Factores de virulencia de bordetella bronchiseptica y su acción en la fisiopatologia de la traqueobronquitis infecciosa canina

Se recopiló información científica y actualizada de los factores de virulencia de B. bronchiseptica, con el objetivo de plantear cómo actúa cada uno de estos en la fisiopatología de la traqueobronquitis infecciosa canina, conociendo de manera precisa la interacción de la bacteria con el huésped en e...

Full description

Autores:
Moreno Garzon, Yiseth Katherine
Marín Rincón, Jeimmy Viviana
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/34678
Acceso en línea:
https://hdl.handle.net/20.500.12494/34678
Palabra clave:
Adenilato ciclasa
Citotoxina traqueal
Hemaglutinina filamentosa
Lipopolisacárido
Pertactina
Toxina dermonecrótica
TG 2021 MVZ 34678
Adenylate cyclase
Tracheal cytotoxin
Filamentous hemagglutinin
Lipopolysaccharide
Pertactin
Dermonecrotic toxin
Rights
openAccess
License
Atribución
id COOPER2_6f833f73a85ee0efaca596bd47589a83
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/34678
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Factores de virulencia de bordetella bronchiseptica y su acción en la fisiopatologia de la traqueobronquitis infecciosa canina
title Factores de virulencia de bordetella bronchiseptica y su acción en la fisiopatologia de la traqueobronquitis infecciosa canina
spellingShingle Factores de virulencia de bordetella bronchiseptica y su acción en la fisiopatologia de la traqueobronquitis infecciosa canina
Adenilato ciclasa
Citotoxina traqueal
Hemaglutinina filamentosa
Lipopolisacárido
Pertactina
Toxina dermonecrótica
TG 2021 MVZ 34678
Adenylate cyclase
Tracheal cytotoxin
Filamentous hemagglutinin
Lipopolysaccharide
Pertactin
Dermonecrotic toxin
title_short Factores de virulencia de bordetella bronchiseptica y su acción en la fisiopatologia de la traqueobronquitis infecciosa canina
title_full Factores de virulencia de bordetella bronchiseptica y su acción en la fisiopatologia de la traqueobronquitis infecciosa canina
title_fullStr Factores de virulencia de bordetella bronchiseptica y su acción en la fisiopatologia de la traqueobronquitis infecciosa canina
title_full_unstemmed Factores de virulencia de bordetella bronchiseptica y su acción en la fisiopatologia de la traqueobronquitis infecciosa canina
title_sort Factores de virulencia de bordetella bronchiseptica y su acción en la fisiopatologia de la traqueobronquitis infecciosa canina
dc.creator.fl_str_mv Moreno Garzon, Yiseth Katherine
Marín Rincón, Jeimmy Viviana
dc.contributor.advisor.none.fl_str_mv Sánchez Bonilla, María del Pilar
dc.contributor.author.none.fl_str_mv Moreno Garzon, Yiseth Katherine
Marín Rincón, Jeimmy Viviana
dc.subject.spa.fl_str_mv Adenilato ciclasa
Citotoxina traqueal
Hemaglutinina filamentosa
Lipopolisacárido
Pertactina
Toxina dermonecrótica
topic Adenilato ciclasa
Citotoxina traqueal
Hemaglutinina filamentosa
Lipopolisacárido
Pertactina
Toxina dermonecrótica
TG 2021 MVZ 34678
Adenylate cyclase
Tracheal cytotoxin
Filamentous hemagglutinin
Lipopolysaccharide
Pertactin
Dermonecrotic toxin
dc.subject.classification.spa.fl_str_mv TG 2021 MVZ 34678
dc.subject.other.spa.fl_str_mv Adenylate cyclase
Tracheal cytotoxin
Filamentous hemagglutinin
Lipopolysaccharide
Pertactin
Dermonecrotic toxin
description Se recopiló información científica y actualizada de los factores de virulencia de B. bronchiseptica, con el objetivo de plantear cómo actúa cada uno de estos en la fisiopatología de la traqueobronquitis infecciosa canina, conociendo de manera precisa la interacción de la bacteria con el huésped en este caso el canino. Se seleccionaron artículos indexados originales, realizados y publicados durante el año de 1977-1980 en caso de la historia y los años 2015 y 2021 sobre los factores de virulencia. Dentro de los criterios de inclusión, se tuvieron en cuenta estudios de idiomas diferentes al español, como el inglés y que se encontrarán dentro del tiempo de fecha de publicación. De 3.220 artículos revisados de bases de datos se seleccionaron 70 que cumplieron con los criterios de inclusión, los cuales determinaron, traqueobronquitis infecciosa, B. bronchiseptica, hemaglutinina filamentosa, pertactina, fimbrias, adenilato ciclasa, citotoxina traqueal y toxina dermonecrótica. En conclusión, la revisión sistemática permitió establecer que B. bronchiseptica, coloniza las células ciliadas del tracto respiratorio, debido a la presencia de adhesinas fimbriales y no fimbriales, como la hemaglutinina filamentosa y pertactina, ubicadas principalmente en la membrana externa de la bacteria, así como la participación del bacteriófago Bordetella el cuál expresa genes de fácil mutación para receptores adaptando a la bacteria. De igual manera, la expresión de endotoxinas y exotoxinas, dentro de estas últimas adenilato ciclasa, toxina dermonecrótica y citotoxina traqueal, las cuales, participan en la fisiopatología de la traqueobronquitis infecciosa canina, afectando así las células ciliadas, inhibiendo la respuesta de las células fagocíticas, suprimiendo la respuesta inmune, asociándose finalmente con los signos clínicos característicos en perros con traqueobronquitis infecciosa.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-06-21T16:39:02Z
dc.date.available.none.fl_str_mv 2021-06-21T16:39:02Z
dc.date.issued.none.fl_str_mv 2021-06-18
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/34678
dc.identifier.bibliographicCitation.spa.fl_str_mv Moreno Garzon, Y. K. y Marin Rincon, J. V. (2021). Factores de virulencia de bordetella bronchiseptica y su acción en la fisiopatologia de la traqueobronquitis infecciosa canina. [tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional UCC. http://hdl.handle.net/20.500.12494/34678
url https://hdl.handle.net/20.500.12494/34678
identifier_str_mv Moreno Garzon, Y. K. y Marin Rincon, J. V. (2021). Factores de virulencia de bordetella bronchiseptica y su acción en la fisiopatologia de la traqueobronquitis infecciosa canina. [tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional UCC. http://hdl.handle.net/20.500.12494/34678
dc.relation.references.spa.fl_str_mv Bhardwaj M, Singh BR, Vadhana P. Bordetella Bronchiseptica Infection and Kennel Cough in Dogs. Adv Anim Vet Sci [Internet]. 2013;1(35):2307–8316. Available from: http://www.nexusacademicpublishers.com/journal/4
Reagan KL, Sykes JE. Canine Infectious Respiratory Disease. Vet Clin North Am - Small Anim Pract [Internet]. 2020;50(2):405–18. Available from: https://doi.org/10.1016/j.cvsm.2019.10.009
Chambers JK, Matsumoto I, Shibahara T, Haritani M, Nakayama H, Uchida K. An Outbreak of Fatal Bordetella bronchiseptica Bronchopneumonia in Puppies. J Comp Pathol [Internet]. 2019;167:41–5. Available from: https://doi.org/10.1016/j.jcpa.2018.12.002
Liaqat I, Saleem Q ul A, Tahir HM, Arshad M, Arshad N. Identification of virulence factors in contact lens associated bacteria: A physiological approach. Contact Lens Anterior Eye [Internet]. 2019;42(2):159–64. Available from: https://www.researchgate.net/publication/328313253%0AIdentification
Sobran MA, Cotter PA. The BvgS PAS domain: An independent sensory perception module in the Bordetella BvgAS phosphorelay. bioRxiv. 2019;201(17):1–15.
Schulz BS, Kurz S, Weber K, Balzer HJ, Hartmann K. Detection of respiratory viruses and Bordetella bronchiseptica in dogs with acute respiratory tract infections. Vet J [Internet]. 2014;201(3):365–9. Available from: http://dx.doi.org/10.1016/j.tvjl.2014.04.019
Karim IU, Rahman MM. Sustainable Patterns Emerging from Leadership and Organisational Modeling. Int J Leadersh [Internet]. 2017;(2)(5):51–9. Available from: http://www.publishingindia.com
Bemis DA, Greisen HA, Appel MJG. Pathogenesis of canine bordetellosis. J Infect Dis [Internet]. 1977;135(5):753–62. Available from: http://jid.oxfordjournals.org/
Goodnow RA. Biology of Bordetella bronchiseptica. Microbiol Rev [Internet]. 1980;44(4):722–38. Available from: https://pubmed.ncbi.nlm.nih.gov/7010115/
Aktories K. Rho-modifying bacterial protein toxins. Pathog Dis [Internet]. 2015;73(9):1–11. Available from: https://academic.oup.com/femspd/article/73/9/ftv091/2467642
Jurnecka D, Man P, Sebo P, Bumba L. Bordetella pertussis and Bordetella bronchiseptica filamentous hemagglutinins are processed at different sites. FEBS Open Bio [Internet]. 2018;8(8):1256–66. Available from: https://www.researchgate.net/publication/325609719_Bordetella_pertussis_and_Bordetella_bronchiseptica_filamentous_hemagglutinins_are_processed_at_different_sites
Melvin JA, Scheller E V., Noël CR, Cotter PA. New insight into filamentous hemagglutinin secretion reveals a role for full-length FhaB in Bordetella virulence. MBio [Internet]. 2015;6(4):12–5. Available from: http://mbio.asm.org/
Cressiot B, Braselmann E, Oukhaled A, Elcock AH, Pelta J, Clark PL. Dynamics and Energy Contributions for Transport of Unfolded Pertactin through a Protein Nanopore. ACS Nano [Internet]. 2015;9(9):9050–61. Available from: http://pubs.acs.org
He L, Yougbare I, Gajewska B, Su J, Leung R, Azizi A. Development of a Pertactin-Coated Beads Approach for Screening of Functional Monoclonal Antibodies. J Pharm Sci [Internet]. 2020;109(2):1002–7. Available from: https://doi.org/10.1016/j.xphs.2019.10.001
Hovingh ES, Mariman R, Solans L, Hijdra D, Hamstra HJ, Jongerius I, et al. Bordetella pertussis pertactin knock-out strains reveal immunomodulatory properties of this virulence factor article. Emerg Microbes Infect [Internet]. 2018;7(1):1–13. Available from: https://doi.org/10.1038/s41426-018-0039-8
Wehmann E, Khayer B, Magyar T. Heterogeneity of Bordetella bronchiseptica adenylate cyclase (cyaA) RTX domain. Arch Microbiol [Internet]. 2015;197(1):105–12. Available from: https://link.springer.com/article/10.1007/s00203-014-1068-x
Scheller E V., Cotter PA. Bordetella filamentous hemagglutinin and fimbriae: critical adhesins with unrealized vaccine potential. Pathog Dis [Internet]. 2015;73(8):1–9. Available from: https://academic.oup.com/femspd/article/73/8/ftv079/2467727
Scheller E V., Melvin JA, Sheets AJ, Cotter PA. Cooperative roles for fimbria and filamentous hemagglutinin in Bordetella adherence and immune modulation. MBio. 2015;6(3):1–11.
Chen Y, Yang L, Sun E, Song J, Wu B. Characterisation of a newly detected bacteriophage infecting Bordetella bronchiseptica in swine. Arch Virol [Internet]. 2019;164(1):33–40. Available from: https://doi.org/10.1007/s00705-018-4034-0
Park GY, Yu HJ, Son JS, Park SJ, Cha HJ, Song KS. Specific bacteriophage of Bordetella bronchiseptica regulates B. bronchiseptica-induced microRNA expression profiles to decrease inflammation in swine nasal turbinate cells. Genes and Genomics [Internet]. 2020;42(4):441–7. Available from: https://doi.org/10.1007/s13258-019-00906-7
Szymczak M, Grygorcewicz B, Karczewska-Golec J, Decewicz P, Pankowski JA, Országh-Szturo H, et al. Characterization of a unique Bordetella bronchiseptica vB_BbrP_BB8 bacteriophage and its application as an antibacterial agent. Int J Mol Sci [Internet]. 2020;21(4):1–17. Available from: https://doi.org/10.3390/ijms21041403
Liu M, Deora R, Doulatov SR, Gingery M, Eiserling FA, Preston A, et al. Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage. Science (80- ). 2002;295(5562):2091–4.
Guiso N. Bordetella adenylate cyclase-hemolysin toxins. Toxins (Basel) [Internet]. 2017;9(9):1–13. Available from: https://doi.org/10.3390/toxins9090277
Chenal A, Ladant D. Bioengineering of bordetella pertussis adenylate cyclase toxin for antigen-delivery and immunotherapy. Toxins (Basel) [Internet]. 2018;10(7):1–23. Available from: https://pubmed.ncbi.nlm.nih.gov/30037010/
Novak J, Cerny O, Osickova A, Linhartova I, Masin J, Bumba L, et al. Structure–function relationships underlying the capacity of Bordetella adenylate cyclase toxin to disarm host phagocytes. Toxins (Basel) [Internet]. 2017;9(10). Available from: https://doi.org/10.3390/toxins9100300
Hoffman C, Eby J, Gray M, Heath Damron F, Melvin J, Cotter P, et al. Bordetella adenylate cyclase toxin interacts with filamentous haemagglutinin to inhibit biofilm formation in vitro. Mol Microbiol. 2017;103(2):214–28.
Kessie DK, Lodes N, Oberwinkler H, Goldman WE, Walles T, Steinke M, et al. Activity of Tracheal Cytotoxin of Bordetella pertussis in a Human Tracheobronchial 3D Tissue Model. Front Cell Infect Microbiol [Internet]. 2021;10(January):1–15. Available from: https://pubmed.ncbi.nlm.nih.gov/33585281/
Stanek O, Linhartova I, Holubova J, Bumba L, Gardian Z, Malandra A, et al. Production of highly active recombinant dermonecrotic toxin of bordetella pertussis. Toxins (Basel) [Internet]. 2020;12(9):1–14. Available from: https://doi.org/10.3390/toxins12090596
Wang C, Liu L, Zhang Z, Yan Z, Yu C, Shao M, et al. Immunological and protective effects of Bordetella bronchiseptica subunit vaccines based on the recombinant N-terminal domain of dermonecrotic toxin. Int Immunopharmacol [Internet]. 2015;28(2):952–9. Available from: http://dx.doi.org/10.1016/j.intimp.2015.08.018
Sisti F, Fernández J, Cordero A, Casabuono A, Couto A, Hozbor D. Modifications of Bordetella bronchiseptica core lipopolysaccharide influence immune response without affecting protective activity. Bioorganic Med Chem Lett [Internet]. 2017;27(3):432–6. Available from: http://dx.doi.org/10.1016/j.bmcl.2016.12.049
Bertani B, Ruiz N. Function and Biogenesis of Lipopolysaccharides. EcoSal Plus [Internet]. 2018;8(1):1–19. Available from: www.asmscience.org
Ducours M, Rispal P, Danjean MP, Imbert Y, Dupont E, Traissac EM, et al. Bordetella bronchiseptica infection. Med Mal Infect [Internet]. 2017;47(7):453–8. Available from: http://dx.doi.org/10.1016/j.medmal.2017.05.012
García-de-la-Fuente C, Guzmán L, Cano ME, Agüero J, Sanjuán C, Rodríguez C, et al. Microbiological and clinical aspects of respiratory infections associated with Bordetella bronchiseptica. Diagn Microbiol Infect Dis [Internet]. 2015;82(1):20–5. Available from: http://dx.doi.org/10.1016/j.diagmicrobio.2015.01.011
Kaczorek E, Schulz P, Małaczewska J, Wójcik R, Siwicki AK, Stopyra A, et al. Prevalence of respiratory pathogens detected in dogs with kennel cough in Poland. Acta Vet Brno [Internet]. 2016;85(4):329–36. Available from: https://actavet.vfu.cz/85/4/0329/
Day MJ, Carey S, Clercx C, Kohn B, MarsilIo F, Thiry E, et al. Aetiology of Canine Infectious Respiratory Disease Complex and Prevalence of its Pathogens in Europe. J Comp Pathol [Internet]. 2020;176:86–108. Available from: https://doi.org/10.1016/j.jcpa.2020.02.005
Nakamura K, Shinoda N, Hiramatsu Y, Ohnishi S, Kamitani S, Ogura Y. BspR/BtrA, an Anti- Factor, Regulates the Ability of Bordetella bronchiseptica To Cause Cough in Rats. Am Soc Microbiol [Internet]. 2019;4(2):1–12. Available from: https://doi.org/10.1128/mSphere.00093-19
Liu Y, Chen H, Wei Q, Xiao C, Ji Q, Bao G. Immune efficacy of five novel recombinant Bordetella bronchiseptica proteins. BMC Vet Res [Internet]. 2015;11(1):1–7. Available from: http://dx.doi.org/10.1186/s12917-015-0488-4
Petrovic A, Kostanjsek R, Rakhely G, Knezevic P. The First Siphoviridae Family Bacteriophages Infecting Bordetella bronchiseptica Isolated from Environment. Microb Ecol [Internet]. 2017;73(2):368–77. Available from: http://dx.doi.org/10.1007/s00248-016-0847-0
Dewan KK, Taylor-Mulneix DL, Hilburger LJ, Rivera I, Preston A, Harvill ET. An Extracellular Polysaccharide Locus Required for Transmission of Bordetella bronchiseptica. J Infect Dis [Internet]. 2017;216(7):899–906. Available from: https://academic.oup.com/jid/article-abstract/216/7/899/3932883
Taha-Abdelaziz K, Bassel LL, Harness ML, Clark ME, Register KB, Caswell JL. Cilia-associated bacteria in fatal Bordetella bronchiseptica pneumonia of dogs and cats. J Vet Diagnostic Investig [Internet]. 2016;28(4):369–76. Available from: https://journals.sagepub.com/doi/pdf/10.1177/1040638716646806
do Vale A, Cabanes D, Sousa S. Bacterial toxins as pathogen weapons against phagocytes. Front Microbiol [Internet]. 2016;7(FEB):1–21. Available from: https://pubmed.ncbi.nlm.nih.gov/26870008/
Yount KS, Jennings-Gee J, Caution K, Fullen AR, Corps KN, Quataert S, et al. Bordetella Colonization Factor A (BcfA) elicits protective immunity against Bordetella bronchiseptica in the absence of an additional adjuvant. bioRxiv [Internet]. 2019;87(10):1–12. Available from: https://doi.org/10.1128/IAI .00506-19
Umatheva U, Sweeting B, Sauvaget L, Rosa N Dela, Riley J, Tamer M, et al. Purification of bacterial virulence factor pertactin using high affinity ligands. Biochem Eng J [Internet]. 2020;164(August):1–7. Available from: https://doi.org/10.1016/j.bej.2020.107760
Hoonakker ME, Verhagen LM, Pupo E, De Haan A, Metz B, Hendriksen CFM, et al. Vaccine-mediated activation of human TLR4 is affected by modulation of culture conditions during whole-cell pertussis vaccine preparation. PLoS One [Internet]. 2016;11(8):1–22. Available from: https://doi.org/10.1371/journal.pone.0161428
Chang AB. The physiology of cough. Elseiver [Internet]. 2006;7:2–8. Available from: https://doi.org/10.1016/j.prrv.2005.11.009
Wieling W, van Dijk JG, van Lieshout JJ, Benditt DG. Pathophysiology and Clinical Presentation. Eval Treat Syncope A Handb Clin Pract Second Ed [Internet]. 2009;16–28. Available from: https://doi.org/10.1016/S0091-6749(96)70022-2
Bolser DC, Davenport PW. Functional Organization of the Central Cough Generation Mechanism. Pulm Pharmacol Ther [Internet]. 2002;15:221–5. Available from: https://doi.org/10.1016/j.prrv.2005.11.009
Jeron A, Boehme JD, Volckmar J, Gereke M, Yevsa T, Geffers R, et al. Respiratory bordetella bronchiseptica carriage is associated with broad phenotypic alterations of peripheral CD4+CD25+ T cells and differentially affects immune responses to secondary non-infectious and infectious stimuli in mice. Int J Mol Sci [Internet]. 2018;19(9):1–25. Available from: https://pubmed.ncbi.nlm.nih.gov/30200513/
Bendor L, Weyrich LS, Linz B, Rolin OY, Taylor DL, Goodfield LL, et al. Type six secretion system of bordetella bronchiseptica and adaptive immune components limit intracellular survival during infection. PLoS One [Internet]. 2015;10(10):1–17. Available from: https://doi.org/10.1371/journal.pone.0140743
Wang X, Maynard JA. The Bordetella adenylate cyclase repeat-in-toxin (RTX) domain is immunodominant and elicits neutralizing antibodies. J Biol Chem [Internet]. 2015;290(6):3576–91. Available from: https://pubmed.ncbi.nlm.nih.gov/25505186/
Balhuizen MD, Versluis CM, van Harten RM, de Jonge EF, Brouwers JF, van de Lest CHA, et al. PMAP-36 reduces the innate immune response induced by Bordetella bronchiseptica-derived outer membrane vesicles. Curr Res Microb Sci [Internet]. 2021;2(July 2020):1–11. Available from: https://doi.org/10.1016/j.crmicr.2020.100010
uwae A, Momose F, Nagamatsu K, Suyama Y, Abe A. BteA Secreted from the Bordetella bronchiseptica Type III Secetion System Induces Necrosis through an Actin Cytoskeleton Signaling Pathway and Inhibits Phagocytosis by Macrophages. PLoS One [Internet]. 2016;2(11):1–20. Available from: https://doi.org/10.1371/journal.pone.0148387
Kamanova J. Bordetella Type III Secretion Injectosome and Effector Proteins. Front Cell Infect Microbiol [Internet]. 2020;10(September):1–17. Available from: https://pubmed.ncbi.nlm.nih.gov/33014891/
Hotinger JA, May AE. Animal models of type III secretion system-mediated pathogenesis. Pathogens [Internet]. 2019;8(4):22–31. Available from: https://www.mdpi.com/2076-0817/8/4/257
Gasperini G, Biagini M, Arato V, Gianfaldoni C, Vadi A, Norais N, et al. Outer Membrane Vesicles (OMV)-based and Proteomics-driven Antigen Selection Identifies Novel Factors Contributing to Bordetella pertussis Adhesion to Epithelial Cells. Mol Cell Proteomics [Internet]. 2018;17(2):205–15. Available from: http://www.mcponline.org
Fedele G, Schiavoni I, Adkins I, Klimova N, Sebo P. Invasion of dendritic cells, macrophages and neutrophils by the Bordetella adenylate cyclase toxin: A subversive move to fool host immunity. Toxins (Basel) [Internet]. 2017;9(10):1–15. Available from: https://doi.org/10.3390/toxins9090277
Ahmad JN, Sebo P. Adenylate Cyclase Toxin Tinkering With Monocyte-Macrophage Differentiation. Front Immunol [Internet]. 2020;11(September):1–7. Available from: https://pubmed.ncbi.nlm.nih.gov/33013916/
Martín C, Etxaniz A, Uribe KB, Etxebarria A, González-Bullón D, Arlucea J, et al. Adenylate Cyclase Toxin promotes bacterial internalisation into non phagocytic cells. Sci Rep [Internet]. 2015;5:1–17. Available from: http://dx.doi.org/10.1038/srep13774
Aya Fukui-Miyazaki, a Hirono Toshima, a Yukihiro Hiramatsu, a Keisuke Okada, a Keiji Nakamura A, Keisuke Ishigaki A, Naoaki Shinzawa, a Hiroyuki Abe A, Horiguchia Y. The Eukaryotic Host Factor 14-3-3 Inactivates Adenylate Cyclase Toxins of Bordetella bronchiseptica and B. parapertussis, but Not B. pertussis. MBio [Internet]. 2018;9(4):1–15. Available from: https://doi.org/ 10.1128/mBio.00628-18
Bouchez V, Douché T, Dazas M, Delaplane S, Matondo M, Chamot-Rooke J, et al. Characterization of post-translational modifications and cytotoxic properties of the adenylate-cyclase hemolysin produced by various Bordetella pertussis and Bordetella parapertussis isolates. Toxins (Basel) [Internet]. 2017;9(10):1–13. Available from: https://pubmed.ncbi.nlm.nih.gov/28954396/
Brandenburg K, Schromm AB, Weindl G, Heinbockel L, Correa W, Mauss K, et al. An update on endotoxin neutralization strategies in Gram-negative bacterial infections. Expert Rev Anti Infect Ther [Internet]. 2020;00(00):1–23. Available from: https://doi.org/10.1080/14787210.2021.1834847
Ucieklak K, Koj S, Niedziela T. Conserved structural features of core oligosaccharides among the lipopolysaccharides of respiratory pathogens from the genus bordetella analyzed exclusively by nmr spectroscopy. Int J Mol Sci [Internet]. 2021;22(3):1–15. Available from: https://doi.org/10.3390/ijms22031029
Ucieklak K, Koj S, Niedziela T. Bordetella holmesii lipopolysaccharide hide and seek game with pertussis: Structural analysis of the o-specific polysaccharide and the core oligosaccharide of the type strain ATCC 51541. Int J Mol Sci [Internet]. 2020;21(17):1–17. Available from: https://pubmed.ncbi.nlm.nih.gov/32899371/
Shihono Teruya, a Yukihiro Hiramatsu, a Keiji Nakamura, a* Aya Fukui-Miyazaki, a Kentaro Tsukamoto, b Noriko Shinoda A, Daisuke Motooka, c Shota Nakamura, c Keisuke Ishigaki, a Naoaki Shinzawa, a Takashi Nishida, a Fuminori Sugihara D, Yusuke Maeda E, Horiguchia Y, ADepartment. Bordetella Dermonecrotic Toxin Is a Neurotropic Virulence Factor That Uses CaV3.1 as the Cell Surface Receptor. MBio [Internet]. 2020;11(2):1–15. Available from: https://doi.org/10.1128/mBio.03146-19
Okada K, Abe H, Ike F, Ogura Y, Hayashi T, Fukui-Miyazaki A, et al. Polymorphisms influencing expression of dermonecrotic toxin in Bordetella bronchiseptica. PLoS One. 2015;10(2):1–16.
Schivanandappa KC, Jagnnathan S, Pandiyarajan S, Vijayakumar R, Vijayakumar R, Umadevi T JK and BS. Assessment of Toxic Activity of Heat Labile Toxin from Bordetella pertussis Vaccine Strain 134. Biochem Physiol Open Access [Internet]. 2015;04(03):1–6. Available from: http://dx.doi.org/10.4172/2168-9652.1000168%0A
Laura A. Gonyar A, Mary C. Gray, a Gregory J. Christianson, b Borna Mehrad C, Hewletta EL. Albumin, in the Presence of Calcium, Elicits a Massive Increase in Extracellular Bordetella Adenylate Cyclase Toxin. Infect inmunity [Internet]. 2017;85(6):1–19. Available from: http://iai.asm.org/
Ryan LK, Wu J, Schwartz K, Yim S, Diamond G. Β-Defensins Coordinate in Vivo To Inhibit Bacterial Infections of the Trachea. Vaccines [Internet]. 2018;6(3):1–15. Available from: https://doi.org/10.3390/vaccines6030057
Belhart K, Gutierrez MDLP, Zacca F, Ambrosis N, Gestal MC, Taylor D, et al. Bordetella bronchiseptica diguanylate cyclase bdca regulates motility and is important for the establishment of respiratory infection in mice. J Bacteriol [Internet]. 2019;201(17):1–13. Available from: https://doi.org/10.1128/JB .00011-19
Ambrosis N, Boyd CD, O’Toole GA, Fernández J, Sisti F. Homologs of the LapD-LapG c-di-GMP effector system control biofilm formation by Bordetella bronchiseptica. PLoS One [Internet]. 2016;11(7):1–16. Available from: https://doi.org/10.1371/journal.pone.0158752
dc.rights.license.none.fl_str_mv Atribución
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina Veterinaría y Zootecnia, Ibagué
dc.publisher.program.spa.fl_str_mv Medicina veterinaria y zootecnia
dc.publisher.place.spa.fl_str_mv Ibagué
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/17b35017-29db-4e3f-9379-e10efbbd3269/download
https://repository.ucc.edu.co/bitstreams/76b5e6be-ca80-4729-af45-bfa73918ad73/download
https://repository.ucc.edu.co/bitstreams/dc479848-b5e6-4c74-b9e1-e8a9c8d42c04/download
https://repository.ucc.edu.co/bitstreams/ad0eff06-790d-473c-a60c-c65451edf9b4/download
https://repository.ucc.edu.co/bitstreams/cfb18b70-0731-4473-b6f2-dcdb4278fa2d/download
https://repository.ucc.edu.co/bitstreams/82eb3c50-a25f-4052-8118-3fa712825087/download
https://repository.ucc.edu.co/bitstreams/5f3f4082-811b-4202-84c4-44aa3c573a44/download
bitstream.checksum.fl_str_mv bc0f94ed4868be988af98086430d85fb
42bdc6543d44cb3d087651d8f8363eef
3bce4f7ab09dfc588f126e1e36e98a45
488971a2bf4c6b17778719ddb51173ce
fc2d0f266c78caf9206c3b2915dd5599
04c0abe136f2e79808d89379d862bd23
8bc491db7107e02a74c21544911f74b0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814247297371865088
spelling Sánchez Bonilla, María del PilarMoreno Garzon, Yiseth KatherineMarín Rincón, Jeimmy Viviana2021-06-21T16:39:02Z2021-06-21T16:39:02Z2021-06-18https://hdl.handle.net/20.500.12494/34678Moreno Garzon, Y. K. y Marin Rincon, J. V. (2021). Factores de virulencia de bordetella bronchiseptica y su acción en la fisiopatologia de la traqueobronquitis infecciosa canina. [tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional UCC. http://hdl.handle.net/20.500.12494/34678Se recopiló información científica y actualizada de los factores de virulencia de B. bronchiseptica, con el objetivo de plantear cómo actúa cada uno de estos en la fisiopatología de la traqueobronquitis infecciosa canina, conociendo de manera precisa la interacción de la bacteria con el huésped en este caso el canino. Se seleccionaron artículos indexados originales, realizados y publicados durante el año de 1977-1980 en caso de la historia y los años 2015 y 2021 sobre los factores de virulencia. Dentro de los criterios de inclusión, se tuvieron en cuenta estudios de idiomas diferentes al español, como el inglés y que se encontrarán dentro del tiempo de fecha de publicación. De 3.220 artículos revisados de bases de datos se seleccionaron 70 que cumplieron con los criterios de inclusión, los cuales determinaron, traqueobronquitis infecciosa, B. bronchiseptica, hemaglutinina filamentosa, pertactina, fimbrias, adenilato ciclasa, citotoxina traqueal y toxina dermonecrótica. En conclusión, la revisión sistemática permitió establecer que B. bronchiseptica, coloniza las células ciliadas del tracto respiratorio, debido a la presencia de adhesinas fimbriales y no fimbriales, como la hemaglutinina filamentosa y pertactina, ubicadas principalmente en la membrana externa de la bacteria, así como la participación del bacteriófago Bordetella el cuál expresa genes de fácil mutación para receptores adaptando a la bacteria. De igual manera, la expresión de endotoxinas y exotoxinas, dentro de estas últimas adenilato ciclasa, toxina dermonecrótica y citotoxina traqueal, las cuales, participan en la fisiopatología de la traqueobronquitis infecciosa canina, afectando así las células ciliadas, inhibiendo la respuesta de las células fagocíticas, suprimiendo la respuesta inmune, asociándose finalmente con los signos clínicos característicos en perros con traqueobronquitis infecciosa.Scientific and updated information was collected on the virulence factors of B. bronchiseptica, with the aim of establishing how each of these acts in the pathophysiology of canine infectious tracheobronchitis, knowing precisely the interaction of the bacteria with the host in this case the canine. Original indexed articles, made and published during the year 1977-1980 were selected in the case of history and the years 2015 and 2021 on virulence factors. Within the inclusion criteria, studies of languages other than Spanish were taken into account, such as English, which will be found within the time of publication date. Of 3.220 articles reviewed from databases, 70 were selected that met the inclusion criteria, witch determined infectious tracheobronchitis, B. bronchiseptica, filamentous hemagglutinin, pertactin, fimbriae, adenylate cyclase, tracheal cytotoxina and dermonecrotic toxin. In conclusion, the systematic review will establish that B. bronchiseptica colonizes the ciliated cells of the respiratory tract, due to the presence of fimbrial and not fimbrial adhesins, such as filamentous hemagglutinin and pertactin, located mainly in the outer membrane of the bacterium, thus such as the participation of the Bordetella Bacteriophage which expresses easily mutated genes for receptors adapting to the bacteria. Similarly, the expression of endotoxins and exotoxins, within the latter, adenylate cyclase, dermonecrotic toxin and tracheal cytotoxin, which participate in the pathophysiology of canine infectious tracheobronchitis, affecting hair cells, inhibiting the responde of phagocytic cells, suppressing the immune response, finally associating with the characteristic clinical signs seen in dogs with infectious tracheobronchitis.yiseth.morenog@campusucc.edu.cojeimmy.marinr@campusucc.edu.coUniversidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina Veterinaría y Zootecnia, IbaguéMedicina veterinaria y zootecniaIbaguéAdenilato ciclasaCitotoxina traquealHemaglutinina filamentosaLipopolisacáridoPertactinaToxina dermonecróticaTG 2021 MVZ 34678Adenylate cyclaseTracheal cytotoxinFilamentous hemagglutininLipopolysaccharidePertactinDermonecrotic toxinFactores de virulencia de bordetella bronchiseptica y su acción en la fisiopatologia de la traqueobronquitis infecciosa caninaTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Bhardwaj M, Singh BR, Vadhana P. Bordetella Bronchiseptica Infection and Kennel Cough in Dogs. Adv Anim Vet Sci [Internet]. 2013;1(35):2307–8316. Available from: http://www.nexusacademicpublishers.com/journal/4Reagan KL, Sykes JE. Canine Infectious Respiratory Disease. Vet Clin North Am - Small Anim Pract [Internet]. 2020;50(2):405–18. Available from: https://doi.org/10.1016/j.cvsm.2019.10.009Chambers JK, Matsumoto I, Shibahara T, Haritani M, Nakayama H, Uchida K. An Outbreak of Fatal Bordetella bronchiseptica Bronchopneumonia in Puppies. J Comp Pathol [Internet]. 2019;167:41–5. Available from: https://doi.org/10.1016/j.jcpa.2018.12.002Liaqat I, Saleem Q ul A, Tahir HM, Arshad M, Arshad N. Identification of virulence factors in contact lens associated bacteria: A physiological approach. Contact Lens Anterior Eye [Internet]. 2019;42(2):159–64. Available from: https://www.researchgate.net/publication/328313253%0AIdentificationSobran MA, Cotter PA. The BvgS PAS domain: An independent sensory perception module in the Bordetella BvgAS phosphorelay. bioRxiv. 2019;201(17):1–15.Schulz BS, Kurz S, Weber K, Balzer HJ, Hartmann K. Detection of respiratory viruses and Bordetella bronchiseptica in dogs with acute respiratory tract infections. Vet J [Internet]. 2014;201(3):365–9. Available from: http://dx.doi.org/10.1016/j.tvjl.2014.04.019Karim IU, Rahman MM. Sustainable Patterns Emerging from Leadership and Organisational Modeling. Int J Leadersh [Internet]. 2017;(2)(5):51–9. Available from: http://www.publishingindia.comBemis DA, Greisen HA, Appel MJG. Pathogenesis of canine bordetellosis. J Infect Dis [Internet]. 1977;135(5):753–62. Available from: http://jid.oxfordjournals.org/Goodnow RA. Biology of Bordetella bronchiseptica. Microbiol Rev [Internet]. 1980;44(4):722–38. Available from: https://pubmed.ncbi.nlm.nih.gov/7010115/Aktories K. Rho-modifying bacterial protein toxins. Pathog Dis [Internet]. 2015;73(9):1–11. Available from: https://academic.oup.com/femspd/article/73/9/ftv091/2467642Jurnecka D, Man P, Sebo P, Bumba L. Bordetella pertussis and Bordetella bronchiseptica filamentous hemagglutinins are processed at different sites. FEBS Open Bio [Internet]. 2018;8(8):1256–66. Available from: https://www.researchgate.net/publication/325609719_Bordetella_pertussis_and_Bordetella_bronchiseptica_filamentous_hemagglutinins_are_processed_at_different_sitesMelvin JA, Scheller E V., Noël CR, Cotter PA. New insight into filamentous hemagglutinin secretion reveals a role for full-length FhaB in Bordetella virulence. MBio [Internet]. 2015;6(4):12–5. Available from: http://mbio.asm.org/Cressiot B, Braselmann E, Oukhaled A, Elcock AH, Pelta J, Clark PL. Dynamics and Energy Contributions for Transport of Unfolded Pertactin through a Protein Nanopore. ACS Nano [Internet]. 2015;9(9):9050–61. Available from: http://pubs.acs.orgHe L, Yougbare I, Gajewska B, Su J, Leung R, Azizi A. Development of a Pertactin-Coated Beads Approach for Screening of Functional Monoclonal Antibodies. J Pharm Sci [Internet]. 2020;109(2):1002–7. Available from: https://doi.org/10.1016/j.xphs.2019.10.001Hovingh ES, Mariman R, Solans L, Hijdra D, Hamstra HJ, Jongerius I, et al. Bordetella pertussis pertactin knock-out strains reveal immunomodulatory properties of this virulence factor article. Emerg Microbes Infect [Internet]. 2018;7(1):1–13. Available from: https://doi.org/10.1038/s41426-018-0039-8Wehmann E, Khayer B, Magyar T. Heterogeneity of Bordetella bronchiseptica adenylate cyclase (cyaA) RTX domain. Arch Microbiol [Internet]. 2015;197(1):105–12. Available from: https://link.springer.com/article/10.1007/s00203-014-1068-xScheller E V., Cotter PA. Bordetella filamentous hemagglutinin and fimbriae: critical adhesins with unrealized vaccine potential. Pathog Dis [Internet]. 2015;73(8):1–9. Available from: https://academic.oup.com/femspd/article/73/8/ftv079/2467727Scheller E V., Melvin JA, Sheets AJ, Cotter PA. Cooperative roles for fimbria and filamentous hemagglutinin in Bordetella adherence and immune modulation. MBio. 2015;6(3):1–11.Chen Y, Yang L, Sun E, Song J, Wu B. Characterisation of a newly detected bacteriophage infecting Bordetella bronchiseptica in swine. Arch Virol [Internet]. 2019;164(1):33–40. Available from: https://doi.org/10.1007/s00705-018-4034-0Park GY, Yu HJ, Son JS, Park SJ, Cha HJ, Song KS. Specific bacteriophage of Bordetella bronchiseptica regulates B. bronchiseptica-induced microRNA expression profiles to decrease inflammation in swine nasal turbinate cells. Genes and Genomics [Internet]. 2020;42(4):441–7. Available from: https://doi.org/10.1007/s13258-019-00906-7Szymczak M, Grygorcewicz B, Karczewska-Golec J, Decewicz P, Pankowski JA, Országh-Szturo H, et al. Characterization of a unique Bordetella bronchiseptica vB_BbrP_BB8 bacteriophage and its application as an antibacterial agent. Int J Mol Sci [Internet]. 2020;21(4):1–17. Available from: https://doi.org/10.3390/ijms21041403Liu M, Deora R, Doulatov SR, Gingery M, Eiserling FA, Preston A, et al. Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage. Science (80- ). 2002;295(5562):2091–4.Guiso N. Bordetella adenylate cyclase-hemolysin toxins. Toxins (Basel) [Internet]. 2017;9(9):1–13. Available from: https://doi.org/10.3390/toxins9090277Chenal A, Ladant D. Bioengineering of bordetella pertussis adenylate cyclase toxin for antigen-delivery and immunotherapy. Toxins (Basel) [Internet]. 2018;10(7):1–23. Available from: https://pubmed.ncbi.nlm.nih.gov/30037010/Novak J, Cerny O, Osickova A, Linhartova I, Masin J, Bumba L, et al. Structure–function relationships underlying the capacity of Bordetella adenylate cyclase toxin to disarm host phagocytes. Toxins (Basel) [Internet]. 2017;9(10). Available from: https://doi.org/10.3390/toxins9100300Hoffman C, Eby J, Gray M, Heath Damron F, Melvin J, Cotter P, et al. Bordetella adenylate cyclase toxin interacts with filamentous haemagglutinin to inhibit biofilm formation in vitro. Mol Microbiol. 2017;103(2):214–28.Kessie DK, Lodes N, Oberwinkler H, Goldman WE, Walles T, Steinke M, et al. Activity of Tracheal Cytotoxin of Bordetella pertussis in a Human Tracheobronchial 3D Tissue Model. Front Cell Infect Microbiol [Internet]. 2021;10(January):1–15. Available from: https://pubmed.ncbi.nlm.nih.gov/33585281/Stanek O, Linhartova I, Holubova J, Bumba L, Gardian Z, Malandra A, et al. Production of highly active recombinant dermonecrotic toxin of bordetella pertussis. Toxins (Basel) [Internet]. 2020;12(9):1–14. Available from: https://doi.org/10.3390/toxins12090596Wang C, Liu L, Zhang Z, Yan Z, Yu C, Shao M, et al. Immunological and protective effects of Bordetella bronchiseptica subunit vaccines based on the recombinant N-terminal domain of dermonecrotic toxin. Int Immunopharmacol [Internet]. 2015;28(2):952–9. Available from: http://dx.doi.org/10.1016/j.intimp.2015.08.018Sisti F, Fernández J, Cordero A, Casabuono A, Couto A, Hozbor D. Modifications of Bordetella bronchiseptica core lipopolysaccharide influence immune response without affecting protective activity. Bioorganic Med Chem Lett [Internet]. 2017;27(3):432–6. Available from: http://dx.doi.org/10.1016/j.bmcl.2016.12.049Bertani B, Ruiz N. Function and Biogenesis of Lipopolysaccharides. EcoSal Plus [Internet]. 2018;8(1):1–19. Available from: www.asmscience.orgDucours M, Rispal P, Danjean MP, Imbert Y, Dupont E, Traissac EM, et al. Bordetella bronchiseptica infection. Med Mal Infect [Internet]. 2017;47(7):453–8. Available from: http://dx.doi.org/10.1016/j.medmal.2017.05.012García-de-la-Fuente C, Guzmán L, Cano ME, Agüero J, Sanjuán C, Rodríguez C, et al. Microbiological and clinical aspects of respiratory infections associated with Bordetella bronchiseptica. Diagn Microbiol Infect Dis [Internet]. 2015;82(1):20–5. Available from: http://dx.doi.org/10.1016/j.diagmicrobio.2015.01.011Kaczorek E, Schulz P, Małaczewska J, Wójcik R, Siwicki AK, Stopyra A, et al. Prevalence of respiratory pathogens detected in dogs with kennel cough in Poland. Acta Vet Brno [Internet]. 2016;85(4):329–36. Available from: https://actavet.vfu.cz/85/4/0329/Day MJ, Carey S, Clercx C, Kohn B, MarsilIo F, Thiry E, et al. Aetiology of Canine Infectious Respiratory Disease Complex and Prevalence of its Pathogens in Europe. J Comp Pathol [Internet]. 2020;176:86–108. Available from: https://doi.org/10.1016/j.jcpa.2020.02.005Nakamura K, Shinoda N, Hiramatsu Y, Ohnishi S, Kamitani S, Ogura Y. BspR/BtrA, an Anti- Factor, Regulates the Ability of Bordetella bronchiseptica To Cause Cough in Rats. Am Soc Microbiol [Internet]. 2019;4(2):1–12. Available from: https://doi.org/10.1128/mSphere.00093-19Liu Y, Chen H, Wei Q, Xiao C, Ji Q, Bao G. Immune efficacy of five novel recombinant Bordetella bronchiseptica proteins. BMC Vet Res [Internet]. 2015;11(1):1–7. Available from: http://dx.doi.org/10.1186/s12917-015-0488-4Petrovic A, Kostanjsek R, Rakhely G, Knezevic P. The First Siphoviridae Family Bacteriophages Infecting Bordetella bronchiseptica Isolated from Environment. Microb Ecol [Internet]. 2017;73(2):368–77. Available from: http://dx.doi.org/10.1007/s00248-016-0847-0Dewan KK, Taylor-Mulneix DL, Hilburger LJ, Rivera I, Preston A, Harvill ET. An Extracellular Polysaccharide Locus Required for Transmission of Bordetella bronchiseptica. J Infect Dis [Internet]. 2017;216(7):899–906. Available from: https://academic.oup.com/jid/article-abstract/216/7/899/3932883Taha-Abdelaziz K, Bassel LL, Harness ML, Clark ME, Register KB, Caswell JL. Cilia-associated bacteria in fatal Bordetella bronchiseptica pneumonia of dogs and cats. J Vet Diagnostic Investig [Internet]. 2016;28(4):369–76. Available from: https://journals.sagepub.com/doi/pdf/10.1177/1040638716646806do Vale A, Cabanes D, Sousa S. Bacterial toxins as pathogen weapons against phagocytes. Front Microbiol [Internet]. 2016;7(FEB):1–21. Available from: https://pubmed.ncbi.nlm.nih.gov/26870008/Yount KS, Jennings-Gee J, Caution K, Fullen AR, Corps KN, Quataert S, et al. Bordetella Colonization Factor A (BcfA) elicits protective immunity against Bordetella bronchiseptica in the absence of an additional adjuvant. bioRxiv [Internet]. 2019;87(10):1–12. Available from: https://doi.org/10.1128/IAI .00506-19Umatheva U, Sweeting B, Sauvaget L, Rosa N Dela, Riley J, Tamer M, et al. Purification of bacterial virulence factor pertactin using high affinity ligands. Biochem Eng J [Internet]. 2020;164(August):1–7. Available from: https://doi.org/10.1016/j.bej.2020.107760Hoonakker ME, Verhagen LM, Pupo E, De Haan A, Metz B, Hendriksen CFM, et al. Vaccine-mediated activation of human TLR4 is affected by modulation of culture conditions during whole-cell pertussis vaccine preparation. PLoS One [Internet]. 2016;11(8):1–22. Available from: https://doi.org/10.1371/journal.pone.0161428Chang AB. The physiology of cough. Elseiver [Internet]. 2006;7:2–8. Available from: https://doi.org/10.1016/j.prrv.2005.11.009Wieling W, van Dijk JG, van Lieshout JJ, Benditt DG. Pathophysiology and Clinical Presentation. Eval Treat Syncope A Handb Clin Pract Second Ed [Internet]. 2009;16–28. Available from: https://doi.org/10.1016/S0091-6749(96)70022-2Bolser DC, Davenport PW. Functional Organization of the Central Cough Generation Mechanism. Pulm Pharmacol Ther [Internet]. 2002;15:221–5. Available from: https://doi.org/10.1016/j.prrv.2005.11.009Jeron A, Boehme JD, Volckmar J, Gereke M, Yevsa T, Geffers R, et al. Respiratory bordetella bronchiseptica carriage is associated with broad phenotypic alterations of peripheral CD4+CD25+ T cells and differentially affects immune responses to secondary non-infectious and infectious stimuli in mice. Int J Mol Sci [Internet]. 2018;19(9):1–25. Available from: https://pubmed.ncbi.nlm.nih.gov/30200513/Bendor L, Weyrich LS, Linz B, Rolin OY, Taylor DL, Goodfield LL, et al. Type six secretion system of bordetella bronchiseptica and adaptive immune components limit intracellular survival during infection. PLoS One [Internet]. 2015;10(10):1–17. Available from: https://doi.org/10.1371/journal.pone.0140743Wang X, Maynard JA. The Bordetella adenylate cyclase repeat-in-toxin (RTX) domain is immunodominant and elicits neutralizing antibodies. J Biol Chem [Internet]. 2015;290(6):3576–91. Available from: https://pubmed.ncbi.nlm.nih.gov/25505186/Balhuizen MD, Versluis CM, van Harten RM, de Jonge EF, Brouwers JF, van de Lest CHA, et al. PMAP-36 reduces the innate immune response induced by Bordetella bronchiseptica-derived outer membrane vesicles. Curr Res Microb Sci [Internet]. 2021;2(July 2020):1–11. Available from: https://doi.org/10.1016/j.crmicr.2020.100010uwae A, Momose F, Nagamatsu K, Suyama Y, Abe A. BteA Secreted from the Bordetella bronchiseptica Type III Secetion System Induces Necrosis through an Actin Cytoskeleton Signaling Pathway and Inhibits Phagocytosis by Macrophages. PLoS One [Internet]. 2016;2(11):1–20. Available from: https://doi.org/10.1371/journal.pone.0148387Kamanova J. Bordetella Type III Secretion Injectosome and Effector Proteins. Front Cell Infect Microbiol [Internet]. 2020;10(September):1–17. Available from: https://pubmed.ncbi.nlm.nih.gov/33014891/Hotinger JA, May AE. Animal models of type III secretion system-mediated pathogenesis. Pathogens [Internet]. 2019;8(4):22–31. Available from: https://www.mdpi.com/2076-0817/8/4/257Gasperini G, Biagini M, Arato V, Gianfaldoni C, Vadi A, Norais N, et al. Outer Membrane Vesicles (OMV)-based and Proteomics-driven Antigen Selection Identifies Novel Factors Contributing to Bordetella pertussis Adhesion to Epithelial Cells. Mol Cell Proteomics [Internet]. 2018;17(2):205–15. Available from: http://www.mcponline.orgFedele G, Schiavoni I, Adkins I, Klimova N, Sebo P. Invasion of dendritic cells, macrophages and neutrophils by the Bordetella adenylate cyclase toxin: A subversive move to fool host immunity. Toxins (Basel) [Internet]. 2017;9(10):1–15. Available from: https://doi.org/10.3390/toxins9090277Ahmad JN, Sebo P. Adenylate Cyclase Toxin Tinkering With Monocyte-Macrophage Differentiation. Front Immunol [Internet]. 2020;11(September):1–7. Available from: https://pubmed.ncbi.nlm.nih.gov/33013916/Martín C, Etxaniz A, Uribe KB, Etxebarria A, González-Bullón D, Arlucea J, et al. Adenylate Cyclase Toxin promotes bacterial internalisation into non phagocytic cells. Sci Rep [Internet]. 2015;5:1–17. Available from: http://dx.doi.org/10.1038/srep13774Aya Fukui-Miyazaki, a Hirono Toshima, a Yukihiro Hiramatsu, a Keisuke Okada, a Keiji Nakamura A, Keisuke Ishigaki A, Naoaki Shinzawa, a Hiroyuki Abe A, Horiguchia Y. The Eukaryotic Host Factor 14-3-3 Inactivates Adenylate Cyclase Toxins of Bordetella bronchiseptica and B. parapertussis, but Not B. pertussis. MBio [Internet]. 2018;9(4):1–15. Available from: https://doi.org/ 10.1128/mBio.00628-18Bouchez V, Douché T, Dazas M, Delaplane S, Matondo M, Chamot-Rooke J, et al. Characterization of post-translational modifications and cytotoxic properties of the adenylate-cyclase hemolysin produced by various Bordetella pertussis and Bordetella parapertussis isolates. Toxins (Basel) [Internet]. 2017;9(10):1–13. Available from: https://pubmed.ncbi.nlm.nih.gov/28954396/Brandenburg K, Schromm AB, Weindl G, Heinbockel L, Correa W, Mauss K, et al. An update on endotoxin neutralization strategies in Gram-negative bacterial infections. Expert Rev Anti Infect Ther [Internet]. 2020;00(00):1–23. Available from: https://doi.org/10.1080/14787210.2021.1834847Ucieklak K, Koj S, Niedziela T. Conserved structural features of core oligosaccharides among the lipopolysaccharides of respiratory pathogens from the genus bordetella analyzed exclusively by nmr spectroscopy. Int J Mol Sci [Internet]. 2021;22(3):1–15. Available from: https://doi.org/10.3390/ijms22031029Ucieklak K, Koj S, Niedziela T. Bordetella holmesii lipopolysaccharide hide and seek game with pertussis: Structural analysis of the o-specific polysaccharide and the core oligosaccharide of the type strain ATCC 51541. Int J Mol Sci [Internet]. 2020;21(17):1–17. Available from: https://pubmed.ncbi.nlm.nih.gov/32899371/Shihono Teruya, a Yukihiro Hiramatsu, a Keiji Nakamura, a* Aya Fukui-Miyazaki, a Kentaro Tsukamoto, b Noriko Shinoda A, Daisuke Motooka, c Shota Nakamura, c Keisuke Ishigaki, a Naoaki Shinzawa, a Takashi Nishida, a Fuminori Sugihara D, Yusuke Maeda E, Horiguchia Y, ADepartment. Bordetella Dermonecrotic Toxin Is a Neurotropic Virulence Factor That Uses CaV3.1 as the Cell Surface Receptor. MBio [Internet]. 2020;11(2):1–15. Available from: https://doi.org/10.1128/mBio.03146-19Okada K, Abe H, Ike F, Ogura Y, Hayashi T, Fukui-Miyazaki A, et al. Polymorphisms influencing expression of dermonecrotic toxin in Bordetella bronchiseptica. PLoS One. 2015;10(2):1–16.Schivanandappa KC, Jagnnathan S, Pandiyarajan S, Vijayakumar R, Vijayakumar R, Umadevi T JK and BS. Assessment of Toxic Activity of Heat Labile Toxin from Bordetella pertussis Vaccine Strain 134. Biochem Physiol Open Access [Internet]. 2015;04(03):1–6. Available from: http://dx.doi.org/10.4172/2168-9652.1000168%0ALaura A. Gonyar A, Mary C. Gray, a Gregory J. Christianson, b Borna Mehrad C, Hewletta EL. Albumin, in the Presence of Calcium, Elicits a Massive Increase in Extracellular Bordetella Adenylate Cyclase Toxin. Infect inmunity [Internet]. 2017;85(6):1–19. Available from: http://iai.asm.org/Ryan LK, Wu J, Schwartz K, Yim S, Diamond G. Β-Defensins Coordinate in Vivo To Inhibit Bacterial Infections of the Trachea. Vaccines [Internet]. 2018;6(3):1–15. Available from: https://doi.org/10.3390/vaccines6030057Belhart K, Gutierrez MDLP, Zacca F, Ambrosis N, Gestal MC, Taylor D, et al. Bordetella bronchiseptica diguanylate cyclase bdca regulates motility and is important for the establishment of respiratory infection in mice. J Bacteriol [Internet]. 2019;201(17):1–13. Available from: https://doi.org/10.1128/JB .00011-19Ambrosis N, Boyd CD, O’Toole GA, Fernández J, Sisti F. Homologs of the LapD-LapG c-di-GMP effector system control biofilm formation by Bordetella bronchiseptica. PLoS One [Internet]. 2016;11(7):1–16. Available from: https://doi.org/10.1371/journal.pone.0158752PublicationORIGINAL2021_factores_virulencia_bordetella.pdf2021_factores_virulencia_bordetella.pdfapplication/pdf922666https://repository.ucc.edu.co/bitstreams/17b35017-29db-4e3f-9379-e10efbbd3269/downloadbc0f94ed4868be988af98086430d85fbMD512021_factores_virulencia_bordetella-FormatoLicenciaUso.pdf2021_factores_virulencia_bordetella-FormatoLicenciaUso.pdfapplication/pdf727083https://repository.ucc.edu.co/bitstreams/76b5e6be-ca80-4729-af45-bfa73918ad73/download42bdc6543d44cb3d087651d8f8363eefMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/dc479848-b5e6-4c74-b9e1-e8a9c8d42c04/download3bce4f7ab09dfc588f126e1e36e98a45MD53THUMBNAIL2021_factores_virulencia_bordetella.pdf.jpg2021_factores_virulencia_bordetella.pdf.jpgGenerated Thumbnailimage/jpeg2874https://repository.ucc.edu.co/bitstreams/ad0eff06-790d-473c-a60c-c65451edf9b4/download488971a2bf4c6b17778719ddb51173ceMD542021_factores_virulencia_bordetella-FormatoLicenciaUso.pdf.jpg2021_factores_virulencia_bordetella-FormatoLicenciaUso.pdf.jpgGenerated Thumbnailimage/jpeg4847https://repository.ucc.edu.co/bitstreams/cfb18b70-0731-4473-b6f2-dcdb4278fa2d/downloadfc2d0f266c78caf9206c3b2915dd5599MD55TEXT2021_factores_virulencia_bordetella.pdf.txt2021_factores_virulencia_bordetella.pdf.txtExtracted texttext/plain65713https://repository.ucc.edu.co/bitstreams/82eb3c50-a25f-4052-8118-3fa712825087/download04c0abe136f2e79808d89379d862bd23MD562021_factores_virulencia_bordetella-FormatoLicenciaUso.pdf.txt2021_factores_virulencia_bordetella-FormatoLicenciaUso.pdf.txtExtracted texttext/plain5977https://repository.ucc.edu.co/bitstreams/5f3f4082-811b-4202-84c4-44aa3c573a44/download8bc491db7107e02a74c21544911f74b0MD5720.500.12494/34678oai:repository.ucc.edu.co:20.500.12494/346782024-08-09 12:55:19.856open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=