The potential of methane production using aged landfill waste in developing countries: a case of study in Colombia
The optimization of waste degradation and stabilization processes is an essential key aspect for the environmental performance and economic sustainability of waste management systems in developing countries like Colombia. However, assessing the feasibility of biogas production in landfills requires...
- Autores:
-
Caicedo Concha, Diana Milena
Sandoval Cobo, John Jairo
Colmenares Quintero, Ramón Fernando
Marmolejo Rebellón, Luis Fernando
Torres Lozada, Patricia
Heaven, Sonia
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/17458
- Acceso en línea:
- https://doi.org/10.1080/23311916.2019.1664862
https://hdl.handle.net/20.500.12494/17458
- Palabra clave:
- Desarrollo sostenible
Potencial bioquímico de metano
Países en desarrollo
Residuos sólidos urbanos envejecidos
Sustainable development
Biochemical methane potential
Biogas
Developing countries
Aged municipal solid waste
- Rights
- openAccess
- License
- Atribución
id |
COOPER2_6e80f46531cb254b61d7fa87e25ff716 |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/17458 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
The potential of methane production using aged landfill waste in developing countries: a case of study in Colombia |
title |
The potential of methane production using aged landfill waste in developing countries: a case of study in Colombia |
spellingShingle |
The potential of methane production using aged landfill waste in developing countries: a case of study in Colombia Desarrollo sostenible Potencial bioquímico de metano Países en desarrollo Residuos sólidos urbanos envejecidos Sustainable development Biochemical methane potential Biogas Developing countries Aged municipal solid waste |
title_short |
The potential of methane production using aged landfill waste in developing countries: a case of study in Colombia |
title_full |
The potential of methane production using aged landfill waste in developing countries: a case of study in Colombia |
title_fullStr |
The potential of methane production using aged landfill waste in developing countries: a case of study in Colombia |
title_full_unstemmed |
The potential of methane production using aged landfill waste in developing countries: a case of study in Colombia |
title_sort |
The potential of methane production using aged landfill waste in developing countries: a case of study in Colombia |
dc.creator.fl_str_mv |
Caicedo Concha, Diana Milena Sandoval Cobo, John Jairo Colmenares Quintero, Ramón Fernando Marmolejo Rebellón, Luis Fernando Torres Lozada, Patricia Heaven, Sonia |
dc.contributor.author.none.fl_str_mv |
Caicedo Concha, Diana Milena Sandoval Cobo, John Jairo Colmenares Quintero, Ramón Fernando Marmolejo Rebellón, Luis Fernando Torres Lozada, Patricia Heaven, Sonia |
dc.subject.spa.fl_str_mv |
Desarrollo sostenible Potencial bioquímico de metano Países en desarrollo Residuos sólidos urbanos envejecidos |
topic |
Desarrollo sostenible Potencial bioquímico de metano Países en desarrollo Residuos sólidos urbanos envejecidos Sustainable development Biochemical methane potential Biogas Developing countries Aged municipal solid waste |
dc.subject.other.spa.fl_str_mv |
Sustainable development Biochemical methane potential Biogas Developing countries Aged municipal solid waste |
description |
The optimization of waste degradation and stabilization processes is an essential key aspect for the environmental performance and economic sustainability of waste management systems in developing countries like Colombia. However, assessing the feasibility of biogas production in landfills requires a reasonable level of accuracy for the generation of methane, a sufficient understanding of the underlying generation processes and their relation with the physicochemical characteristics of the waste and landfill disposal conditions. Source segregation of MSW is either poor or non-existing in Colombia, as in most developing countries, which makes difficult to predict landfill gas generation even with the aid of current landfill emissions models. Only a few studies have been conducted to characterize biogas and methane production potential of mixed MSW landfilled in Latin-American countries, with few studies reported in Brazil and in Colombia. In this study, we show the results of biochemical methane potential (BMP) tests with 4–5 years old samples of municipal solid waste (MSW) excavated from a landfill site located in Colombia. Collected samples were characterized and the easy and medium biodegradable fractions used in the experiments. The results show an average total production of 34.8 − 37.9 L CH4 kg-1 DM added which is comparable with similar studies using excavated landfilled waste of similar characteristics. These results suggest that considering the potential of methane production from landfilled waste in developing countries, it is an alternative that could be considered to enhance the environmental performance of landfill sites by reduction of the emissions of uncontrolled CH4 and promote the use of non-conventional energy sources. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-04-23T01:33:28Z |
dc.date.available.none.fl_str_mv |
2020-04-23T01:33:28Z |
dc.type.none.fl_str_mv |
Artículo |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
2331-1916 |
dc.identifier.uri.spa.fl_str_mv |
https://doi.org/10.1080/23311916.2019.1664862 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/17458 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Caicedo Concha, D. M, Sandoval Cobo, J. J., Colmenares Quintero, R. F., Marmolejo Rebellón, L. F., Torres Lozada, P. & Heaven, S. (2019) The potential of methane production using aged landfill waste in developing countries: A case of study in Colombia, Cogent Engineering, 6:1, 1664862 |
identifier_str_mv |
2331-1916 Caicedo Concha, D. M, Sandoval Cobo, J. J., Colmenares Quintero, R. F., Marmolejo Rebellón, L. F., Torres Lozada, P. & Heaven, S. (2019) The potential of methane production using aged landfill waste in developing countries: A case of study in Colombia, Cogent Engineering, 6:1, 1664862 |
url |
https://doi.org/10.1080/23311916.2019.1664862 https://hdl.handle.net/20.500.12494/17458 |
dc.relation.isversionof.spa.fl_str_mv |
https://www.tandfonline.com/doi/full/10.1080/23311916.2019.1664862 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Cogent Engineering |
dc.relation.references.spa.fl_str_mv |
Agudelo Vélez, M. I., Chavarro Bohorquez, D. A., Hernández Tasco, A., Niño Mendieta, A. M., Tovar Narváez, G.E. & Montenegro Trujillo,I. C. (2018). Green book 2030: national science and innovation policy for sustainable development. Bogotá, Colombia: Colciencias. Ahmadifar, M., Sartaj, M., & Abdallah, M. (2015). Investigating the performance of aerobic, semiaerobic, and anaerobic bioreactor landfills for MSW management in developing countries. J. Mater. Cycles Waste Manag., 18(4):703–714 American Public Health Association/American Water Works Association/Water Environment Federation, APHA. (2005). Standard methods for the examination of water and wastewater.21st Edition. Washington, DC, USA ASTM International, ASTM D5231-92. (2016). Standard test method for determination of the composition of unprocessed municipal solid waste. West Conshohocken, PA,USA: ASTM International Barlaz, M., Ham, R., & Schaefer, D. (1989, Dec). Mass balance analysis of anaerobically decomposed refuse. Journal of Environmental Engineering, 115(6), 1088–1102. doi:10.1061/(ASCE)0733-9372(1989) 115:6(1088) BID. (2015). Estudio tecnologías alternativas de disposición final o aprovechamiento de residuos sólidos. Propuesta de ajuste al Decreto 838 de 2005. Bogotá, DC: Banco Interamericano de Desarrollo (BID). Bilgili, M. S., Demir, A., & Varank, G. (2009). Evaluation and modeling of biochemical methane potential (BMP) of landfilled solid waste: A pilot scale study. Bioresource Technology, 100(21), 4976–4980. doi:10.1016/j. biortech.2009.05.012 Binner, E., & Zach, A. (1999). Laboratory tests describing the biological reactivity of pretreated residual wastes, In Proceedings of Symposium ORBIT 99 on Organic Recovery and Biological Treatment Symposium, Weimar, Germany. Boulanger, A., Pinet, E., Bouix, M., Bouchez, T., & Mansour, A. A. (2012). Effect of inoculum to substrate ratio (I/ S) on municipal solid waste anaerobic degradation kinetics and potential. Waste Management, 32(12), 2258–2265. doi:10.1016/j.wasman.2012.07.024 Caicedo, D., Sandoval, J., & Whitting, K. (2016). An experimental study on the impact of two dimensional materials in waste disposal sites: What are the implications for engineered landfills? Sustainable Environment Research, 26(6), 255–261. doi:10.1016/j. serj.2016.08.001 Caicedo-Concha, D. M., Sandoval-Cobo, J. J., & Whiting, K. (2016). An experimental study on the impact of two dimensional materials in waste disposal sites: What are the implications for engineered landfills? Sustainable Environment Research, 26(6), 255–261. doi:10.1016/j.serj.2016.08.001 Campuzano, R., & González-Martínez, S. (2016). Characteristics of the organic fraction of municipal solid waste and methane production: A review. Waste Management, 54, 3–12. doi:10.1016/j. wasman.2016.05.016 COLOMBIA, C.D. (2014). Ley 1715 de 2014, Regulación de la integración de las energías renovables no convencioanles al Sistema Energético Nacional. Diario Oficial No. 49.150. Imprenta Nacional: Bogotá D.C Cossu, R., Lai, T., & Sandon, A. (2012). Standardization of BOD 5/COD ratio as a biological stability index for MSW. Waste Management, 32(8), 1503–1508. doi:10.1016/j.wasman.2012.04.001 Cossu, R., & Raga, R. (2008). Test methods for assessing the biological stability of biodegradable waste. Waste Management, 28(2), 381–388. doi:10.1016/j. wasman.2007.01.014 DNP. (2016). CONPES 3874. Pólítica Nacional para la Gestión Integral de Residuos Sólidos. Bogotá, DC: Departamento Nacional de Planeación (DNP). Eggleston, S., Buendia, L., Miwa, K., Ngara, T., & Tanabe, K., “IPCC 2008, 2006 IPCC Guidelines for National Greenhouse Gas Inventories,” 2008. EPA, U. S. (2014). Municipal solid waste generation, recycling, and disposal in the United States tables and figures for 2012,” Office of Resource Conservation and Recovery. Retrieved from http://www.epa.gov/epa waste/nonhaz/municipal/pubs/2012_msw_dat_tbls. pdf. Fei, F., Wen, Z., & De Clercq, D. (2019). Spatio-temporal estimation of landfill gas energy potential: A case study in China. Renewable and Sustainable Energy Reviews, 103, 217–226. doi:10.1016/j. rser.2018.12.036 Francois, V., Feuillade, G., Skhiri, N., Lagier, T., & Matejka, G. (2006). Indicating the parameters of the state of degradation of municipal solid waste. Journal of Hazardous Materials, 137, 1008–1015. doi:10.1016/j. jhazmat.2006.03.026 Garcia, J., Davies, S., Villa, R., Gomes, D. M., Coulon, F., & Wagland, S. T. (2016). Compositional analysis of excavated landfill samples and the determination of residual biogas potential of the organic fraction. Waste Management, 55, 336–344. doi:10.1016/j. wasman.2016.06.003 Habitat, U. N. (2010). Solid Waste Management in the World’s Cities: Water and Sanitation in the World’s Cities 2010. Holliger, C., Alves, M., Andrade, D., Angelidaki, I., Astals, S., Baier, U., Bougrier, C., ... Wierinck, I. (2016). Towards a standardization of biomethane potential tests. Water Science and Technology, 74(11), 2515–2522. Hoornweg, D., & Bhada-Tata, P. (2012). What a waste: A global review of solid waste management. World Bank, Washington, DC. IPCC Intergovernmental Panel on Climate Change. 2014. Climate change 2014 impacts, adaptation, and vulnerability part B: Regional aspects. Ivan, C., María, T., Aura, V., Paola, A., & Mario, H. (2016). Anaerobic co-digestion of organic residues from different productive sectors in Colombia: Biomethanation potential assessment. Chemical Engineering Transactions, 49, 385–390 Kaza, S., Yao, L., Bhada-Tata, P., & Van Woerden, F. (2018). What a waste 2.0: a global snapshot of solid waste management to 2050. World Bank Publications Kelly, R. J., Shearer, B. D., Kim, J., Goldsmith, C. D., Hater, G. R., & Novak, J. T. (2006). Relationships between analytical methods utilized as tools in the evaluation of landfill waste stability. Waste Management, 26 (12), 1349–1356. doi:10.1016/j.wasman.2005.11.019 Kim, H., & Townsend, T. G. (2012). Wet landfill decomposition rate determination using methane yield results for excavated waste samples. Waste Management, 32(7), 1427–1433. doi:10.1016/j. wasman.2012.03.017 Knox, K., Braithwaite, P., Caine, M., & Croft, B. (2005). Brogborough landfill test cells: The final chapter. A study of landfill completion in relation to final storage quality (FSQ) criteria. In S. Margherita di Pula (ed.,) Sardinia 2005 – 10th International waste management and landfill symposium. Cagliari, Italy. Larochelle, L., Turner, M., & LaGiglia, M. (2012). Evaluation of NAMA opportunities in Colombia’s solid waste sector. Washington, DC: Center for clean air policy. Lima, R. M., Santos, A. H. M., Pereira, C. R. S., Flauzino, B. K., Pereira, A. C. O. S., Nogueira, F. J. H., Valverde, J. A. R. (2018). Spatially distributed potential of landfill biogas production and electric power generation in Brazil. Waste Management, 74, 323–334. doi:10.1016/j.wasman.2017.12.011 Liu, G., Zhang, R., El-Mashad, H. M., & Dong, R. (2009). Effect of feed to inoculum ratios on biogas yields of food and green wastes. Bioresource Technology, 100 (21), 5103–5108. doi:10.1016/j.biortech.2009.03.081 Machado, S., Carvalho, M. F., Gourc, J. P., Vilar, O. M., & Do Nascimento, J. C. F. (2009). Methane generation in tropical landfills: Simplified methods and field results. Waste Management, 29(1), 153–161. doi:10.1016/j. wasman.2008.02.017 Machado, S. L., Karimpour-Fard, M., Shariatmadari, N., Carvalho, M. F., & Do Nascimento, J. C. F. (2010, Dec). Evaluation of the geotechnical properties of MSW in two Brazilian landfills. Waste Management, 30(12), 2579–2591. doi:10.1016/j.wasman.2010.07.019 Ministerio de Desarrollo Económico de Colombia. (2000). Reglamento Técnico del Sector de Agua Potable y Saneamiento Básico- RAS 2000: Titulo F. Ministerio de Desarrollo Económico de Colombia. Pearse, L. F., Hettiaratchi, J. P., & Kumar, S. (2018). Towards developing a representative biochemical methane potential (BMP) assay for landfilled municipal solid waste – A review. Bioresource Technology, 254, 312–324. doi:10.1016/j.biortech.2018.01.069 Pedraza, A., Cabrera, M., Duarte, M., Gutiérrez, M., Lamprea, P., & Lozano, R. (2005). Visión general del inventario nacional de emisiones de gases de efecto de invernadero. In Inventario nacional de emisiones de gases de efecto de invernadero 2002-2004. Segunda comunicación nacional ante la Convención Marco de las Naciones Unidas sobre el cambio climático (pp. 17–66). Bogotá, D. C: IDEAM.. Piñas, J. A. V., Venturini, O. J., Lora, E. E. S., de Oliveira, M. A., & Roalcaba, O. D. C. (2016). Landfills for electricity generation from biogas production in Brazil: Comparison of LandGEM (EPA) and Biogas (Cetesb) models | Aterros sanitários para geração de energia elétrica a partir da produção de biogás no Brasil: Comparação dos modelos LandGEM (E. Rev. Bras. Estud. Popul., 33(1), 175–188. doi:10.20947/S0102- 309820160009 Purmessur, B., & Surroop, D. (2019). Power generation using landfill gas generated from new cell at the existing landfill site. Journal of Environmental Chemical Engineering, 7(3), 103060. doi:10.1016/j. jece.2019.103060 Quaghebeur, M., Laenen, B., Geysen, D., Nielsen, P., Pontikes, Y., Van Gerven, T., & Spooren, J. (2013). Characterization of landfilled materials: Screening of the enhanced landfill mining potential. Journal of Cleaner Production, 55, 72–83. doi:10.1016/j. jclepro.2012.06.012 Raposo, F., De La Rubia, M. A., Fernández-Cegrí, V., & Borja, R. (2012). Anaerobic digestion of solid organic substrates in batch mode: An overview relating to methane yields and experimental procedures. Renewable and Sustainable Energy Reviews, 16(1), 861–877. doi:10.1016/j.rser.2011.09.008 Reinhart, D. R., Faour, A. A., & You, H. (2005). First order kinetics gas generation model parameters for wet landfills. Washington, DC: US. Environmental protection agency. S. de S. P. D. Superservicios, “Informe de Disposición Final de Residuos Sólidos – 2017,” 2018. Scharff, H., van Zomeren, A., & van der Sloot, H. A. (2011). Landfill sustainability and aftercare completion criteria. Waste Manag. Res., 29(1), 30–40. doi:10.1177/ 0734242X10384310 Shah, A. A., Hasan, F., Hameed, A., & Ahmed, S. (2008). Biological degradation of plastics: A comprehensive review. Biotechnology Advances, 26(3), 246–265. doi:10.1016/j.biotechadv.2007.12.005 Sponza, D. T., & Aǧdaǧ, O. N. (2004). Impact of leachate recirculation and recirculation volume on stabilization of municipal solid wastes in simulated anaerobic bioreactors. Process Biochemistry, 39(12), 2157– 2165. doi:10.1016/j.procbio.2003.11.012 Swati, M., Karthikeyan, O., Kurian, J., Visvanathan, C., & Nagendran, C. (2011). Pilot-scale simulation of landfill bioreactor and controlled dumping of fresh and partially stabilized municipal solid waste in a tropical developing country. Journal of Hazardous, Toxic, and Radioactive Waste, 15(October), 321–330. doi:10.1061/(ASCE)HZ.1944-8376.0000081 Themelis, N. J., Elena, M., Barriga, D., Estevez, P., & Velasco, M. G., “Guidebook for the application of waste to energy technologies in Latin America and the Caribbean,” 2013. UNEP and ISWA. (2015). The Global Waste Management Outlook (GWMO). United Nations Department of Economic and Social Affairs (UN DESA). (2018). Sustainable Development Goals Report 2018. p. 64, USEPA/ISWA. (2012). International Best Practices Guide for Landfill Gas Energy Project. 10.1094/PDIS-11-11- 0999-PDN Velkushanova, W., Caicedo, K., Richards, D., & Powrie, D. J. (2009). A detailed characterisation of an MBT waste. In Sardinia 2009, Twelfth International Waste Management and Landfill Symposium.S. Margherita di Pula, Cagliari, Italy Vergara, S. E., Damgaard, A., & Gomez, D. (2016). The efficiency of informality: quantifying greenhouse gas reductions from informal recycling in Bogotá, Colombia. Journal of Industrial Ecology, 20(1), 107– 119. doi:10.1111/jiec.12257 Wagland, S. T., Tyrrel, S. F., Godley, A., & Smith, R. (2010). Test methods to aid in the evaluation of the diversion of biodegradable municipal waste (BMW) from landfill. Waste Management, 30(5), 934–935. doi:10.1016/ j.wasman.2010.01.016 Wilson, D. C., Rodic, L., Cowing, M. J., Velis, C. A., Whiteman, A. D., Scheinberg, A., … Oelz, B. (2015). ‘Wasteaware’ benchmark indicators for integrated sustainable waste management in cities. Waste Management, 35, 329–342. doi:10.1016/j. wasman.2014.10.006 Xie, M., Aldenkortt, D., Wagner, J.-F., & Rettenberger, G. (2006). Effect of plastic fragments on hydraulic characteristics of pretreated municipal solid waste. Can. Geotech. J., 43(12), 1333–1343. doi:10.1139/t06-070 Yang, N., Damgaard, A., Scheutz, C., Shao, L. M., & He, P. J. (2018). A comparison of chemical MSW compositional data between China and Denmark. Journal of Environmental Sciences, 74, 1–10. doi:10.1016/j. jes.2018.02.010 Zhang, Y., Banks, C. J., & Heaven, S. (2012). Anaerobic digestion of two biodegradable municipal waste streams. Journal of Environmental Management, 104, 166–174. doi:10.1016/j.jenvman.2012.03.043 Zheng, W., Lü, F., Bolyard, S. C., Shao, L., Reinhart, D. R., & He, P. (2015). Evaluation of monitoring indicators for the post-closure care of a landfill for MSW characterized with low lignin content. Waste Management, 36, 222–229. doi:10.1016/j.wasman.2014.10.031 Zheng, W., Phoungthong, K., Lü, F., Shao, L.-M., & He, P.-J. (2013). Evaluation of a classification method for biodegradable solid wastes using anaerobic degradation parameters. Waste Management, 33(12), 2632–2640. doi:10.1016/j.wasman.2013.08.015 |
dc.rights.license.none.fl_str_mv |
Atribución |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
12 p. |
dc.coverage.temporal.spa.fl_str_mv |
6 |
dc.publisher.spa.fl_str_mv |
Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, Cali |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Industrial |
dc.publisher.place.spa.fl_str_mv |
Cali |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/9d45fbe4-4162-4263-b8e6-7726797a893f/download https://repository.ucc.edu.co/bitstreams/2eaecebe-6822-40d6-b921-3f924cddaf5a/download https://repository.ucc.edu.co/bitstreams/6cf0c489-17bb-481d-a8ea-238bce98dfc1/download https://repository.ucc.edu.co/bitstreams/52105a81-f6c3-4c9d-90d9-5f7234a01682/download |
bitstream.checksum.fl_str_mv |
7621f3a2cf67e93b8949ff804116dd30 3bce4f7ab09dfc588f126e1e36e98a45 be33631fc68cb118069c683600e583a1 7911af123c854087fdbfac4d1cea99fc |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814247070498816000 |
spelling |
Caicedo Concha, Diana MilenaSandoval Cobo, John JairoColmenares Quintero, Ramón FernandoMarmolejo Rebellón, Luis FernandoTorres Lozada, PatriciaHeaven, Sonia62020-04-23T01:33:28Z2020-04-23T01:33:28Z20192331-1916https://doi.org/10.1080/23311916.2019.1664862https://hdl.handle.net/20.500.12494/17458Caicedo Concha, D. M, Sandoval Cobo, J. J., Colmenares Quintero, R. F., Marmolejo Rebellón, L. F., Torres Lozada, P. & Heaven, S. (2019) The potential of methane production using aged landfill waste in developing countries: A case of study in Colombia, Cogent Engineering, 6:1, 1664862The optimization of waste degradation and stabilization processes is an essential key aspect for the environmental performance and economic sustainability of waste management systems in developing countries like Colombia. However, assessing the feasibility of biogas production in landfills requires a reasonable level of accuracy for the generation of methane, a sufficient understanding of the underlying generation processes and their relation with the physicochemical characteristics of the waste and landfill disposal conditions. Source segregation of MSW is either poor or non-existing in Colombia, as in most developing countries, which makes difficult to predict landfill gas generation even with the aid of current landfill emissions models. Only a few studies have been conducted to characterize biogas and methane production potential of mixed MSW landfilled in Latin-American countries, with few studies reported in Brazil and in Colombia. In this study, we show the results of biochemical methane potential (BMP) tests with 4–5 years old samples of municipal solid waste (MSW) excavated from a landfill site located in Colombia. Collected samples were characterized and the easy and medium biodegradable fractions used in the experiments. The results show an average total production of 34.8 − 37.9 L CH4 kg-1 DM added which is comparable with similar studies using excavated landfilled waste of similar characteristics. These results suggest that considering the potential of methane production from landfilled waste in developing countries, it is an alternative that could be considered to enhance the environmental performance of landfill sites by reduction of the emissions of uncontrolled CH4 and promote the use of non-conventional energy sources.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001434849https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000192503https://orcid.org/0000-0003-4031-4568http://orcid.org/0000-0003-1166-1982https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000002878https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000005961diana.caicedoc@campusucc.edu.cosandoval.john@correounivalle.edu.coramon.colmenaresq@ucc.edu.coluis.marmolejo@correounivalle.edu.copatricia.torres@correounivalle.edu.cos.heaven@soton.ac.ukhttps://scholar.google.com/citations?hl=es&user=wqyYGWAAAAAJ&view_op=list_works&gmla=AJsN-F7c3C8yvZxsKJpSjjRqX4WCFRXA_1437sB6Jbg5i0wkTtjgdvFfOhhmc9TXltl0H0K_m0OanqOI0e5WNZmq3F855Xl4BJy74Ghbn5ey5BZAh_AFw5GP4V84jHOs2jz1EsgWT2UQRE2WDjQ9rpy46hvQEgJhrn4Gpf5309lXf-d4G_vx8EfgiI0Q4EbQyA71LHzJOBUbsXqH8n1IYzENnvC3XzlJN0ZDBdySpMN12RFH3A8QiXw12 p.Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, CaliIngeniería IndustrialCalihttps://www.tandfonline.com/doi/full/10.1080/23311916.2019.1664862Cogent EngineeringAgudelo Vélez, M. I., Chavarro Bohorquez, D. A., Hernández Tasco, A., Niño Mendieta, A. M., Tovar Narváez, G.E. & Montenegro Trujillo,I. C. (2018). Green book 2030: national science and innovation policy for sustainable development. Bogotá, Colombia: Colciencias.Ahmadifar, M., Sartaj, M., & Abdallah, M. (2015). Investigating the performance of aerobic, semiaerobic, and anaerobic bioreactor landfills for MSW management in developing countries. J. Mater. Cycles Waste Manag., 18(4):703–714American Public Health Association/American Water Works Association/Water Environment Federation, APHA. (2005). Standard methods for the examination of water and wastewater.21st Edition. Washington, DC, USAASTM International, ASTM D5231-92. (2016). Standard test method for determination of the composition of unprocessed municipal solid waste. West Conshohocken, PA,USA: ASTM InternationalBarlaz, M., Ham, R., & Schaefer, D. (1989, Dec). Mass balance analysis of anaerobically decomposed refuse. Journal of Environmental Engineering, 115(6), 1088–1102. doi:10.1061/(ASCE)0733-9372(1989) 115:6(1088)BID. (2015). Estudio tecnologías alternativas de disposición final o aprovechamiento de residuos sólidos. Propuesta de ajuste al Decreto 838 de 2005. Bogotá, DC: Banco Interamericano de Desarrollo (BID).Bilgili, M. S., Demir, A., & Varank, G. (2009). Evaluation and modeling of biochemical methane potential (BMP) of landfilled solid waste: A pilot scale study. Bioresource Technology, 100(21), 4976–4980. doi:10.1016/j. biortech.2009.05.012Binner, E., & Zach, A. (1999). Laboratory tests describing the biological reactivity of pretreated residual wastes, In Proceedings of Symposium ORBIT 99 on Organic Recovery and Biological Treatment Symposium, Weimar, Germany.Boulanger, A., Pinet, E., Bouix, M., Bouchez, T., & Mansour, A. A. (2012). Effect of inoculum to substrate ratio (I/ S) on municipal solid waste anaerobic degradation kinetics and potential. Waste Management, 32(12), 2258–2265. doi:10.1016/j.wasman.2012.07.024Caicedo, D., Sandoval, J., & Whitting, K. (2016). An experimental study on the impact of two dimensional materials in waste disposal sites: What are the implications for engineered landfills? Sustainable Environment Research, 26(6), 255–261. doi:10.1016/j. serj.2016.08.001Caicedo-Concha, D. M., Sandoval-Cobo, J. J., & Whiting, K. (2016). An experimental study on the impact of two dimensional materials in waste disposal sites: What are the implications for engineered landfills? Sustainable Environment Research, 26(6), 255–261. doi:10.1016/j.serj.2016.08.001Campuzano, R., & González-Martínez, S. (2016). Characteristics of the organic fraction of municipal solid waste and methane production: A review. Waste Management, 54, 3–12. doi:10.1016/j. wasman.2016.05.016COLOMBIA, C.D. (2014). Ley 1715 de 2014, Regulación de la integración de las energías renovables no convencioanles al Sistema Energético Nacional. Diario Oficial No. 49.150. Imprenta Nacional: Bogotá D.CCossu, R., Lai, T., & Sandon, A. (2012). Standardization of BOD 5/COD ratio as a biological stability index for MSW. Waste Management, 32(8), 1503–1508. doi:10.1016/j.wasman.2012.04.001Cossu, R., & Raga, R. (2008). Test methods for assessing the biological stability of biodegradable waste. Waste Management, 28(2), 381–388. doi:10.1016/j. wasman.2007.01.014DNP. (2016). CONPES 3874. Pólítica Nacional para la Gestión Integral de Residuos Sólidos. Bogotá, DC: Departamento Nacional de Planeación (DNP).Eggleston, S., Buendia, L., Miwa, K., Ngara, T., & Tanabe, K., “IPCC 2008, 2006 IPCC Guidelines for National Greenhouse Gas Inventories,” 2008.EPA, U. S. (2014). Municipal solid waste generation, recycling, and disposal in the United States tables and figures for 2012,” Office of Resource Conservation and Recovery. Retrieved from http://www.epa.gov/epa waste/nonhaz/municipal/pubs/2012_msw_dat_tbls. pdf.Fei, F., Wen, Z., & De Clercq, D. (2019). Spatio-temporal estimation of landfill gas energy potential: A case study in China. Renewable and Sustainable Energy Reviews, 103, 217–226. doi:10.1016/j. rser.2018.12.036Francois, V., Feuillade, G., Skhiri, N., Lagier, T., & Matejka, G. (2006). Indicating the parameters of the state of degradation of municipal solid waste. Journal of Hazardous Materials, 137, 1008–1015. doi:10.1016/j. jhazmat.2006.03.026Garcia, J., Davies, S., Villa, R., Gomes, D. M., Coulon, F., & Wagland, S. T. (2016). Compositional analysis of excavated landfill samples and the determination of residual biogas potential of the organic fraction. Waste Management, 55, 336–344. doi:10.1016/j. wasman.2016.06.003Habitat, U. N. (2010). Solid Waste Management in the World’s Cities: Water and Sanitation in the World’s Cities 2010.Holliger, C., Alves, M., Andrade, D., Angelidaki, I., Astals, S., Baier, U., Bougrier, C., ... Wierinck, I. (2016). Towards a standardization of biomethane potential tests. Water Science and Technology, 74(11), 2515–2522.Hoornweg, D., & Bhada-Tata, P. (2012). What a waste: A global review of solid waste management. World Bank, Washington, DC.IPCC Intergovernmental Panel on Climate Change. 2014. Climate change 2014 impacts, adaptation, and vulnerability part B: Regional aspects.Ivan, C., María, T., Aura, V., Paola, A., & Mario, H. (2016). Anaerobic co-digestion of organic residues from different productive sectors in Colombia: Biomethanation potential assessment. Chemical Engineering Transactions, 49, 385–390Kaza, S., Yao, L., Bhada-Tata, P., & Van Woerden, F. (2018). What a waste 2.0: a global snapshot of solid waste management to 2050. World Bank PublicationsKelly, R. J., Shearer, B. D., Kim, J., Goldsmith, C. D., Hater, G. R., & Novak, J. T. (2006). Relationships between analytical methods utilized as tools in the evaluation of landfill waste stability. Waste Management, 26 (12), 1349–1356. doi:10.1016/j.wasman.2005.11.019Kim, H., & Townsend, T. G. (2012). Wet landfill decomposition rate determination using methane yield results for excavated waste samples. Waste Management, 32(7), 1427–1433. doi:10.1016/j. wasman.2012.03.017Knox, K., Braithwaite, P., Caine, M., & Croft, B. (2005). Brogborough landfill test cells: The final chapter. A study of landfill completion in relation to final storage quality (FSQ) criteria. In S. Margherita di Pula (ed.,) Sardinia 2005 – 10th International waste management and landfill symposium. Cagliari, Italy.Larochelle, L., Turner, M., & LaGiglia, M. (2012). Evaluation of NAMA opportunities in Colombia’s solid waste sector. Washington, DC: Center for clean air policy.Lima, R. M., Santos, A. H. M., Pereira, C. R. S., Flauzino, B. K., Pereira, A. C. O. S., Nogueira, F. J. H., Valverde, J. A. R. (2018). Spatially distributed potential of landfill biogas production and electric power generation in Brazil. Waste Management, 74, 323–334. doi:10.1016/j.wasman.2017.12.011Liu, G., Zhang, R., El-Mashad, H. M., & Dong, R. (2009). Effect of feed to inoculum ratios on biogas yields of food and green wastes. Bioresource Technology, 100 (21), 5103–5108. doi:10.1016/j.biortech.2009.03.081Machado, S., Carvalho, M. F., Gourc, J. P., Vilar, O. M., & Do Nascimento, J. C. F. (2009). Methane generation in tropical landfills: Simplified methods and field results. Waste Management, 29(1), 153–161. doi:10.1016/j. wasman.2008.02.017Machado, S. L., Karimpour-Fard, M., Shariatmadari, N., Carvalho, M. F., & Do Nascimento, J. C. F. (2010, Dec). Evaluation of the geotechnical properties of MSW in two Brazilian landfills. Waste Management, 30(12), 2579–2591. doi:10.1016/j.wasman.2010.07.019Ministerio de Desarrollo Económico de Colombia. (2000). Reglamento Técnico del Sector de Agua Potable y Saneamiento Básico- RAS 2000: Titulo F. Ministerio de Desarrollo Económico de Colombia.Pearse, L. F., Hettiaratchi, J. P., & Kumar, S. (2018). Towards developing a representative biochemical methane potential (BMP) assay for landfilled municipal solid waste – A review. Bioresource Technology, 254, 312–324. doi:10.1016/j.biortech.2018.01.069Pedraza, A., Cabrera, M., Duarte, M., Gutiérrez, M., Lamprea, P., & Lozano, R. (2005). Visión general del inventario nacional de emisiones de gases de efecto de invernadero. In Inventario nacional de emisiones de gases de efecto de invernadero 2002-2004. Segunda comunicación nacional ante la Convención Marco de las Naciones Unidas sobre el cambio climático (pp. 17–66). Bogotá, D. C: IDEAM..Piñas, J. A. V., Venturini, O. J., Lora, E. E. S., de Oliveira, M. A., & Roalcaba, O. D. C. (2016). Landfills for electricity generation from biogas production in Brazil: Comparison of LandGEM (EPA) and Biogas (Cetesb) models | Aterros sanitários para geração de energia elétrica a partir da produção de biogás no Brasil: Comparação dos modelos LandGEM (E. Rev. Bras. Estud. Popul., 33(1), 175–188. doi:10.20947/S0102- 309820160009Purmessur, B., & Surroop, D. (2019). Power generation using landfill gas generated from new cell at the existing landfill site. Journal of Environmental Chemical Engineering, 7(3), 103060. doi:10.1016/j. jece.2019.103060Quaghebeur, M., Laenen, B., Geysen, D., Nielsen, P., Pontikes, Y., Van Gerven, T., & Spooren, J. (2013). Characterization of landfilled materials: Screening of the enhanced landfill mining potential. Journal of Cleaner Production, 55, 72–83. doi:10.1016/j. jclepro.2012.06.012Raposo, F., De La Rubia, M. A., Fernández-Cegrí, V., & Borja, R. (2012). Anaerobic digestion of solid organic substrates in batch mode: An overview relating to methane yields and experimental procedures. Renewable and Sustainable Energy Reviews, 16(1), 861–877. doi:10.1016/j.rser.2011.09.008Reinhart, D. R., Faour, A. A., & You, H. (2005). First order kinetics gas generation model parameters for wet landfills. Washington, DC: US. Environmental protection agency.S. de S. P. D. Superservicios, “Informe de Disposición Final de Residuos Sólidos – 2017,” 2018.Scharff, H., van Zomeren, A., & van der Sloot, H. A. (2011). Landfill sustainability and aftercare completion criteria. Waste Manag. Res., 29(1), 30–40. doi:10.1177/ 0734242X10384310Shah, A. A., Hasan, F., Hameed, A., & Ahmed, S. (2008). Biological degradation of plastics: A comprehensive review. Biotechnology Advances, 26(3), 246–265. doi:10.1016/j.biotechadv.2007.12.005Sponza, D. T., & Aǧdaǧ, O. N. (2004). Impact of leachate recirculation and recirculation volume on stabilization of municipal solid wastes in simulated anaerobic bioreactors. Process Biochemistry, 39(12), 2157– 2165. doi:10.1016/j.procbio.2003.11.012Swati, M., Karthikeyan, O., Kurian, J., Visvanathan, C., & Nagendran, C. (2011). Pilot-scale simulation of landfill bioreactor and controlled dumping of fresh and partially stabilized municipal solid waste in a tropical developing country. Journal of Hazardous, Toxic, and Radioactive Waste, 15(October), 321–330. doi:10.1061/(ASCE)HZ.1944-8376.0000081Themelis, N. J., Elena, M., Barriga, D., Estevez, P., & Velasco, M. G., “Guidebook for the application of waste to energy technologies in Latin America and the Caribbean,” 2013.UNEP and ISWA. (2015). The Global Waste Management Outlook (GWMO).United Nations Department of Economic and Social Affairs (UN DESA). (2018). Sustainable Development Goals Report 2018. p. 64,USEPA/ISWA. (2012). International Best Practices Guide for Landfill Gas Energy Project. 10.1094/PDIS-11-11- 0999-PDNVelkushanova, W., Caicedo, K., Richards, D., & Powrie, D. J. (2009). A detailed characterisation of an MBT waste. In Sardinia 2009, Twelfth International Waste Management and Landfill Symposium.S. Margherita di Pula, Cagliari, ItalyVergara, S. E., Damgaard, A., & Gomez, D. (2016). The efficiency of informality: quantifying greenhouse gas reductions from informal recycling in Bogotá, Colombia. Journal of Industrial Ecology, 20(1), 107– 119. doi:10.1111/jiec.12257Wagland, S. T., Tyrrel, S. F., Godley, A., & Smith, R. (2010). Test methods to aid in the evaluation of the diversion of biodegradable municipal waste (BMW) from landfill. Waste Management, 30(5), 934–935. doi:10.1016/ j.wasman.2010.01.016Wilson, D. C., Rodic, L., Cowing, M. J., Velis, C. A., Whiteman, A. D., Scheinberg, A., … Oelz, B. (2015). ‘Wasteaware’ benchmark indicators for integrated sustainable waste management in cities. Waste Management, 35, 329–342. doi:10.1016/j. wasman.2014.10.006Xie, M., Aldenkortt, D., Wagner, J.-F., & Rettenberger, G. (2006). Effect of plastic fragments on hydraulic characteristics of pretreated municipal solid waste. Can. Geotech. J., 43(12), 1333–1343. doi:10.1139/t06-070Yang, N., Damgaard, A., Scheutz, C., Shao, L. M., & He, P. J. (2018). A comparison of chemical MSW compositional data between China and Denmark. Journal of Environmental Sciences, 74, 1–10. doi:10.1016/j. jes.2018.02.010Zhang, Y., Banks, C. J., & Heaven, S. (2012). Anaerobic digestion of two biodegradable municipal waste streams. Journal of Environmental Management, 104, 166–174. doi:10.1016/j.jenvman.2012.03.043Zheng, W., Lü, F., Bolyard, S. C., Shao, L., Reinhart, D. R., & He, P. (2015). Evaluation of monitoring indicators for the post-closure care of a landfill for MSW characterized with low lignin content. Waste Management, 36, 222–229. doi:10.1016/j.wasman.2014.10.031Zheng, W., Phoungthong, K., Lü, F., Shao, L.-M., & He, P.-J. (2013). Evaluation of a classification method for biodegradable solid wastes using anaerobic degradation parameters. Waste Management, 33(12), 2632–2640. doi:10.1016/j.wasman.2013.08.015Desarrollo sosteniblePotencial bioquímico de metanoPaíses en desarrolloResiduos sólidos urbanos envejecidosSustainable developmentBiochemical methane potentialBiogasDeveloping countriesAged municipal solid wasteThe potential of methane production using aged landfill waste in developing countries: a case of study in ColombiaArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINAL2019_Potential_methane_production.pdf2019_Potential_methane_production.pdfArtículoapplication/pdf1184571https://repository.ucc.edu.co/bitstreams/9d45fbe4-4162-4263-b8e6-7726797a893f/download7621f3a2cf67e93b8949ff804116dd30MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/2eaecebe-6822-40d6-b921-3f924cddaf5a/download3bce4f7ab09dfc588f126e1e36e98a45MD52THUMBNAIL2019_Potential_methane_production.pdf.jpg2019_Potential_methane_production.pdf.jpgGenerated Thumbnailimage/jpeg4578https://repository.ucc.edu.co/bitstreams/6cf0c489-17bb-481d-a8ea-238bce98dfc1/downloadbe33631fc68cb118069c683600e583a1MD53TEXT2019_Potential_methane_production.pdf.txt2019_Potential_methane_production.pdf.txtExtracted texttext/plain56841https://repository.ucc.edu.co/bitstreams/52105a81-f6c3-4c9d-90d9-5f7234a01682/download7911af123c854087fdbfac4d1cea99fcMD5420.500.12494/17458oai:repository.ucc.edu.co:20.500.12494/174582024-08-10 21:01:05.061restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo= |