The potential of methane production using aged landfill waste in developing countries: a case of study in Colombia

The optimization of waste degradation and stabilization processes is an essential key aspect for the environmental performance and economic sustainability of waste management systems in developing countries like Colombia. However, assessing the feasibility of biogas production in landfills requires...

Full description

Autores:
Caicedo Concha, Diana Milena
Sandoval Cobo, John Jairo
Colmenares Quintero, Ramón Fernando
Marmolejo Rebellón, Luis Fernando
Torres Lozada, Patricia
Heaven, Sonia
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/17458
Acceso en línea:
https://doi.org/10.1080/23311916.2019.1664862
https://hdl.handle.net/20.500.12494/17458
Palabra clave:
Desarrollo sostenible
Potencial bioquímico de metano
Países en desarrollo
Residuos sólidos urbanos envejecidos
Sustainable development
Biochemical methane potential
Biogas
Developing countries
Aged municipal solid waste
Rights
openAccess
License
Atribución
id COOPER2_6e80f46531cb254b61d7fa87e25ff716
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/17458
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv The potential of methane production using aged landfill waste in developing countries: a case of study in Colombia
title The potential of methane production using aged landfill waste in developing countries: a case of study in Colombia
spellingShingle The potential of methane production using aged landfill waste in developing countries: a case of study in Colombia
Desarrollo sostenible
Potencial bioquímico de metano
Países en desarrollo
Residuos sólidos urbanos envejecidos
Sustainable development
Biochemical methane potential
Biogas
Developing countries
Aged municipal solid waste
title_short The potential of methane production using aged landfill waste in developing countries: a case of study in Colombia
title_full The potential of methane production using aged landfill waste in developing countries: a case of study in Colombia
title_fullStr The potential of methane production using aged landfill waste in developing countries: a case of study in Colombia
title_full_unstemmed The potential of methane production using aged landfill waste in developing countries: a case of study in Colombia
title_sort The potential of methane production using aged landfill waste in developing countries: a case of study in Colombia
dc.creator.fl_str_mv Caicedo Concha, Diana Milena
Sandoval Cobo, John Jairo
Colmenares Quintero, Ramón Fernando
Marmolejo Rebellón, Luis Fernando
Torres Lozada, Patricia
Heaven, Sonia
dc.contributor.author.none.fl_str_mv Caicedo Concha, Diana Milena
Sandoval Cobo, John Jairo
Colmenares Quintero, Ramón Fernando
Marmolejo Rebellón, Luis Fernando
Torres Lozada, Patricia
Heaven, Sonia
dc.subject.spa.fl_str_mv Desarrollo sostenible
Potencial bioquímico de metano
Países en desarrollo
Residuos sólidos urbanos envejecidos
topic Desarrollo sostenible
Potencial bioquímico de metano
Países en desarrollo
Residuos sólidos urbanos envejecidos
Sustainable development
Biochemical methane potential
Biogas
Developing countries
Aged municipal solid waste
dc.subject.other.spa.fl_str_mv Sustainable development
Biochemical methane potential
Biogas
Developing countries
Aged municipal solid waste
description The optimization of waste degradation and stabilization processes is an essential key aspect for the environmental performance and economic sustainability of waste management systems in developing countries like Colombia. However, assessing the feasibility of biogas production in landfills requires a reasonable level of accuracy for the generation of methane, a sufficient understanding of the underlying generation processes and their relation with the physicochemical characteristics of the waste and landfill disposal conditions. Source segregation of MSW is either poor or non-existing in Colombia, as in most developing countries, which makes difficult to predict landfill gas generation even with the aid of current landfill emissions models. Only a few studies have been conducted to characterize biogas and methane production potential of mixed MSW landfilled in Latin-American countries, with few studies reported in Brazil and in Colombia. In this study, we show the results of biochemical methane potential (BMP) tests with 4–5 years old samples of municipal solid waste (MSW) excavated from a landfill site located in Colombia. Collected samples were characterized and the easy and medium biodegradable fractions used in the experiments. The results show an average total production of 34.8 − 37.9 L CH4 kg-1 DM added which is comparable with similar studies using excavated landfilled waste of similar characteristics. These results suggest that considering the potential of methane production from landfilled waste in developing countries, it is an alternative that could be considered to enhance the environmental performance of landfill sites by reduction of the emissions of uncontrolled CH4 and promote the use of non-conventional energy sources.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-04-23T01:33:28Z
dc.date.available.none.fl_str_mv 2020-04-23T01:33:28Z
dc.type.none.fl_str_mv Artículo
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 2331-1916
dc.identifier.uri.spa.fl_str_mv https://doi.org/10.1080/23311916.2019.1664862
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/17458
dc.identifier.bibliographicCitation.spa.fl_str_mv Caicedo Concha, D. M, Sandoval Cobo, J. J., Colmenares Quintero, R. F., Marmolejo Rebellón, L. F., Torres Lozada, P. & Heaven, S. (2019) The potential of methane production using aged landfill waste in developing countries: A case of study in Colombia, Cogent Engineering, 6:1, 1664862
identifier_str_mv 2331-1916
Caicedo Concha, D. M, Sandoval Cobo, J. J., Colmenares Quintero, R. F., Marmolejo Rebellón, L. F., Torres Lozada, P. & Heaven, S. (2019) The potential of methane production using aged landfill waste in developing countries: A case of study in Colombia, Cogent Engineering, 6:1, 1664862
url https://doi.org/10.1080/23311916.2019.1664862
https://hdl.handle.net/20.500.12494/17458
dc.relation.isversionof.spa.fl_str_mv https://www.tandfonline.com/doi/full/10.1080/23311916.2019.1664862
dc.relation.ispartofjournal.spa.fl_str_mv Cogent Engineering
dc.relation.references.spa.fl_str_mv Agudelo Vélez, M. I., Chavarro Bohorquez, D. A., Hernández Tasco, A., Niño Mendieta, A. M., Tovar Narváez, G.E. & Montenegro Trujillo,I. C. (2018). Green book 2030: national science and innovation policy for sustainable development. Bogotá, Colombia: Colciencias.
Ahmadifar, M., Sartaj, M., & Abdallah, M. (2015). Investigating the performance of aerobic, semiaerobic, and anaerobic bioreactor landfills for MSW management in developing countries. J. Mater. Cycles Waste Manag., 18(4):703–714
American Public Health Association/American Water Works Association/Water Environment Federation, APHA. (2005). Standard methods for the examination of water and wastewater.21st Edition. Washington, DC, USA
ASTM International, ASTM D5231-92. (2016). Standard test method for determination of the composition of unprocessed municipal solid waste. West Conshohocken, PA,USA: ASTM International
Barlaz, M., Ham, R., & Schaefer, D. (1989, Dec). Mass balance analysis of anaerobically decomposed refuse. Journal of Environmental Engineering, 115(6), 1088–1102. doi:10.1061/(ASCE)0733-9372(1989) 115:6(1088)
BID. (2015). Estudio tecnologías alternativas de disposición final o aprovechamiento de residuos sólidos. Propuesta de ajuste al Decreto 838 de 2005. Bogotá, DC: Banco Interamericano de Desarrollo (BID).
Bilgili, M. S., Demir, A., & Varank, G. (2009). Evaluation and modeling of biochemical methane potential (BMP) of landfilled solid waste: A pilot scale study. Bioresource Technology, 100(21), 4976–4980. doi:10.1016/j. biortech.2009.05.012
Binner, E., & Zach, A. (1999). Laboratory tests describing the biological reactivity of pretreated residual wastes, In Proceedings of Symposium ORBIT 99 on Organic Recovery and Biological Treatment Symposium, Weimar, Germany.
Boulanger, A., Pinet, E., Bouix, M., Bouchez, T., & Mansour, A. A. (2012). Effect of inoculum to substrate ratio (I/ S) on municipal solid waste anaerobic degradation kinetics and potential. Waste Management, 32(12), 2258–2265. doi:10.1016/j.wasman.2012.07.024
Caicedo, D., Sandoval, J., & Whitting, K. (2016). An experimental study on the impact of two dimensional materials in waste disposal sites: What are the implications for engineered landfills? Sustainable Environment Research, 26(6), 255–261. doi:10.1016/j. serj.2016.08.001
Caicedo-Concha, D. M., Sandoval-Cobo, J. J., & Whiting, K. (2016). An experimental study on the impact of two dimensional materials in waste disposal sites: What are the implications for engineered landfills? Sustainable Environment Research, 26(6), 255–261. doi:10.1016/j.serj.2016.08.001
Campuzano, R., & González-Martínez, S. (2016). Characteristics of the organic fraction of municipal solid waste and methane production: A review. Waste Management, 54, 3–12. doi:10.1016/j. wasman.2016.05.016
COLOMBIA, C.D. (2014). Ley 1715 de 2014, Regulación de la integración de las energías renovables no convencioanles al Sistema Energético Nacional. Diario Oficial No. 49.150. Imprenta Nacional: Bogotá D.C
Cossu, R., Lai, T., & Sandon, A. (2012). Standardization of BOD 5/COD ratio as a biological stability index for MSW. Waste Management, 32(8), 1503–1508. doi:10.1016/j.wasman.2012.04.001
Cossu, R., & Raga, R. (2008). Test methods for assessing the biological stability of biodegradable waste. Waste Management, 28(2), 381–388. doi:10.1016/j. wasman.2007.01.014
DNP. (2016). CONPES 3874. Pólítica Nacional para la Gestión Integral de Residuos Sólidos. Bogotá, DC: Departamento Nacional de Planeación (DNP).
Eggleston, S., Buendia, L., Miwa, K., Ngara, T., & Tanabe, K., “IPCC 2008, 2006 IPCC Guidelines for National Greenhouse Gas Inventories,” 2008.
EPA, U. S. (2014). Municipal solid waste generation, recycling, and disposal in the United States tables and figures for 2012,” Office of Resource Conservation and Recovery. Retrieved from http://www.epa.gov/epa waste/nonhaz/municipal/pubs/2012_msw_dat_tbls. pdf.
Fei, F., Wen, Z., & De Clercq, D. (2019). Spatio-temporal estimation of landfill gas energy potential: A case study in China. Renewable and Sustainable Energy Reviews, 103, 217–226. doi:10.1016/j. rser.2018.12.036
Francois, V., Feuillade, G., Skhiri, N., Lagier, T., & Matejka, G. (2006). Indicating the parameters of the state of degradation of municipal solid waste. Journal of Hazardous Materials, 137, 1008–1015. doi:10.1016/j. jhazmat.2006.03.026
Garcia, J., Davies, S., Villa, R., Gomes, D. M., Coulon, F., & Wagland, S. T. (2016). Compositional analysis of excavated landfill samples and the determination of residual biogas potential of the organic fraction. Waste Management, 55, 336–344. doi:10.1016/j. wasman.2016.06.003
Habitat, U. N. (2010). Solid Waste Management in the World’s Cities: Water and Sanitation in the World’s Cities 2010.
Holliger, C., Alves, M., Andrade, D., Angelidaki, I., Astals, S., Baier, U., Bougrier, C., ... Wierinck, I. (2016). Towards a standardization of biomethane potential tests. Water Science and Technology, 74(11), 2515–2522.
Hoornweg, D., & Bhada-Tata, P. (2012). What a waste: A global review of solid waste management. World Bank, Washington, DC.
IPCC Intergovernmental Panel on Climate Change. 2014. Climate change 2014 impacts, adaptation, and vulnerability part B: Regional aspects.
Ivan, C., María, T., Aura, V., Paola, A., & Mario, H. (2016). Anaerobic co-digestion of organic residues from different productive sectors in Colombia: Biomethanation potential assessment. Chemical Engineering Transactions, 49, 385–390
Kaza, S., Yao, L., Bhada-Tata, P., & Van Woerden, F. (2018). What a waste 2.0: a global snapshot of solid waste management to 2050. World Bank Publications
Kelly, R. J., Shearer, B. D., Kim, J., Goldsmith, C. D., Hater, G. R., & Novak, J. T. (2006). Relationships between analytical methods utilized as tools in the evaluation of landfill waste stability. Waste Management, 26 (12), 1349–1356. doi:10.1016/j.wasman.2005.11.019
Kim, H., & Townsend, T. G. (2012). Wet landfill decomposition rate determination using methane yield results for excavated waste samples. Waste Management, 32(7), 1427–1433. doi:10.1016/j. wasman.2012.03.017
Knox, K., Braithwaite, P., Caine, M., & Croft, B. (2005). Brogborough landfill test cells: The final chapter. A study of landfill completion in relation to final storage quality (FSQ) criteria. In S. Margherita di Pula (ed.,) Sardinia 2005 – 10th International waste management and landfill symposium. Cagliari, Italy.
Larochelle, L., Turner, M., & LaGiglia, M. (2012). Evaluation of NAMA opportunities in Colombia’s solid waste sector. Washington, DC: Center for clean air policy.
Lima, R. M., Santos, A. H. M., Pereira, C. R. S., Flauzino, B. K., Pereira, A. C. O. S., Nogueira, F. J. H., Valverde, J. A. R. (2018). Spatially distributed potential of landfill biogas production and electric power generation in Brazil. Waste Management, 74, 323–334. doi:10.1016/j.wasman.2017.12.011
Liu, G., Zhang, R., El-Mashad, H. M., & Dong, R. (2009). Effect of feed to inoculum ratios on biogas yields of food and green wastes. Bioresource Technology, 100 (21), 5103–5108. doi:10.1016/j.biortech.2009.03.081
Machado, S., Carvalho, M. F., Gourc, J. P., Vilar, O. M., & Do Nascimento, J. C. F. (2009). Methane generation in tropical landfills: Simplified methods and field results. Waste Management, 29(1), 153–161. doi:10.1016/j. wasman.2008.02.017
Machado, S. L., Karimpour-Fard, M., Shariatmadari, N., Carvalho, M. F., & Do Nascimento, J. C. F. (2010, Dec). Evaluation of the geotechnical properties of MSW in two Brazilian landfills. Waste Management, 30(12), 2579–2591. doi:10.1016/j.wasman.2010.07.019
Ministerio de Desarrollo Económico de Colombia. (2000). Reglamento Técnico del Sector de Agua Potable y Saneamiento Básico- RAS 2000: Titulo F. Ministerio de Desarrollo Económico de Colombia.
Pearse, L. F., Hettiaratchi, J. P., & Kumar, S. (2018). Towards developing a representative biochemical methane potential (BMP) assay for landfilled municipal solid waste – A review. Bioresource Technology, 254, 312–324. doi:10.1016/j.biortech.2018.01.069
Pedraza, A., Cabrera, M., Duarte, M., Gutiérrez, M., Lamprea, P., & Lozano, R. (2005). Visión general del inventario nacional de emisiones de gases de efecto de invernadero. In Inventario nacional de emisiones de gases de efecto de invernadero 2002-2004. Segunda comunicación nacional ante la Convención Marco de las Naciones Unidas sobre el cambio climático (pp. 17–66). Bogotá, D. C: IDEAM..
Piñas, J. A. V., Venturini, O. J., Lora, E. E. S., de Oliveira, M. A., & Roalcaba, O. D. C. (2016). Landfills for electricity generation from biogas production in Brazil: Comparison of LandGEM (EPA) and Biogas (Cetesb) models | Aterros sanitários para geração de energia elétrica a partir da produção de biogás no Brasil: Comparação dos modelos LandGEM (E. Rev. Bras. Estud. Popul., 33(1), 175–188. doi:10.20947/S0102- 309820160009
Purmessur, B., & Surroop, D. (2019). Power generation using landfill gas generated from new cell at the existing landfill site. Journal of Environmental Chemical Engineering, 7(3), 103060. doi:10.1016/j. jece.2019.103060
Quaghebeur, M., Laenen, B., Geysen, D., Nielsen, P., Pontikes, Y., Van Gerven, T., & Spooren, J. (2013). Characterization of landfilled materials: Screening of the enhanced landfill mining potential. Journal of Cleaner Production, 55, 72–83. doi:10.1016/j. jclepro.2012.06.012
Raposo, F., De La Rubia, M. A., Fernández-Cegrí, V., & Borja, R. (2012). Anaerobic digestion of solid organic substrates in batch mode: An overview relating to methane yields and experimental procedures. Renewable and Sustainable Energy Reviews, 16(1), 861–877. doi:10.1016/j.rser.2011.09.008
Reinhart, D. R., Faour, A. A., & You, H. (2005). First order kinetics gas generation model parameters for wet landfills. Washington, DC: US. Environmental protection agency.
S. de S. P. D. Superservicios, “Informe de Disposición Final de Residuos Sólidos – 2017,” 2018.
Scharff, H., van Zomeren, A., & van der Sloot, H. A. (2011). Landfill sustainability and aftercare completion criteria. Waste Manag. Res., 29(1), 30–40. doi:10.1177/ 0734242X10384310
Shah, A. A., Hasan, F., Hameed, A., & Ahmed, S. (2008). Biological degradation of plastics: A comprehensive review. Biotechnology Advances, 26(3), 246–265. doi:10.1016/j.biotechadv.2007.12.005
Sponza, D. T., & Aǧdaǧ, O. N. (2004). Impact of leachate recirculation and recirculation volume on stabilization of municipal solid wastes in simulated anaerobic bioreactors. Process Biochemistry, 39(12), 2157– 2165. doi:10.1016/j.procbio.2003.11.012
Swati, M., Karthikeyan, O., Kurian, J., Visvanathan, C., & Nagendran, C. (2011). Pilot-scale simulation of landfill bioreactor and controlled dumping of fresh and partially stabilized municipal solid waste in a tropical developing country. Journal of Hazardous, Toxic, and Radioactive Waste, 15(October), 321–330. doi:10.1061/(ASCE)HZ.1944-8376.0000081
Themelis, N. J., Elena, M., Barriga, D., Estevez, P., & Velasco, M. G., “Guidebook for the application of waste to energy technologies in Latin America and the Caribbean,” 2013.
UNEP and ISWA. (2015). The Global Waste Management Outlook (GWMO).
United Nations Department of Economic and Social Affairs (UN DESA). (2018). Sustainable Development Goals Report 2018. p. 64,
USEPA/ISWA. (2012). International Best Practices Guide for Landfill Gas Energy Project. 10.1094/PDIS-11-11- 0999-PDN
Velkushanova, W., Caicedo, K., Richards, D., & Powrie, D. J. (2009). A detailed characterisation of an MBT waste. In Sardinia 2009, Twelfth International Waste Management and Landfill Symposium.S. Margherita di Pula, Cagliari, Italy
Vergara, S. E., Damgaard, A., & Gomez, D. (2016). The efficiency of informality: quantifying greenhouse gas reductions from informal recycling in Bogotá, Colombia. Journal of Industrial Ecology, 20(1), 107– 119. doi:10.1111/jiec.12257
Wagland, S. T., Tyrrel, S. F., Godley, A., & Smith, R. (2010). Test methods to aid in the evaluation of the diversion of biodegradable municipal waste (BMW) from landfill. Waste Management, 30(5), 934–935. doi:10.1016/ j.wasman.2010.01.016
Wilson, D. C., Rodic, L., Cowing, M. J., Velis, C. A., Whiteman, A. D., Scheinberg, A., … Oelz, B. (2015). ‘Wasteaware’ benchmark indicators for integrated sustainable waste management in cities. Waste Management, 35, 329–342. doi:10.1016/j. wasman.2014.10.006
Xie, M., Aldenkortt, D., Wagner, J.-F., & Rettenberger, G. (2006). Effect of plastic fragments on hydraulic characteristics of pretreated municipal solid waste. Can. Geotech. J., 43(12), 1333–1343. doi:10.1139/t06-070
Yang, N., Damgaard, A., Scheutz, C., Shao, L. M., & He, P. J. (2018). A comparison of chemical MSW compositional data between China and Denmark. Journal of Environmental Sciences, 74, 1–10. doi:10.1016/j. jes.2018.02.010
Zhang, Y., Banks, C. J., & Heaven, S. (2012). Anaerobic digestion of two biodegradable municipal waste streams. Journal of Environmental Management, 104, 166–174. doi:10.1016/j.jenvman.2012.03.043
Zheng, W., Lü, F., Bolyard, S. C., Shao, L., Reinhart, D. R., & He, P. (2015). Evaluation of monitoring indicators for the post-closure care of a landfill for MSW characterized with low lignin content. Waste Management, 36, 222–229. doi:10.1016/j.wasman.2014.10.031
Zheng, W., Phoungthong, K., Lü, F., Shao, L.-M., & He, P.-J. (2013). Evaluation of a classification method for biodegradable solid wastes using anaerobic degradation parameters. Waste Management, 33(12), 2632–2640. doi:10.1016/j.wasman.2013.08.015
dc.rights.license.none.fl_str_mv Atribución
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 12 p.
dc.coverage.temporal.spa.fl_str_mv 6
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, Cali
dc.publisher.program.spa.fl_str_mv Ingeniería Industrial
dc.publisher.place.spa.fl_str_mv Cali
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/9d45fbe4-4162-4263-b8e6-7726797a893f/download
https://repository.ucc.edu.co/bitstreams/2eaecebe-6822-40d6-b921-3f924cddaf5a/download
https://repository.ucc.edu.co/bitstreams/6cf0c489-17bb-481d-a8ea-238bce98dfc1/download
https://repository.ucc.edu.co/bitstreams/52105a81-f6c3-4c9d-90d9-5f7234a01682/download
bitstream.checksum.fl_str_mv 7621f3a2cf67e93b8949ff804116dd30
3bce4f7ab09dfc588f126e1e36e98a45
be33631fc68cb118069c683600e583a1
7911af123c854087fdbfac4d1cea99fc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814247070498816000
spelling Caicedo Concha, Diana MilenaSandoval Cobo, John JairoColmenares Quintero, Ramón FernandoMarmolejo Rebellón, Luis FernandoTorres Lozada, PatriciaHeaven, Sonia62020-04-23T01:33:28Z2020-04-23T01:33:28Z20192331-1916https://doi.org/10.1080/23311916.2019.1664862https://hdl.handle.net/20.500.12494/17458Caicedo Concha, D. M, Sandoval Cobo, J. J., Colmenares Quintero, R. F., Marmolejo Rebellón, L. F., Torres Lozada, P. & Heaven, S. (2019) The potential of methane production using aged landfill waste in developing countries: A case of study in Colombia, Cogent Engineering, 6:1, 1664862The optimization of waste degradation and stabilization processes is an essential key aspect for the environmental performance and economic sustainability of waste management systems in developing countries like Colombia. However, assessing the feasibility of biogas production in landfills requires a reasonable level of accuracy for the generation of methane, a sufficient understanding of the underlying generation processes and their relation with the physicochemical characteristics of the waste and landfill disposal conditions. Source segregation of MSW is either poor or non-existing in Colombia, as in most developing countries, which makes difficult to predict landfill gas generation even with the aid of current landfill emissions models. Only a few studies have been conducted to characterize biogas and methane production potential of mixed MSW landfilled in Latin-American countries, with few studies reported in Brazil and in Colombia. In this study, we show the results of biochemical methane potential (BMP) tests with 4–5 years old samples of municipal solid waste (MSW) excavated from a landfill site located in Colombia. Collected samples were characterized and the easy and medium biodegradable fractions used in the experiments. The results show an average total production of 34.8 − 37.9 L CH4 kg-1 DM added which is comparable with similar studies using excavated landfilled waste of similar characteristics. These results suggest that considering the potential of methane production from landfilled waste in developing countries, it is an alternative that could be considered to enhance the environmental performance of landfill sites by reduction of the emissions of uncontrolled CH4 and promote the use of non-conventional energy sources.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001434849https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000192503https://orcid.org/0000-0003-4031-4568http://orcid.org/0000-0003-1166-1982https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000002878https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000005961diana.caicedoc@campusucc.edu.cosandoval.john@correounivalle.edu.coramon.colmenaresq@ucc.edu.coluis.marmolejo@correounivalle.edu.copatricia.torres@correounivalle.edu.cos.heaven@soton.ac.ukhttps://scholar.google.com/citations?hl=es&user=wqyYGWAAAAAJ&view_op=list_works&gmla=AJsN-F7c3C8yvZxsKJpSjjRqX4WCFRXA_1437sB6Jbg5i0wkTtjgdvFfOhhmc9TXltl0H0K_m0OanqOI0e5WNZmq3F855Xl4BJy74Ghbn5ey5BZAh_AFw5GP4V84jHOs2jz1EsgWT2UQRE2WDjQ9rpy46hvQEgJhrn4Gpf5309lXf-d4G_vx8EfgiI0Q4EbQyA71LHzJOBUbsXqH8n1IYzENnvC3XzlJN0ZDBdySpMN12RFH3A8QiXw12 p.Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, CaliIngeniería IndustrialCalihttps://www.tandfonline.com/doi/full/10.1080/23311916.2019.1664862Cogent EngineeringAgudelo Vélez, M. I., Chavarro Bohorquez, D. A., Hernández Tasco, A., Niño Mendieta, A. M., Tovar Narváez, G.E. & Montenegro Trujillo,I. C. (2018). Green book 2030: national science and innovation policy for sustainable development. Bogotá, Colombia: Colciencias.Ahmadifar, M., Sartaj, M., & Abdallah, M. (2015). Investigating the performance of aerobic, semiaerobic, and anaerobic bioreactor landfills for MSW management in developing countries. J. Mater. Cycles Waste Manag., 18(4):703–714American Public Health Association/American Water Works Association/Water Environment Federation, APHA. (2005). Standard methods for the examination of water and wastewater.21st Edition. Washington, DC, USAASTM International, ASTM D5231-92. (2016). Standard test method for determination of the composition of unprocessed municipal solid waste. West Conshohocken, PA,USA: ASTM InternationalBarlaz, M., Ham, R., & Schaefer, D. (1989, Dec). Mass balance analysis of anaerobically decomposed refuse. Journal of Environmental Engineering, 115(6), 1088–1102. doi:10.1061/(ASCE)0733-9372(1989) 115:6(1088)BID. (2015). Estudio tecnologías alternativas de disposición final o aprovechamiento de residuos sólidos. Propuesta de ajuste al Decreto 838 de 2005. Bogotá, DC: Banco Interamericano de Desarrollo (BID).Bilgili, M. S., Demir, A., & Varank, G. (2009). Evaluation and modeling of biochemical methane potential (BMP) of landfilled solid waste: A pilot scale study. Bioresource Technology, 100(21), 4976–4980. doi:10.1016/j. biortech.2009.05.012Binner, E., & Zach, A. (1999). Laboratory tests describing the biological reactivity of pretreated residual wastes, In Proceedings of Symposium ORBIT 99 on Organic Recovery and Biological Treatment Symposium, Weimar, Germany.Boulanger, A., Pinet, E., Bouix, M., Bouchez, T., & Mansour, A. A. (2012). Effect of inoculum to substrate ratio (I/ S) on municipal solid waste anaerobic degradation kinetics and potential. Waste Management, 32(12), 2258–2265. doi:10.1016/j.wasman.2012.07.024Caicedo, D., Sandoval, J., & Whitting, K. (2016). An experimental study on the impact of two dimensional materials in waste disposal sites: What are the implications for engineered landfills? Sustainable Environment Research, 26(6), 255–261. doi:10.1016/j. serj.2016.08.001Caicedo-Concha, D. M., Sandoval-Cobo, J. J., & Whiting, K. (2016). An experimental study on the impact of two dimensional materials in waste disposal sites: What are the implications for engineered landfills? Sustainable Environment Research, 26(6), 255–261. doi:10.1016/j.serj.2016.08.001Campuzano, R., & González-Martínez, S. (2016). Characteristics of the organic fraction of municipal solid waste and methane production: A review. Waste Management, 54, 3–12. doi:10.1016/j. wasman.2016.05.016COLOMBIA, C.D. (2014). Ley 1715 de 2014, Regulación de la integración de las energías renovables no convencioanles al Sistema Energético Nacional. Diario Oficial No. 49.150. Imprenta Nacional: Bogotá D.CCossu, R., Lai, T., & Sandon, A. (2012). Standardization of BOD 5/COD ratio as a biological stability index for MSW. Waste Management, 32(8), 1503–1508. doi:10.1016/j.wasman.2012.04.001Cossu, R., & Raga, R. (2008). Test methods for assessing the biological stability of biodegradable waste. Waste Management, 28(2), 381–388. doi:10.1016/j. wasman.2007.01.014DNP. (2016). CONPES 3874. Pólítica Nacional para la Gestión Integral de Residuos Sólidos. Bogotá, DC: Departamento Nacional de Planeación (DNP).Eggleston, S., Buendia, L., Miwa, K., Ngara, T., & Tanabe, K., “IPCC 2008, 2006 IPCC Guidelines for National Greenhouse Gas Inventories,” 2008.EPA, U. S. (2014). Municipal solid waste generation, recycling, and disposal in the United States tables and figures for 2012,” Office of Resource Conservation and Recovery. Retrieved from http://www.epa.gov/epa waste/nonhaz/municipal/pubs/2012_msw_dat_tbls. pdf.Fei, F., Wen, Z., & De Clercq, D. (2019). Spatio-temporal estimation of landfill gas energy potential: A case study in China. Renewable and Sustainable Energy Reviews, 103, 217–226. doi:10.1016/j. rser.2018.12.036Francois, V., Feuillade, G., Skhiri, N., Lagier, T., & Matejka, G. (2006). Indicating the parameters of the state of degradation of municipal solid waste. Journal of Hazardous Materials, 137, 1008–1015. doi:10.1016/j. jhazmat.2006.03.026Garcia, J., Davies, S., Villa, R., Gomes, D. M., Coulon, F., & Wagland, S. T. (2016). Compositional analysis of excavated landfill samples and the determination of residual biogas potential of the organic fraction. Waste Management, 55, 336–344. doi:10.1016/j. wasman.2016.06.003Habitat, U. N. (2010). Solid Waste Management in the World’s Cities: Water and Sanitation in the World’s Cities 2010.Holliger, C., Alves, M., Andrade, D., Angelidaki, I., Astals, S., Baier, U., Bougrier, C., ... Wierinck, I. (2016). Towards a standardization of biomethane potential tests. Water Science and Technology, 74(11), 2515–2522.Hoornweg, D., & Bhada-Tata, P. (2012). What a waste: A global review of solid waste management. World Bank, Washington, DC.IPCC Intergovernmental Panel on Climate Change. 2014. Climate change 2014 impacts, adaptation, and vulnerability part B: Regional aspects.Ivan, C., María, T., Aura, V., Paola, A., & Mario, H. (2016). Anaerobic co-digestion of organic residues from different productive sectors in Colombia: Biomethanation potential assessment. Chemical Engineering Transactions, 49, 385–390Kaza, S., Yao, L., Bhada-Tata, P., & Van Woerden, F. (2018). What a waste 2.0: a global snapshot of solid waste management to 2050. World Bank PublicationsKelly, R. J., Shearer, B. D., Kim, J., Goldsmith, C. D., Hater, G. R., & Novak, J. T. (2006). Relationships between analytical methods utilized as tools in the evaluation of landfill waste stability. Waste Management, 26 (12), 1349–1356. doi:10.1016/j.wasman.2005.11.019Kim, H., & Townsend, T. G. (2012). Wet landfill decomposition rate determination using methane yield results for excavated waste samples. Waste Management, 32(7), 1427–1433. doi:10.1016/j. wasman.2012.03.017Knox, K., Braithwaite, P., Caine, M., & Croft, B. (2005). Brogborough landfill test cells: The final chapter. A study of landfill completion in relation to final storage quality (FSQ) criteria. In S. Margherita di Pula (ed.,) Sardinia 2005 – 10th International waste management and landfill symposium. Cagliari, Italy.Larochelle, L., Turner, M., & LaGiglia, M. (2012). Evaluation of NAMA opportunities in Colombia’s solid waste sector. Washington, DC: Center for clean air policy.Lima, R. M., Santos, A. H. M., Pereira, C. R. S., Flauzino, B. K., Pereira, A. C. O. S., Nogueira, F. J. H., Valverde, J. A. R. (2018). Spatially distributed potential of landfill biogas production and electric power generation in Brazil. Waste Management, 74, 323–334. doi:10.1016/j.wasman.2017.12.011Liu, G., Zhang, R., El-Mashad, H. M., & Dong, R. (2009). Effect of feed to inoculum ratios on biogas yields of food and green wastes. Bioresource Technology, 100 (21), 5103–5108. doi:10.1016/j.biortech.2009.03.081Machado, S., Carvalho, M. F., Gourc, J. P., Vilar, O. M., & Do Nascimento, J. C. F. (2009). Methane generation in tropical landfills: Simplified methods and field results. Waste Management, 29(1), 153–161. doi:10.1016/j. wasman.2008.02.017Machado, S. L., Karimpour-Fard, M., Shariatmadari, N., Carvalho, M. F., & Do Nascimento, J. C. F. (2010, Dec). Evaluation of the geotechnical properties of MSW in two Brazilian landfills. Waste Management, 30(12), 2579–2591. doi:10.1016/j.wasman.2010.07.019Ministerio de Desarrollo Económico de Colombia. (2000). Reglamento Técnico del Sector de Agua Potable y Saneamiento Básico- RAS 2000: Titulo F. Ministerio de Desarrollo Económico de Colombia.Pearse, L. F., Hettiaratchi, J. P., & Kumar, S. (2018). Towards developing a representative biochemical methane potential (BMP) assay for landfilled municipal solid waste – A review. Bioresource Technology, 254, 312–324. doi:10.1016/j.biortech.2018.01.069Pedraza, A., Cabrera, M., Duarte, M., Gutiérrez, M., Lamprea, P., & Lozano, R. (2005). Visión general del inventario nacional de emisiones de gases de efecto de invernadero. In Inventario nacional de emisiones de gases de efecto de invernadero 2002-2004. Segunda comunicación nacional ante la Convención Marco de las Naciones Unidas sobre el cambio climático (pp. 17–66). Bogotá, D. C: IDEAM..Piñas, J. A. V., Venturini, O. J., Lora, E. E. S., de Oliveira, M. A., & Roalcaba, O. D. C. (2016). Landfills for electricity generation from biogas production in Brazil: Comparison of LandGEM (EPA) and Biogas (Cetesb) models | Aterros sanitários para geração de energia elétrica a partir da produção de biogás no Brasil: Comparação dos modelos LandGEM (E. Rev. Bras. Estud. Popul., 33(1), 175–188. doi:10.20947/S0102- 309820160009Purmessur, B., & Surroop, D. (2019). Power generation using landfill gas generated from new cell at the existing landfill site. Journal of Environmental Chemical Engineering, 7(3), 103060. doi:10.1016/j. jece.2019.103060Quaghebeur, M., Laenen, B., Geysen, D., Nielsen, P., Pontikes, Y., Van Gerven, T., & Spooren, J. (2013). Characterization of landfilled materials: Screening of the enhanced landfill mining potential. Journal of Cleaner Production, 55, 72–83. doi:10.1016/j. jclepro.2012.06.012Raposo, F., De La Rubia, M. A., Fernández-Cegrí, V., & Borja, R. (2012). Anaerobic digestion of solid organic substrates in batch mode: An overview relating to methane yields and experimental procedures. Renewable and Sustainable Energy Reviews, 16(1), 861–877. doi:10.1016/j.rser.2011.09.008Reinhart, D. R., Faour, A. A., & You, H. (2005). First order kinetics gas generation model parameters for wet landfills. Washington, DC: US. Environmental protection agency.S. de S. P. D. Superservicios, “Informe de Disposición Final de Residuos Sólidos – 2017,” 2018.Scharff, H., van Zomeren, A., & van der Sloot, H. A. (2011). Landfill sustainability and aftercare completion criteria. Waste Manag. Res., 29(1), 30–40. doi:10.1177/ 0734242X10384310Shah, A. A., Hasan, F., Hameed, A., & Ahmed, S. (2008). Biological degradation of plastics: A comprehensive review. Biotechnology Advances, 26(3), 246–265. doi:10.1016/j.biotechadv.2007.12.005Sponza, D. T., & Aǧdaǧ, O. N. (2004). Impact of leachate recirculation and recirculation volume on stabilization of municipal solid wastes in simulated anaerobic bioreactors. Process Biochemistry, 39(12), 2157– 2165. doi:10.1016/j.procbio.2003.11.012Swati, M., Karthikeyan, O., Kurian, J., Visvanathan, C., & Nagendran, C. (2011). Pilot-scale simulation of landfill bioreactor and controlled dumping of fresh and partially stabilized municipal solid waste in a tropical developing country. Journal of Hazardous, Toxic, and Radioactive Waste, 15(October), 321–330. doi:10.1061/(ASCE)HZ.1944-8376.0000081Themelis, N. J., Elena, M., Barriga, D., Estevez, P., & Velasco, M. G., “Guidebook for the application of waste to energy technologies in Latin America and the Caribbean,” 2013.UNEP and ISWA. (2015). The Global Waste Management Outlook (GWMO).United Nations Department of Economic and Social Affairs (UN DESA). (2018). Sustainable Development Goals Report 2018. p. 64,USEPA/ISWA. (2012). International Best Practices Guide for Landfill Gas Energy Project. 10.1094/PDIS-11-11- 0999-PDNVelkushanova, W., Caicedo, K., Richards, D., & Powrie, D. J. (2009). A detailed characterisation of an MBT waste. In Sardinia 2009, Twelfth International Waste Management and Landfill Symposium.S. Margherita di Pula, Cagliari, ItalyVergara, S. E., Damgaard, A., & Gomez, D. (2016). The efficiency of informality: quantifying greenhouse gas reductions from informal recycling in Bogotá, Colombia. Journal of Industrial Ecology, 20(1), 107– 119. doi:10.1111/jiec.12257Wagland, S. T., Tyrrel, S. F., Godley, A., & Smith, R. (2010). Test methods to aid in the evaluation of the diversion of biodegradable municipal waste (BMW) from landfill. Waste Management, 30(5), 934–935. doi:10.1016/ j.wasman.2010.01.016Wilson, D. C., Rodic, L., Cowing, M. J., Velis, C. A., Whiteman, A. D., Scheinberg, A., … Oelz, B. (2015). ‘Wasteaware’ benchmark indicators for integrated sustainable waste management in cities. Waste Management, 35, 329–342. doi:10.1016/j. wasman.2014.10.006Xie, M., Aldenkortt, D., Wagner, J.-F., & Rettenberger, G. (2006). Effect of plastic fragments on hydraulic characteristics of pretreated municipal solid waste. Can. Geotech. J., 43(12), 1333–1343. doi:10.1139/t06-070Yang, N., Damgaard, A., Scheutz, C., Shao, L. M., & He, P. J. (2018). A comparison of chemical MSW compositional data between China and Denmark. Journal of Environmental Sciences, 74, 1–10. doi:10.1016/j. jes.2018.02.010Zhang, Y., Banks, C. J., & Heaven, S. (2012). Anaerobic digestion of two biodegradable municipal waste streams. Journal of Environmental Management, 104, 166–174. doi:10.1016/j.jenvman.2012.03.043Zheng, W., Lü, F., Bolyard, S. C., Shao, L., Reinhart, D. R., & He, P. (2015). Evaluation of monitoring indicators for the post-closure care of a landfill for MSW characterized with low lignin content. Waste Management, 36, 222–229. doi:10.1016/j.wasman.2014.10.031Zheng, W., Phoungthong, K., Lü, F., Shao, L.-M., & He, P.-J. (2013). Evaluation of a classification method for biodegradable solid wastes using anaerobic degradation parameters. Waste Management, 33(12), 2632–2640. doi:10.1016/j.wasman.2013.08.015Desarrollo sosteniblePotencial bioquímico de metanoPaíses en desarrolloResiduos sólidos urbanos envejecidosSustainable developmentBiochemical methane potentialBiogasDeveloping countriesAged municipal solid wasteThe potential of methane production using aged landfill waste in developing countries: a case of study in ColombiaArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINAL2019_Potential_methane_production.pdf2019_Potential_methane_production.pdfArtículoapplication/pdf1184571https://repository.ucc.edu.co/bitstreams/9d45fbe4-4162-4263-b8e6-7726797a893f/download7621f3a2cf67e93b8949ff804116dd30MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/2eaecebe-6822-40d6-b921-3f924cddaf5a/download3bce4f7ab09dfc588f126e1e36e98a45MD52THUMBNAIL2019_Potential_methane_production.pdf.jpg2019_Potential_methane_production.pdf.jpgGenerated Thumbnailimage/jpeg4578https://repository.ucc.edu.co/bitstreams/6cf0c489-17bb-481d-a8ea-238bce98dfc1/downloadbe33631fc68cb118069c683600e583a1MD53TEXT2019_Potential_methane_production.pdf.txt2019_Potential_methane_production.pdf.txtExtracted texttext/plain56841https://repository.ucc.edu.co/bitstreams/52105a81-f6c3-4c9d-90d9-5f7234a01682/download7911af123c854087fdbfac4d1cea99fcMD5420.500.12494/17458oai:repository.ucc.edu.co:20.500.12494/174582024-08-10 21:01:05.061restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=