Driessen, R.T.; Ogieglo, W.; Lammertink, R.G.H. Intrinsic photocatalytic assessment of reactively sputtered TiO2 films. ACS Appl. Mater. Interfaces 2015, 7, 8727–8732.
Piveteau, L.; Gasser, B.; Schlapbach, L. Evaluating mechanical adhesion of sol-gel titanium dioxide coatings containing calcium phosphate for metal implant application. Biomaterials 2000, 21, 2193–2201. [CrossRef]
Manivannan, A.; Spataru, N.; Arihara, K.; Fujishima, A. Electrochemical deposition of titanium oxide on boron-doped diamond electrodes. Electrochem. Solid Lett. 2005, 8, 138–140. [CrossRef]
Chein, R.; Chen, L.; Chen, Y.; Chung, J.N. Heat transfer effects on the methanol-steam reforming with partially filled catalyst layers. Int. J. Hydrog. Energy 2009, 34, 5398–5408. [CrossRef]
Lopez-Orozco, S.; Inayat, A.; Schwab, A.; Selvam, T.; Schwieger, W. Zeolitic materials with hierarchical porous structures. Adv. Mater. 2011, 23, 2602–2615. [CrossRef]
Tanimu, A.; Jaenicke, S.; Alhooshani, K. Heterogeneous catalysis in continuous flow microreactors: A review of methods and applications. Chem. Eng. J. 2017, 327, 792–821. [CrossRef]
Abramovic, B.F.; Šojic, D.V.; Krstic, J.B.; Finc, N.L.; Banic, N.D.; Boc, I.P. Efficiency of neonicotinoids photocatalytic degradation by using annular slurry reactor. Chem. Eng. J. 2016, 286, 184–190.
Nakamura, H.; Li, X.; Wang, H.; Uehara, M.; Miyazaki, M.; Shimizu, H.; Maeda, H. A simple method of self assembled nano-particles deposition on the micro-capillary inner walls and the reactor application for photo-catalytic and enzyme reactions. Chem. Eng. J. 2004, 101, 261–268. [CrossRef]
Rebrov, E.V.; Berenguer-Murcia, A.; Skelton, H.E.; Johnson, B.F.G.; Wheatley, A.E.H.; Schouten, J.C. Capillary microreactors wall-coated with mesoporous titania thin film catalyst supports. Lab Chip 2009, 9, 503–506. [CrossRef]
Li, L.; Tang, D.; Song, Y.; Jiang, B. Dual-film optofluidic microreactor with enhanced light-harvesting for photocatalytic applications. Chem. Eng. J. 2018, 339, 71–77. [CrossRef]
Suhadolnik, L.; Krivec, M.; Kristina, Ž.; Dra, G.; Ceh, M. A TiO2-nanotubes-based coil-type microreactor for highlyefficientphotoelectrocatalyticdegradationoforganiccompounds. J.Ind. Eng. Chem. 2017,47,384–390. [CrossRef]
Colmenares, J.C.; Nair, V.; Kuna, E.; Łomot, D. Development of photocatalyst coated fluoropolymer based microreactor using ultrasound for water remediation. Ultrason. Sonochem. 2018, 41, 297–302. [CrossRef]
Colmenares, J.C.; Kuna, E.; Lomot, D. Method and the Device for Deposition of Nanoparticles on the Inner Walls of a Polymer Capillary, Using Ultrasonic Waves. Patent PL 231485, 7 November 2018.
Dragone, V.; Sans, V.; Rosnes, M.H.; Kitson, P.J.; Cronin, L. 3D-printed devices for continuous-flow organic chemistry. Beilstein J. Org. Chem. 2013, 9, 951–959. [CrossRef]
Corrêa, A.G.; Zuin, V.G.; Ferreira, V.F.; Vazquez, P.G. Green chemistry in Brazil. Pure Appl. Chem. 2013, 85, 1643–1653. [CrossRef]
Wu, K.; Kuhn, S. Strategies for solids handling in microreactors. Chim. Oggi 2014, 32, 62–67.
Cassano, A.E.; Alfano, O.M. Reaction engineering of suspended solid heterogeneous photocatalytic reactors. Catal. Today 2000, 58, 167–197. [CrossRef]
Kar, A.; Smith, Y.R. Improved photocatalytic degradation of textile dye using titanium dioxide nanotubes formed over titanium wires. Environ. Sci. Technol. 2009, 43, 3260–3265. [CrossRef]
Colina Marquez, J.; Machuca-Martinez, F.; Puma, G.L. Radiation absorption and optimization of solar photocatalytic reactors for environmental applications. Environ. Sci. Technol. 2010, 44, 5112–5120. [CrossRef]
dc.rights.license.none.fl_str_mv Atribución
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 1-22 p.
dc.coverage.temporal.spa.fl_str_mv Vol. 24, No. 18.
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Medellín y Envigado
dc.publisher.program.spa.fl_str_mv Ingeniería Civil
dc.publisher.place.spa.fl_str_mv Medellín
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/d6fecaa8-c385-40c8-ae66-f5035026e380/download
https://repository.ucc.edu.co/bitstreams/48bddf34-74df-4326-b5c4-4daa22a51504/download
https://repository.ucc.edu.co/bitstreams/75646d58-63b4-4796-83dc-065240aa3417/download
https://repository.ucc.edu.co/bitstreams/114a3648-37af-483d-8d51-a1f5f65cc32d/download
https://repository.ucc.edu.co/bitstreams/0665aec2-e96a-4872-93fb-4e3c114c3ee6/download
https://repository.ucc.edu.co/bitstreams/9016443d-2f78-403e-a912-07da54ec06b8/download
https://repository.ucc.edu.co/bitstreams/e09cbed8-0697-4c38-b8a3-94a1b8fa0197/download
bitstream.checksum.fl_str_mv 8a4966e096b051dbce49e02ffa13eea3
9b54d5ea821d96e812ef61c33dcae109
3bce4f7ab09dfc588f126e1e36e98a45
806c1700499ac93182838ae6ad858d92
86ccbf64bb6187f300ec0153fd693ff4
97fbc6bc2bc552e11cf5d763a803f218
b8978ca34bd39e3cee84c3a3ef37a06b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814247096068341760
spelling Pradhan, Swaraj RashmiColmenares Quintero, Ramón FernandoColmenares Quintero, Juan CarlosVol. 24, No. 18.2020-04-21T19:22:37Z2020-04-21T19:22:37Z2019-09-1214203049https://doi.org/10.3390/molecules24183315https://hdl.handle.net/20.500.12494/17439Rashmi Pradhan, S., Colmenares-Quintero, RF y Colmenares Quintero, JC (2019). Diseño de microfluctores para fotocatálisis mediante sonoquímica: un artículo de revisión sistemática. Moléculas , 24 (18), 3315. doi: 10.3390 / moléculas24183315El uso de la sonicación para diseñar y fabricar reactores, especialmente la deposición de catalizadores dentro de un microreactor, es un enfoque moderno. Hay muchos informes que prueban que un microreactor es una mejor configuración en comparación con los reactores de lotes para llevar a cabo reacciones catalíticas. Los microreactores tienen una mayor eficiencia energética, velocidad de reacción, seguridad, un grado mucho más fino de control del proceso, mejor difusión molecular y propiedades de transferencia de calor en comparación con el reactor discontinuo convencional. También se está considerando que el uso de microreactores para reacciones fotocatalíticas es la configuración adecuada del reactor debido a su mejor perfil de irradiación, mejor penetración de la luz en toda la profundidad del reactor y mayor homogeneidad de la iluminación espacial. Los ultrasonidos se han utilizado eficazmente para la síntesis de materiales, la degradación de compuestos orgánicos y la producción de combustible, entre otras aplicaciones. El reciente aumento de la demanda de energía, así como el riguroso estrés ambiental debido a la contaminación, han dado lugar a la necesidad de desarrollar procesos basados en la química verde para generar y eliminar los contaminantes de una manera más ecológica y rentable. Es posible llevar a cabo la síntesis y la deposición de catalizadores dentro del reactor utilizando el método promovido por los ultrasonidos en el sistema microfluídico. Además, el efecto sinérgico generado por la fotocatálisis y la sonoquímica en un microreactor puede utilizarse para la producción de diferentes productos químicos, que tienen un alto valor en las industrias farmacéutica y química. En el presente examen se destaca la utilización tanto de la fotocatálisis como de la sonoquímica para el desarrollo de microreactores y sus aplicacionesUse of sonication for designing and fabricating reactors, especially the deposition of catalysts inside a microreactor, is a modern approach. There are many reports that prove that a microreactor is a better setup compared with batch reactors for carrying out catalytic reactions. Microreactors have better energy efficiency, reaction rate, safety, a much finer degree of process control, better molecular diffusion, and heat-transfer properties compared with the conventional batch reactor. The use of microreactors for photocatalytic reactions is also being considered to be the appropriate reactor configuration because of its improved irradiation profile, better light penetration through the entire reactor depth, and higher spatial illumination homogeneity. Ultrasound has been used efficiently for the synthesis of materials, degradation of organic compounds, and fuel production, among other applications. The recent increase in energy demands, as well as the stringent environmental stress due to pollution, have resulted in the need to develop green chemistry-based processes to generate and remove contaminants in a more environmentally friendly and cost-effective manner. It is possible to carry out the synthesis and deposition of catalysts inside the reactor using the ultrasound-promoted method in the microfluidic system. In addition, the synergistic effect generated by photocatalysis and sonochemistry in a microreactor can be used for the production of different chemicals, which have high value in the pharmaceutical and chemical industries. The current review highlights the use of both photocatalysis and sonochemistry for developing microreactors and their applicationshttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000192503https://orcid.org/0000-0002-1823-461Xhttps://orcid.org/0000-0003-1166-1982https://orcid.org/0000-0003-3701-6340https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000005961srpradhan@ichf.edu.plramon.colmenaresq@campusucc.edu.cojcarloscolmenares@ichf.edu.plhttps://scholar.google.com/citations?user=9HLAZYUAAAAJ&hl=es1-22 p.Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Medellín y EnvigadoIngeniería CivilMedellínhttps://www.mdpi.com/1420-3049/24/18/3315MoleculesAnastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: New York, NY, USA, 1998Meng,X.;Zhang,Z.;Li,X.Synergeticphotoelectrocatalyticreactorsforenvironmentalremediation: Areview. J. Photochem. Photobiol. C Photochem. Rev. 2015, 24, 83–101. [CrossRef]Colmenares, J.C.; Lisowski, P.; Łomot, D. A novel biomass-based support (Starbon) for TiO2 hybrid photocatalysts: A versatile green tool for water purification. RSC Adv. 2013, 3, 20186–20192. [CrossRef]Yang, Z.; Liu, M.; Lin, C. Photocatalytic activity and scale-up effect in liquid-solid mini-fluidized bed reactor. Chem. Eng. J. 2016, 291, 254–268. [CrossRef]Yao, X.; Zhang, Y.; Du, L.; Liu, J.; Yao, J. Review of the applications of microreactors. Renew. Sustain. Energy Rev. 2015, 47, 519–539. [CrossRef]Colmenares, J.C.; Varma, R.S.; Nair, V. Selective photocatalysis of lignin-inspired chemicals by integrating hybrid nanocatalysis in microfluidic reactors. Chem. Soc. Rev. 2017, 46, 6675–6686. [CrossRef] [PubMed]Aljbour, S.; Tagawa, T.; Yamada, H. Ultrasound-assisted capillary microreactor for aqueous-organic multiphase reactions. J. Ind. Eng. Chem. 2009, 15, 829–834. [CrossRef]Knowles, J.P.; Elliott, L.D.; Booker-Milburn, K.I. Flow photochemistry: Old light through new windows. Beilstein J. Org. Chem. 2012, 8, 2025–2052. [CrossRef]Munirathinam, R.; Huskens, J.; Verboom, W. Supported catalysis in continuous-flow microreactors. Adv. Synth. Catal. 2015, 357, 1093–1123. [CrossRef]Yue, J. Multiphase flow processing in microreactors combined with heterogeneous catalysis for efficient and sustainable chemical synthesis. Catal. Today 2018, 308, 3–19. [CrossRef]Dimov, S.; Gasenko, O. Catalytic combustion and steam reforming of hydrocarbons in microreactor. MATEC Web Conf. 2017, 115, 03011. [CrossRef]Seeberger,P.H.Highlyefficientcontinuousflowreactionsusingsingletoxygenasa“green”reagent. Org.Lett. 2011, 13, 5008–5011.Wang, X.; Cuny, G.D.; Noel, T. A mild, one-pot Stadler–Ziegler synthesis of arylsulfides facilitated by photoredox catalysis in batch and continuous-flow. Angew. Chem. Int. Ed. 2013, 52, 7860–7864. [CrossRef]Carlos, J. Sonication-induced pathways in the synthesis of light-active catalysts for photocatalytic oxidation of organic contaminants. ChemSusChem 2014, 7, 1512–1527.Tang, Z.R.; Yin, X.; Zhang, Y.; Xu, Y.J. One-pot, high-yield synthesis of one-dimensional ZnO nanorods with well-defined morphology as a highly selective photocatalyst. RSC Adv. 2013, 3, 5956–5965. [CrossRef]Chatel, G.; Valange, S.; Behling, R.; Carlos, J. A combined approach using sonochemistry and photocatalysis: How to apply sonophotocatalysis for biomass conversion? ChemCatChem 2017, 9, 2615–2621. [CrossRef]Xu, H.; Zeiger, B.W.; Suslick, K.S. Sonochemical synthesis of nanomaterials. Chem. Soc. Rev. 2013, 2555–2567. [CrossRef]Bora, M.; Shusteff, M. Efficient coupling of acoustic modes in microfluidic channel devices. Lab Chip 2015, 15, 3192–3202. [CrossRef]John,J.J.;Kuhn,S.;Braeken,L.;VanGerven,T.Ultrasoundassistedliquid-liquidextractioninmicrochannels–A direct contact method. Chem. Eng. Process. Process Intensif. 2016, 102, 37–46. [CrossRef]Thangavadivel, K.; Konagaya, M.; Okitsu, K.; Ashokkumar, M. Ultrasound-assisted degradation of methyl orange in a micro reactor. J. Environ. Chem. Eng. 2014, 2, 1841–1845. [CrossRef]Sathishkumar, P.; Viswanathan, R. Review on the recent improvements in sonochemical and combined sonochemical oxidation processes—A powerful tool for destruction of environmental contaminants. Renew. Sustain. Energy Rev. 2016, 55, 426–454. [CrossRef]Licklider, L.; Kuhr, W.G. Optimization of on-line peptide mapping by capillary zone electrophoresis. Anal. Chem. 1994, 66, 4400–4407. [CrossRef]Rossi, D.; Jamshidi, R.; Sa, N.; Kuhn, S.; Gavriilidis, A.; Mazzei, L. Continuous-flow sonocrystallization in droplet-based micro fluidics. Cryst. Growth Des. 2015, 15, 5519–5529. [CrossRef]Jiang, M.; Papageorgiou, C.D.; Waetzig, J.; Hardy, A.; Langston, M.; Braatz, R.D. Indirect ultrasonication in continuous slug-flow crystallization. Cryst. Growth Des. 2015, 15, 2486–2492. [CrossRef]Rivas, D.F.; Castro-Hernández, E.; Villanueva Perales, A.L.; van der Meer, W. Evaluation method for process intensification alternatives. Chem. Eng. Process. Process Intensif. 2018, 123, 221–232. [CrossRef]Wang, M.; Rajendran, V. Kinetics for dichlorocyclopropanation of 1,7-octadiene under the influence of ultrasound assisted phase-transfer catalysis conditions. J. Mol. Catal. A Chem. 2007, 273, 5–13. [CrossRef]Hyun, S.; Hyang, J.; Cho, D. An analysis method for degradation kinetics of lowly concentrated PAH solutions under UV light and ultrasonication. J. Ind. Eng. Chem. 2009, 15, 157–162.Thompson, L.H.; Doraiswamy, L.K. Sonochemistry: Science and engineering. Ind. Eng. Chem. Res. 1999, 38, 1215–1249. [CrossRef]Laudadio, G.; Gemoets, H.P.L.; Hessel, V.; Noe, T. Flow synthesis of diaryliodonium triflates. J. Org. Chem. 2017, 82, 11735–11741. [CrossRef]Joseph, J.; Kuhn, S.; Braeken, L.; Van Gerven, T. Ultrasound assisted liquid-liquid extraction with a novel interval-contact reactor. Chem. Eng. Process. Process Intensif. 2017, 113, 35–41.Rizkin, B.A.; Popovic, F.G.; Hartman, R.L.; Rizkin, B.A.; Popovic, F.G.; Hartman, R.L. Spectroscopic microreactors for heterogeneous catalysis. J. Vac. Sci. Tehnol. A Vac. Surf. Films 2019, 37, 050801. [CrossRef]Nge, P.N.; Rogers, C.I.; Woolley, A.T. Advances in microfluidic materials, functions, integration, and applications. Chem. Rev. 2013, 113, 2550–2583. [CrossRef] [PubMed]Sohrabi, S.; Keshavarz Moraveji, M.; Iranshahi, D. A review on the design and development of photocatalyst synthesis and application in microfluidic reactors: Challenges and opportunities. Rev. Chem. Eng. 2019, 0, 1–36. [CrossRef]Aran, H.C.; Salamon, D.; Rijnaarts, T.; Mul, G.; Wessling, M.; Lammertink, R.G.H. Porous photocatalytic membrane microreactor (P2M2): A new reactor concept for photochemistry. J. Photochem. Photobiol. A Chem. 2011, 225, 36–41. [CrossRef]Worz, O.; Jackel, K.P.; Richter, T.; Wolf, A. Microreactors–A new efficient tool forreactor development. Chem. Eng. Technol. 2001, 24, 138–142. [CrossRef]Krivec, M.; Žagar, K.; Suhadolnik, L.; ˇCeh, M.; Dražic´, G. Highly efficient TiO2-based microreactor for photocatalytic applications. ACS Appl. Mater. Interfaces 2013, 5, 9088–9094. [CrossRef] [PubMed]Eskandarloo,H.;Badiei,A.;Behnajady,M.A.;Ziarani,G.M.UV-LEDsassistedpreparationofsilverdeposited TiO2 catalyst bed inside microchannels as a high efficiency microphotoreactor for cleaning polluted water. Chem. Eng. J. 2015, 270, 158–167. [CrossRef]Fernandez Rivas, D.; Kuhn, S. Synergy of microfluidics and ultrasound: Process intensification challenges and opportunities. Top. Curr. Chem. 2016, 374, 70. [CrossRef]Fernandez Rivas, D.; Cintas, P.; Gardeniers, H.J.G.E. Merging microfluidics and sonochemistry: Towards greener and more efficient micro-sono-reactors. Chem. Commun. 2012, 48, 10935–10947. [CrossRef]Wood, R.J.; Lee, J.; Bussemaker, M.J. A parametric review of sonochemistry: Control and augmentation of sonochemical activity in aqueous solutions. Ultrason. Sonochem. 2017, 38, 351–370. [CrossRef]Cintas, P. Ultrasound and green chemistry–Further comments. Ultrason. Sonochem. 2016, 28, 257–258. [CrossRef] [PubMed]Dong,Z.;Zhao,S.;Zhang,Y.;Yao,C.;Chen,G.;Yuan,Q.Mixingandresidencetimedistributioninultrasonic microreactors. AIChE J. 2017, 63, 1404–1418. [CrossRef]Wang, H.; Nakamura, H.; Uehara, M.; Miyazaki, M.; Maeda, H. Preparation of titania particles utilizing the insoluble phase interface in a microchannel reactor. Chem. Commun. 2002, 2, 1462–1463. [CrossRef] [PubMed]Chandrasekhar,D.;Borra,S.;Kapure,J.S.;Shivaji,G.S.;Srinivasulu,G.;Maurya,R.A.Visible-lightphotoredox catalysis: Direct synthesis of fused β-carbolines through an oxidation/[3 + 2] cycloaddition/oxidative aromatization reaction cascade in batch and flow microreactors. Org. Chem. Front. 2015, 2, 1308–1312. [CrossRef]Matsushita, Y.; Ichimura, T.; Ohba, N.; Kumada, S.; Sakeda, K.; Suzuki, T.; Tanibata, H.; Murata, T. Recent progress on photoreactions in microreactors. Pure Appl. Chem. 2007, 79, 1959–1968. [CrossRef]Oelgemoeller, M. Highlights of photochemical reactions in microflow reactors. Chem. Eng. Technol. 2012, 35, 1144–1152. [CrossRef]Pandoli, O.; del Rosso, T.; Santos, V.M.; Rezende, R.D.S.; Marinkovic, B.A. Prototyping of photocatalitic microrreators and photodegradation tests of organic colors prototyping of photocatalytic microreactor and testing of photodegradation of organic. Quim. Nova 2015, 38, 859–863.Ren, K.; Zhou, J.; Wu, H. Materials for microfluidic chip fabrication. Acc. Chem. Res. 2013, 46, 2396–2406. [CrossRef]Wang, N.; Lei, L.; Zhang, X.M.; Tsang, Y.H.; Chen, Y.; Chan, H.L.W. A comparative study of preparation methods of nanoporous TiO2 films for microfluidic photocatalysis. Microelectron. Eng. 2011, 88, 2797–2799. [CrossRef]Cambié, D.; Bottecchia, C.; Straathof, N.J.W.; Hessel, V.; Noël, T. Applications of continuous-flow photochemistryinorganicsynthesis,materialscience,andwatertreatment. Chem. Rev. 2016,116,10276–10341. [CrossRef]Noël, T.; Naber, J.R.; Hartman, R.L.; Mcmullen, J.P.; Jensen, K.F.; Buchwald, S.L. Palladium-catalyzed aminationreactionsinflow: Overcomingthechallengesofcloggingviaacousticirradiation. Chem. Sci. 2011, 2, 287–290. [CrossRef]Nair,V.;Colmenares,J.C.;Lisovytskiy,D.UltrasoundassistedZnOcoatinginamicroflowbasedphotoreactor for selective oxidation of benzyl alcohol to benzaldehyde. Green Chem. 2019, 21, 1241–1246. [CrossRef]Aljbour, S.; Yamada, H.; Tagawa, T. Ultrasound-assisted phase transfer catalysis in a capillary microreactor. Chem. Eng. Process. Process Intensif. 2009, 48, 1167–1172. [CrossRef]Hartman, R.L.; Naber, J.R.; Zaborenko, N.; Buchwald, S.L.; Jensen, K.F. Overcoming the challenges of solid bridgingandconstrictionduringPd-catalyzedC-Nbondformationinmicroreactorsabstract: Weinvestigate themechanismsthatgovernplugginginmicroreactors. Org. ProcessRes. Dev. 2010,14,1347–1357. [CrossRef]Colmenares, J.C.; Ouyang, W.; Ojeda, M.; Kuna, E.; Chernyayeva, O.; Lisovytskiy, D.; De, S.; Luque, R.; Balu, A.M. Mild ultrasound-assisted synthesis of TiO2 supported on magnetic nanocomposites for selective photo-oxidation of benzyl alcohol. Appl. Catal. B Environ. 2016, 183, 107–112. [CrossRef]Pol, V.G.; Grisaru, H.; Gedanken, A. Coating noble metal nanocrystals (Ag, Au, Pd, and Pt) on polystyrene spheres via ultrasound irradiation. Langmuir 2005, 21, 3635–3640. [CrossRef]Zhong, Z.; Mastai, Y.; Koltypin, Y.; Zhao, Y.; Gedanken, A. Sonochemical coating of nanosized nickel on alumina submicrospheres and the interaction between the nickel and nickel oxide with the substrate. Chem. Mater. 1999, 11, 2350–2359. [CrossRef]Liu,S.;Guo,Z.;Qian,X.;Zhang,J.;Liu,J.;Lin,J.SonochemicaldepositionofultrafinemetallicPtnanoparticles on CdS for efficient photocatalytic hydrogen evolution. Sustain. Energy Fuels 2019, 3, 1048–1054. [CrossRef]Qiu, P.; Park, B.; Choi, J.; Thokchom, B.; Pandit, A.B. A review on heterogeneous sonocatalyst for treatment of organic pollutants in aqueous phase based on catalytic mechanism. Ultrason. Sonochem. 2018, 45, 29–49. [CrossRef]Yang, C.; Yeong, T.; Ching, J. An application of ultrasound technology in synthesis of titania-based photocatalyst for degrading pollutant. Chem. Eng. J. 2017, 317, 586–612.Yu, J.C.; Zhang, L.; Yu, J. Rapid synthesis of mesoporous TiO2 with high photocatalytic activity by ultrasound-induced agglomeration. New J. Chem. 2002, 26, 416–420. [CrossRef]Das, S.; Srivastava, V.C. Microfluidic-based photocatalytic microreactor for environmental application: A review of fabrication substrates and techniques, and operating parameters. Photochem. Photobiol. Sci. 2016, 15, 714–730. [CrossRef]Tao, S.; Yang, M.; Chen, H.; Ren, M.; Chen, G. Microfluidic synthesis of Ag @ Cu2O core-shell nanoparticles with enhanced photocatalytic activity. J. Colloid Interface Sci. 2017, 486, 16–26. [CrossRef]Sachdev, S.; Maugi, R.; Kirk, C.; Zhou, Z.; Christie, S.D.R.; Platt, M. Synthesis and assembly of gold and iron oxide particles within an emulsion droplet; Facile production of core @ shell particles. Colloid Interface Sci. Commun. 2017, 16, 14–18. [CrossRef]Jas, G.; Kirschning, A. Continuous flow techniques in organic synthesis. Chem. Eur. J. 2003, 9, 5708–5723. [CrossRef]Baxendale,I.R.;Schou,S.C.;Sedelmeier,J.;Ley,S.V.Multi-stepsynthesisbyusingmodularflowreactors: The preparation of yne–ones and their use in heterocycle synthesis. Communication 2010, 16, 89–94. [CrossRef]Mcmullen, J.P.; Jensen, K.F. Rapid determination of reaction kinetics with an automated microfluidic system. Org. Process Res. Dev. 2011, 15, 398–407. [CrossRef]Kreutz,J.E.;Shukhaev,A.;Du,W.;Druskin,S.;Daugulis,O.;Ismagilov,R.F.Evolutionofcatalystsdirectedby genetic algorithms in a plug-based microfluidic device tested with oxidation of methane by oxygen. J. Am. Chem. Soc. 2010, 132, 128–3132. [CrossRef]Pastre, J.C.; Browne, D.L.; Ley, S.V. Flow chemistry syntheses of natural products. Chem. Soc. Rev. 2013, 42, 8849–8869. [CrossRef]Shchukin, D.G.; Sviridov, D.V. Photocatalytic processes in spatially confined micro- and nanoreactors. J. Photochem. Photobiol. C Photochem. Rev. 2006, 7, 23–39. [CrossRef]Meng, X.; Zhang, Z.; Li, X. Ce Pt T; Elsevier Ireland Ltd.: Shannon, Ireland, 2015; ISBN 2227404701.Lakerveld, R.; Sturm, G.S.J.; Stankiewicz, A.I.; Stefanidis, G.D. Integrated design of microwave and photocatalytic reactors. Where are we now? Curr. Opin. Chem. Eng. 2014, 5, 37–41. [CrossRef]Saien,J.;Soleymani,A.R.Feasibilityofusingaslurryfallingfilmphoto-reactorforindividualandhybridized AOPs. J. Ind. Eng. Chem. 2012, 18, 1683–1688. [CrossRef]Leblebici,M.E.;Stefanidis,G.D.;VanGerven,T.Comparisonofphotocatalyticspace-timeyieldsof12reactor designs for wastewater treatment. Chem. Eng. Process. Process Intensif. 2015, 97, 106–111. [CrossRef]Heggo, D.; Ookawara, S. Multiphase photocatalytic microreactors. Chem. Eng. Sci. 2017, 169, 67–77. [CrossRef]Shen, C.; Wang, Y.J.; Xu, J.H.; Luo, G.S. Glass capillaries with TiO2 supported on inner wall as microchannel reactors. Chem. Eng. J. 2015, 277, 48–55. [CrossRef]Liu, M.; Zhu, X.; Chen, R.; Liao, Q.; Feng, H.; Li, L. Catalytic membrane microreactor with Pd/γ-Al2 O3 coated PDMS film modified by dopamine for hydrogenation of nitrobenzene. Chem. Eng. J. 2016, 301, 35–41. [CrossRef]Stephan,B.;Ludovic,L.;Dominique,W.Modellingofafallingthinfilmdepositedphotocatalyticstepreactor for water purification: Pesticide treatment. Chem. Eng. J. 2011, 169, 216–225. [CrossRef]Chen, Y.; Dionysiou, D.D. Effect of calcination temperature on the photocatalytic activity and adhesion of TiO2 films prepared by the P-25 powder-modified sol–gel method. J. Mol. Catal. A Chem. 2006, 244, 73–82. [CrossRef]Charles, G.; Roques-Carmes, T.; Becheikh, N.; Falk, L.; Commenge, J.; Corbel, S. Determination of kinetic constants of a photocatalytic reaction in micro-channel reactors in the presence of mass-transfer limitation and axial dispersion. J. Photochem. Photobiol. A Chem. 2011, 223, 202–211. [CrossRef]Corbel, S.; Becheikh, N.; Roques-Carmes, T.; Zahraa, O. Mass transfer measurements and modeling in a microchannel photocatalytic reactor. Chem. Eng. Res. Des. 2013, 92, 657–662. [CrossRef]Oelgemöller, M.; Shvydkiv, O. Recent advances in microflow photochemistry. Molecules 2011, 16, 7522–7550. [CrossRef]Ramos, B.; Ookawara, S.; Matsushita, Y.; Yoshikawa, S. Low-cost polymeric photocatalytic microreactors: Catalyst deposition and performance for phenol degradation. J. Environ. Chem. Eng. 2014, 2, 1487–1494. [CrossRef]Padoin,N.;Andrade,L.;Angelo,J.;Mendes,A.;Moreira,R.D.F.P.M.;Soares,C.Intensificationofphotocatalytic pollutant abatement in microchannel reactor using TiO2 and TiO2-graphene. AIChE J. 2016, 62, 2794–2802. [CrossRef]Liao, W.; Wang, N.; Wang, T.; Xu, J.; Han, X. Biomimetic microchannels of planar reactors for optimized photocatalytic efficiency of water purification. Biomicrofluidics 2016, 10, 014123. [CrossRef]Wilms, D.; Klos, J.; Frey, H. Trends in polymer science microstructured reactors for polymer synthesis: A renaissance of continuous flow processes for tailor-made macromolecules? Macromol. Chem. Phys. 2008, 209, 343–356. [CrossRef]Kumar,M.;Rao,N.;Khandekar,S.;Kunzru,D.Distributedhydrogenproductionfromethanolinamicrofuel processor: Issues and challenges. Renew. Sustain. Energy Rev. 2011, 15, 524–533.Hornung, C.H.; Hallmark, B.; Baumann, M.; Baxendale, I.R.; Ley, S.V.; Hester, P.; Clayton, P.; MacKley, M.R. Multiple microcapillary reactor for organic synthesis. Ind. Eng. Chem. Res. 2010, 49, 4576–4582. [CrossRef]Davis, G. Microfluidics: Its impact on drug discovery. Innov. Pharm. Technol. 2008, 25, 24–27.Microfluidics, D.; Song, H.; Chen, D.L.; Ismagilov, R.F. Reactions in droplets in microfluidic channels. Angew. Chem. Int. Ed. 2006, 45, 7336–7356.Mcmullen, J.P.; Stone, M.T.; Buchwald, S.L.; Jensen, K.F. An integrated microreactor system for self-optimization of a heck reaction: From micro- to mesoscale flow systems. Angew. Chem. Int. Ed. 2010, 49, 7076–7080. [CrossRef]Naber, J.R.; Buchwald, S.L. Packed-bed reactors for continuous-flow C-N cross-coupling. Angew. Chem. Int. Ed. 2010, 49, 9469–9474. [CrossRef]Okawa, A.; Yoshida, R.; Isozaki, T.; Shigesato, Y.; Matsushita, Y.; Suzuki, T. Photocatalytic oxidation of benzene in a microreactor with immobilized TiO2 thin films deposited by sputtering. Catal. Commun. 2017, 100, 1–4. [CrossRef]Hawkins, A.R.; Schmidt, H. Handbook of Optofluidics; Taylor and Francis Group: Boca Raton, FL, USA, 2010.Ohering, M. Materials Science of Thin Films, Deposition and Structure; Academic Press: San Diego, CA, USA, 2002.Visan, A.; Rafieian, D.; Ogieglo, W.; Lammertink, R.G.H. Modeling intrinsic kinetics in immobilized photocatalytic microreactors. Appl. Catal. B Environ. 2014, 150, 93–100. [CrossRef]Pierson, H.O. Handbook of Chemical Vapor Deposition: Technology, and Applications; Noyes Publications: Norwich, NY, USA, 2001.Grosso, D.; Marie, P. How to exploit the full potential of the dip-coating process to better control film formation. J. Mater. Chem. 2011, 21, 17033–17038. [CrossRef]Taylor,P.;Edler,K.J.;Roser,S.J.Growthandcharacterizationofmesoporoussilicafilms. Int. Rev. Phys. Chem. 2001, 20, 387–466.Meng,Z.;Zhang,X.;Qin,J.Ahighefficiencymicrofluidic-basedphotocatalyticmicroreactorusingelectrospun nanofibrous TiO2 as a photocatalyst. Nanoscale 2013, 4687–4690. [CrossRef]Ra, D.; Driessen, R.T.; Ogieglo, W.; Lammertink, R.G.H. Intrinsic photocatalytic assessment of reactively sputtered TiO2 films. ACS Appl. Mater. Interfaces 2015, 7, 8727–8732.Piveteau, L.; Gasser, B.; Schlapbach, L. Evaluating mechanical adhesion of sol-gel titanium dioxide coatings containing calcium phosphate for metal implant application. Biomaterials 2000, 21, 2193–2201. [CrossRef]Manivannan, A.; Spataru, N.; Arihara, K.; Fujishima, A. Electrochemical deposition of titanium oxide on boron-doped diamond electrodes. Electrochem. Solid Lett. 2005, 8, 138–140. [CrossRef]Chein, R.; Chen, L.; Chen, Y.; Chung, J.N. Heat transfer effects on the methanol-steam reforming with partially filled catalyst layers. Int. J. Hydrog. Energy 2009, 34, 5398–5408. [CrossRef]Lopez-Orozco, S.; Inayat, A.; Schwab, A.; Selvam, T.; Schwieger, W. Zeolitic materials with hierarchical porous structures. Adv. Mater. 2011, 23, 2602–2615. [CrossRef]Tanimu, A.; Jaenicke, S.; Alhooshani, K. Heterogeneous catalysis in continuous flow microreactors: A review of methods and applications. Chem. Eng. J. 2017, 327, 792–821. [CrossRef]Abramovic, B.F.; Šojic, D.V.; Krstic, J.B.; Finc, N.L.; Banic, N.D.; Boc, I.P. Efficiency of neonicotinoids photocatalytic degradation by using annular slurry reactor. Chem. Eng. J. 2016, 286, 184–190.Nakamura, H.; Li, X.; Wang, H.; Uehara, M.; Miyazaki, M.; Shimizu, H.; Maeda, H. A simple method of self assembled nano-particles deposition on the micro-capillary inner walls and the reactor application for photo-catalytic and enzyme reactions. Chem. Eng. J. 2004, 101, 261–268. [CrossRef]Rebrov, E.V.; Berenguer-Murcia, A.; Skelton, H.E.; Johnson, B.F.G.; Wheatley, A.E.H.; Schouten, J.C. Capillary microreactors wall-coated with mesoporous titania thin film catalyst supports. Lab Chip 2009, 9, 503–506. [CrossRef]Li, L.; Tang, D.; Song, Y.; Jiang, B. Dual-film optofluidic microreactor with enhanced light-harvesting for photocatalytic applications. Chem. Eng. J. 2018, 339, 71–77. [CrossRef]Suhadolnik, L.; Krivec, M.; Kristina, Ž.; Dra, G.; Ceh, M. A TiO2-nanotubes-based coil-type microreactor for highlyefficientphotoelectrocatalyticdegradationoforganiccompounds. J.Ind. Eng. Chem. 2017,47,384–390. [CrossRef]Colmenares, J.C.; Nair, V.; Kuna, E.; Łomot, D. Development of photocatalyst coated fluoropolymer based microreactor using ultrasound for water remediation. Ultrason. Sonochem. 2018, 41, 297–302. [CrossRef]Colmenares, J.C.; Kuna, E.; Lomot, D. Method and the Device for Deposition of Nanoparticles on the Inner Walls of a Polymer Capillary, Using Ultrasonic Waves. Patent PL 231485, 7 November 2018.Dragone, V.; Sans, V.; Rosnes, M.H.; Kitson, P.J.; Cronin, L. 3D-printed devices for continuous-flow organic chemistry. Beilstein J. Org. Chem. 2013, 9, 951–959. [CrossRef]Corrêa, A.G.; Zuin, V.G.; Ferreira, V.F.; Vazquez, P.G. Green chemistry in Brazil. Pure Appl. Chem. 2013, 85, 1643–1653. [CrossRef]Wu, K.; Kuhn, S. Strategies for solids handling in microreactors. Chim. Oggi 2014, 32, 62–67.Cassano, A.E.; Alfano, O.M. Reaction engineering of suspended solid heterogeneous photocatalytic reactors. Catal. Today 2000, 58, 167–197. [CrossRef]Kar, A.; Smith, Y.R. Improved photocatalytic degradation of textile dye using titanium dioxide nanotubes formed over titanium wires. Environ. Sci. Technol. 2009, 43, 3260–3265. [CrossRef]Colina Marquez, J.; Machuca-Martinez, F.; Puma, G.L. Radiation absorption and optimization of solar photocatalytic reactors for environmental applications. Environ. Sci. Technol. 2010, 44, 5112–5120. [CrossRef]UltrasonidoMicroreactor de flujo FotocatálisisDesintoxicación de agua/aire Síntesis orgánica  SemiconductorUltrasoundFlow microreactorPhotocatalysisWater/air detoxificationOrganic synthesisSemiconductorDesigning Microflowreactors for Photocatalysis Using Sonochemistry: ASystematic Review ArticleArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINALMicroflowreactors_Photocatalysis_Sonochemistry_licenciadeuso.pdfMicroflowreactors_Photocatalysis_Sonochemistry_licenciadeuso.pdfLicencia de Usoapplication/pdf188210https://repository.ucc.edu.co/bitstreams/d6fecaa8-c385-40c8-ae66-f5035026e380/download8a4966e096b051dbce49e02ffa13eea3MD51Microflowreactors_Photocatalysis_Sonochemistry.pdfMicroflowreactors_Photocatalysis_Sonochemistry.pdfArticuloapplication/pdf4530420https://repository.ucc.edu.co/bitstreams/48bddf34-74df-4326-b5c4-4daa22a51504/download9b54d5ea821d96e812ef61c33dcae109MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/75646d58-63b4-4796-83dc-065240aa3417/download3bce4f7ab09dfc588f126e1e36e98a45MD53THUMBNAILMicroflowreactors_Photocatalysis_Sonochemistry_licenciadeuso.pdf.jpgMicroflowreactors_Photocatalysis_Sonochemistry_licenciadeuso.pdf.jpgGenerated Thumbnailimage/jpeg5264https://repository.ucc.edu.co/bitstreams/114a3648-37af-483d-8d51-a1f5f65cc32d/download806c1700499ac93182838ae6ad858d92MD54Microflowreactors_Photocatalysis_Sonochemistry.pdf.jpgMicroflowreactors_Photocatalysis_Sonochemistry.pdf.jpgGenerated Thumbnailimage/jpeg5230https://repository.ucc.edu.co/bitstreams/0665aec2-e96a-4872-93fb-4e3c114c3ee6/download86ccbf64bb6187f300ec0153fd693ff4MD55TEXTMicroflowreactors_Photocatalysis_Sonochemistry_licenciadeuso.pdf.txtMicroflowreactors_Photocatalysis_Sonochemistry_licenciadeuso.pdf.txtExtracted texttext/plain5553https://repository.ucc.edu.co/bitstreams/9016443d-2f78-403e-a912-07da54ec06b8/download97fbc6bc2bc552e11cf5d763a803f218MD56Microflowreactors_Photocatalysis_Sonochemistry.pdf.txtMicroflowreactors_Photocatalysis_Sonochemistry.pdf.txtExtracted texttext/plain100294https://repository.ucc.edu.co/bitstreams/e09cbed8-0697-4c38-b8a3-94a1b8fa0197/downloadb8978ca34bd39e3cee84c3a3ef37a06bMD5720.500.12494/17439oai:repository.ucc.edu.co:20.500.12494/174392024-08-10 21:00:36.158restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=