Thermodynamic analysis and applications of the Abraham solvation parameter model in the study of the solubility of some sulfonamides

Se investigó la solubilidad de sulfadiazina (SD), sulfamerazina (SMR) y sulfametazina (SMT) en mezclas codisolventes de octanol + metanol a 278,15 K, 298,15 y 313,15 K. En todos los casos, la solubilidad más baja de cada fármaco se obtuvo en octanol puro a 278,15 K. La solubilidad máxima depende de...

Full description

Autores:
Blanco Márquez, Joaquín H
Quigua-Medina, Yina Andrea
García-Murillo, José Darwin
Castro-Camacho, Jennifer Katiusca
Ortiz, Claudia Patricia
Cerquera, Néstor Enrique
Delgado, Daniel Ricardo
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/28234
Acceso en línea:
https://doi.org/10.15446/rcciquifa.v49n1.87038
https://hdl.handle.net/20.500.12494/28234
Palabra clave:
Sulfonamidas
Solubilidad
Van’t Hoff
Modelo de Abraham
Concentración letal media
Sulfonamides
Solubility
Van’t Hoff
Abraham model
Lethal median molar concentration
Rights
openAccess
License
Atribución
id COOPER2_6cf6b4acaba6d4cf404b981d5c19c6ec
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/28234
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Thermodynamic analysis and applications of the Abraham solvation parameter model in the study of the solubility of some sulfonamides
title Thermodynamic analysis and applications of the Abraham solvation parameter model in the study of the solubility of some sulfonamides
spellingShingle Thermodynamic analysis and applications of the Abraham solvation parameter model in the study of the solubility of some sulfonamides
Sulfonamidas
Solubilidad
Van’t Hoff
Modelo de Abraham
Concentración letal media
Sulfonamides
Solubility
Van’t Hoff
Abraham model
Lethal median molar concentration
title_short Thermodynamic analysis and applications of the Abraham solvation parameter model in the study of the solubility of some sulfonamides
title_full Thermodynamic analysis and applications of the Abraham solvation parameter model in the study of the solubility of some sulfonamides
title_fullStr Thermodynamic analysis and applications of the Abraham solvation parameter model in the study of the solubility of some sulfonamides
title_full_unstemmed Thermodynamic analysis and applications of the Abraham solvation parameter model in the study of the solubility of some sulfonamides
title_sort Thermodynamic analysis and applications of the Abraham solvation parameter model in the study of the solubility of some sulfonamides
dc.creator.fl_str_mv Blanco Márquez, Joaquín H
Quigua-Medina, Yina Andrea
García-Murillo, José Darwin
Castro-Camacho, Jennifer Katiusca
Ortiz, Claudia Patricia
Cerquera, Néstor Enrique
Delgado, Daniel Ricardo
dc.contributor.author.none.fl_str_mv Blanco Márquez, Joaquín H
Quigua-Medina, Yina Andrea
García-Murillo, José Darwin
Castro-Camacho, Jennifer Katiusca
Ortiz, Claudia Patricia
Cerquera, Néstor Enrique
Delgado, Daniel Ricardo
dc.subject.spa.fl_str_mv Sulfonamidas
Solubilidad
Van’t Hoff
Modelo de Abraham
Concentración letal media
topic Sulfonamidas
Solubilidad
Van’t Hoff
Modelo de Abraham
Concentración letal media
Sulfonamides
Solubility
Van’t Hoff
Abraham model
Lethal median molar concentration
dc.subject.other.spa.fl_str_mv Sulfonamides
Solubility
Van’t Hoff
Abraham model
Lethal median molar concentration
description Se investigó la solubilidad de sulfadiazina (SD), sulfamerazina (SMR) y sulfametazina (SMT) en mezclas codisolventes de octanol + metanol a 278,15 K, 298,15 y 313,15 K. En todos los casos, la solubilidad más baja de cada fármaco se obtuvo en octanol puro a 278,15 K. La solubilidad máxima depende de la polaridad del fármaco, por lo que SMR y SMT alcanzaron su máxima solubilidad en mezclas cosolventes ricas en metanol. Las funciones termodinámicas de solución se calcularon a partir de los datos experimentales de solubilidad, utilizando las ecuaciones de van’t Hoff y Gibbs, siguiendo el enfoque propuesto por Krug et al. La entalpía de la solución es positiva en todos los casos, lo cual es una indicación del proceso endotérmico con un marcado favorecimiento entrópico. La solubilidad teórica y la concentración letal media se calcularon utilizando el modelo de Abraham.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-11-20T17:36:16Z
dc.date.available.none.fl_str_mv 2020-11-20T17:36:16Z
dc.date.issued.none.fl_str_mv 2020-01-01
dc.type.none.fl_str_mv Artículo
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 19096356
dc.identifier.uri.spa.fl_str_mv https://doi.org/10.15446/rcciquifa.v49n1.87038
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/28234
dc.identifier.bibliographicCitation.spa.fl_str_mv Blanco-Márquez, J. H., Quigua-Medina, Y. A., García-Murillo, J. D., Castro-Camacho, J. K., Ortiz, C. P., Cerquera, N. E., & Delgado, D. R. (2020). Análisis termodinámico y aplicaciones del modelo de parámetros de solvatación de Abraham en el estudio de la solubilidad de algunas sulfonamidas. Revista Colombiana De Ciencias Químico-Farmacéuticas, 49(1). https://doi.org/10.15446/rcciquifa.v49n1.87038
identifier_str_mv 19096356
Blanco-Márquez, J. H., Quigua-Medina, Y. A., García-Murillo, J. D., Castro-Camacho, J. K., Ortiz, C. P., Cerquera, N. E., & Delgado, D. R. (2020). Análisis termodinámico y aplicaciones del modelo de parámetros de solvatación de Abraham en el estudio de la solubilidad de algunas sulfonamidas. Revista Colombiana De Ciencias Químico-Farmacéuticas, 49(1). https://doi.org/10.15446/rcciquifa.v49n1.87038
url https://doi.org/10.15446/rcciquifa.v49n1.87038
https://hdl.handle.net/20.500.12494/28234
dc.relation.isversionof.spa.fl_str_mv https://revistas.unal.edu.co/index.php/rccquifa/article/view/87038
dc.relation.ispartofjournal.spa.fl_str_mv Revista Colombiana de Ciencias Químico-Farmacéuticas
dc.relation.references.spa.fl_str_mv R.J. Henry, The mode of action of sulfonamides, Bacteriol. Rev., 7, 175-262 (1943).
A. Auta, M.A. Hadi, E. Oga, E.O. Adewuyi, S.N. Abdu-Aguye, D. Adeloye, B. Strickland-Hodge, D.J. Morgan, Global access to antibiotics without prescription in community pharmacies: A systematic review and meta-analysis, J. Infect., 78, 8-18 (2018).
A.K. Sarmah, M.T. Meyer, A.B.A. Boxall, A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment, Chemosphere, 65, 725-759 (2006).
M. Lahtinen, J. Kudva, P. Hegde, K. Bhat, E. Kolehmainen, V. Nonappa, D. Naral, Synthesis, characterization, thermal and antimicrobial studies of N-substituted sulfanilamide derivatives, J. Mol. Struct., 1060, 280-290 (2014).
L. Puccetti, G. Fasolis, D. Vullo, Z.H. Chohan, A. Scozzafava, C.T. Supuran, Carbonic anhydrase inhibitors. Inhibition of cytosolic/tumor-associated carbonic anhydrase isozymes I, II, IX, and XII with Schiff’s bases incorporating chromone and aromatic sulfonamide moieties, and their zinc complexes, Bioorg. Med. Chem. Lett., 15, 3096-3101 (2005).
F. Carta, C.T. Supuran. Diuretics with carbonic anhydrase inhibitory action: A patent and literature review (2005-2013), Expert Opin. Ther. Pat., 23, 681-691 (2013).
F. Carta, L. Di Cesare Mannelli, M. Pinard, C. Ghelardini, A. Scozzafava, R. McKenna, C.T. Supuran, A class of sulfonamide carbonic anhydrase inhibitors with neuropathic pain modulating effects, Bioorg. Med. Chem., 23, 1828-1840 (2015).
C.T. Supuran, Carbonic anhydrases: Novel therapeutic applications for inhibitors and activators, Nat. Rev. Drug Discov., 7, 168-181 (2008).
J.H. Blanco-Márquez, D.I. Caviedes-Rubio, C.P. Ortiz, N.E. Cerquera, F. Martínez, D.R. Delgado, Thermodynamic analysis and preferential solvation of sulfamethazine in acetonitrile+ water cosolvent mixtures, Fluid Phase Equilib., 505, 112361 (2020).
D.I. Caviedes-Rubio, D.M. Camacho-Feria, D.R. Delgado, Tratamientos para la remoción de antibacteriales y agentes antimicrobiales presentes en aguas residuales. Revista Logos Ciencia & Tecnología, 9, 43-62 (2017).
A.M. Romero-Nieto, N.E. Cerquera, D.R. Delgado, Measurement and correlation of solubility of ethylparaben in pure and binary solvents and thermodynamic properties of solution, Rev. Colomb. Cienc. Quím. Farm., 48, 332-347 (2019).
T. Higuchi, K.A. Connors, Phase-solubility techniques. Advances in Analytical Chemistry and Instrumentation, vol. 4, John Wiley & Sons, Inc, New York, 1965.
D.M. Jiménez, Z.J. Cardenas, D.R. Delgado, M.Á. Peña, F. Martínez, Solubility temperature dependence and preferential solvation of sulfadiazine in 1, 4-dioxane+ water co-solvent mixtures, Fluid Phase Equilib., 397, 26-36 (2015).
D.R. Delgado, E.M. Mogollon-Waltero, C.P. Ortiz, M.Á. Peña, O.A. Almanza, F. Martinez, A. Jouyban, Enthalpy-entropy compensation analysis of the triclocarban dissolution process in some {1, 4-dioxane (1)+ water (2)} mixtures, J. Mol. Liq., 271, 522-529 (2018).
D.R. Delgado, F. Martínez, Solubility and preferential solvation of sulfadiazine in methanol+ water mixtures at several temperatures, Fluid Phase Equilib., 379, 128-138 (2015).
D.R. Delgado, F. Martínez, Solution thermodynamics and preferential solvation of sulfamerazine in methanol+ water mixtures, J. Solution Chem., 44(2), 360-377 (2015).
Y. Marcus, The Properties of solvents, John Wiley & Sons, New York, 1998.
D.R. Delgado, F. Martínez, Preferential solvation of some structurally related sulfonamides in 1-propanol+ water co-solvent mixtures, Phys. Chem. Liq., 53, 293-306 (2015).
A. Kristl, Thermodynamic investigation of the effect of the mutual miscibility of some higher alkanols and water on the partitioning and solubility of some guanine derivatives, J. Chem. Soc., Faraday Trans., 92, 1721-1724 (1996).
R.R. Krug, W.G. Hunter, R.A. Grieger, Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van’t Hoff and Arrhenius data, J. Phys. Chem., 80, 2335-2341 (1976).
R.R. Krug, W.G. Hunter, R.A. Grieger, Enthalpy-entropy compensation. 2. Separation of the chemical from the statistical effect, J. Phys. Chem., 80, 2341-2351 (1976).
J.H. Blanco-Márquez, C.P. Ortiz, N.E. Cerquera, F. Martínez, A. Jouyban, D.R. Delgado, Thermodynamic analysis of the solubility and preferential solvation of sulfamerazine in (acetonitrile+ water) cosolvent mixtures at different temperatures, J. Mol. Liq., 293, 111507 (2019).
D.R. Delgado, O.A. Almanza, F. Martínez, M.A. Peña, A. Jouyban, W.E. Acree Jr., Solution thermodynamics and preferential solvation of sulfamethazine in (methanol+ water) mixtures, J. Chem. Thermodyn., 97, 264-276 (2016).
D.R. Delgado, E.F. Vargas, F. Martínez, Thermodynamic study of the solubility of procaine HCl in some ethanol+ water cosolvent mixtures, J. Chem. Eng. Data, 55, 2900-2904 (2010).
I.P. Osorio, F. Martínez, D.R. Delgado, A. Jouyban, W.E Acree Jr., Solubility of sulfacetamide in aqueous propylene glycol mixtures: Measurement, correlation, dissolution thermodynamics, preferential solvation, and solute volumetric contribution at saturation, J. Mol. Liq., 297, 1118891 (2020).
D.R. Delgado, D.I. Caviedes-Rubio, C. Patricia Ortiz, Y.L. Parra-Pava, M.A. Peña, A. Jouyban, S.N. Mirheydari, F. Martínez, W.E. Acree Jr., Solubility of sulphadiazine in (acetonitrile+ water) mixtures: measurement, correlation, thermodynamics and preferential solvation, Phys. Chem. Liq., DOI: 10.1080/00319104.2019.1594227
R.A. Gutiérrez, D.R. Delgado, F. Martínez, Solution thermodynamics of lysine clonixinate in some ethanol+ water mixtures, Lat. Am. J. Pharm., 31, 226-234 (2012).
J.L. Gómez, G.A. Rodríguez, D.M. Cristancho, D.R. Delgado, F. Martínez, Solution thermodynamics of nimodipine in some PEG 400+ ethanol mixtures, Phys. Chem. Liq., 51, 651-662 (2013).
A.R. Holguín, D.R. Delgado, F. Martínez, Thermodynamic study of the solubility of triclocarban in ethanol+ propylene glycol mixtures, Quím. Nova, 35, 280-285 (2012).
D.I. Caviedes-Rubio, G.A. Rodríguez-Rodríguez, D.R. Delgado, Thermodynamic study of the solubility of naproxen in some 2-propanol+ water mixtures, Revista Facultad de Ciencias Básicas, 12, 45-55 (2016).
G.L. Perlovich, S.V. Kurkov, A.N. Kinchin, A. Bauer-Brandl, Thermodynamics of solutions III: Comparison of the solvation of (+)-naproxen with other NSAIDs, Eur. J. Pharm. Biopharm., 57, 411-420 (2004).
E.A. Cantillo, D.R. Delgado, F. Martinez, Solution thermodynamics of indomethacin in ethanol+ propylene glycol mixtures, J. Mol. Liq., 181, 62-67 (2013).
D.R. Delgado, F. Martínez, Thermodynamic analysis of the solubility of propranolol-HCl in ethanol+ water mixtures, Lat. Am. J. Pharm., 30, 89-95 (2011).
D.R. Delgado, A.R. Holguin, F. Martinez, Solution thermodynamics of triclosan and triclocarban in some volatile organic solvents, Vitae, 19, 79-92 (2012).
K.C. Mercado, G.A. Rodríguez, D.R Delgado, F. Martínez, A. Romdhani, Solution thermodynamics of methocarbamol in some ethanol+ water mixtures. Quím. Nova, 35, 1967-1972 (2012).
L.S. Bigman, Y. Levy, Entropy-enthalpy compensation in conjugated proteins, Chem. Phys., 514, 95-105 (2018)
P. Bustamante, S. Romero, M.A. Peña, M. Escalera, A. Reillo, Nonlinear enthalpy-entropy compensation for the solubility of drugs in solvent mixtures: Paracetamol, acetanilide and nalidixic acid in dioxane-water, J. Pharm. Sci., 87, 1590-1596 (1998).
F. Martínez, M.Á. Peña, P. Bustamante, Thermodynamic analysis and enthalpy-entropy compensation for the solubility of indomethacin in aqueous and non-aqueous mixtures, Fluid Phase Equilib., 308, 98-106 (2011).
E. Tomlinson, Enthalpy-entropy compensation analysis of pharmaceutical, biochemical, and biological systems, Int. J. Pharm., 13, 115-144 (1983).
A.M. Romero-Nieto, N.E. Cerquera, F. Martínez, D.R. Delgado, Thermodynamic study of the solubility of ethylparaben in acetonitrile + water cosolvent mixtures at different temperatures, J. Mol. Liq., 287, 110894 (2019).
N. Ulrich, S. Endo, T.N. Brown, N. Watanabe, G. Bronner, M.H. Abraham, K.-U. Goss, UFZ-LSER database v 3.2.1 [Internet], Leipzig, Germany, Helmholtz Centre for Environmental Research-UFZ. 2017 [accessed on 09.04.2020], available from http://www.ufz.de/lserd
D. Yue, W.E. Acree Jr., M.H. Abraham, Applications of Abraham solvation parameter model: Estimation of the lethal median molar concentration of the antiepileptic drug levetiracetam towards aquatic organisms from measured solubility data, Phys. Chem. Liq., DOI: 10.1080/00319104.2019.1584801.
F. Martínez, A. Gómez, Thermodynamic study of the solubility of some sulfonamides in octanol, water, and the mutually saturated solvents, J. Solution Chem., 30, 909-923 (2001).
K.R. Hoover, W.E. Acree Jr, M.H. Abraham. Chemical toxicity correlations for several fish species based on the Abraham solvation parameter model, Chem. Res. Toxicol., 18, 1497-1505 (2005).
K.R. Hoover, K.B. Flanagan, W.E. Acree, Jr., M.H. Abraham, Chemical toxicity correlations for several protozoas, bacteria, and water fleas based on the Abraham solvation parameter model, J. Environ. Eng. Sci., 6, 165-174 (2007).
dc.rights.license.none.fl_str_mv Atribución
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv p. 234-255
dc.coverage.temporal.spa.fl_str_mv 49
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, Neiva
Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Ingeniería Industrial
dc.publisher.place.spa.fl_str_mv Neiva
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/3e8ad7fc-1c07-4373-b4e3-cc2250235994/download
https://repository.ucc.edu.co/bitstreams/c0a732f6-dc38-4345-bc4a-809bd4c5d392/download
https://repository.ucc.edu.co/bitstreams/a7cfc23f-b060-4878-a1fa-a4fccaf89440/download
https://repository.ucc.edu.co/bitstreams/361c3045-a178-4908-9c9d-2185a6c7114a/download
bitstream.checksum.fl_str_mv 3bce4f7ab09dfc588f126e1e36e98a45
e3dbf839d98dd71cb3f1bc589852f0fa
60c4121cfcf55c45da511ff0734215b3
f7b3a8bee2bf9ae479ea4bb68d5e7c1c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814246984323694592
spelling Blanco Márquez, Joaquín H Quigua-Medina, Yina AndreaGarcía-Murillo, José DarwinCastro-Camacho, Jennifer KatiuscaOrtiz, Claudia PatriciaCerquera, Néstor EnriqueDelgado, Daniel Ricardo492020-11-20T17:36:16Z2020-11-20T17:36:16Z2020-01-0119096356https://doi.org/10.15446/rcciquifa.v49n1.87038https://hdl.handle.net/20.500.12494/28234Blanco-Márquez, J. H., Quigua-Medina, Y. A., García-Murillo, J. D., Castro-Camacho, J. K., Ortiz, C. P., Cerquera, N. E., & Delgado, D. R. (2020). Análisis termodinámico y aplicaciones del modelo de parámetros de solvatación de Abraham en el estudio de la solubilidad de algunas sulfonamidas. Revista Colombiana De Ciencias Químico-Farmacéuticas, 49(1). https://doi.org/10.15446/rcciquifa.v49n1.87038Se investigó la solubilidad de sulfadiazina (SD), sulfamerazina (SMR) y sulfametazina (SMT) en mezclas codisolventes de octanol + metanol a 278,15 K, 298,15 y 313,15 K. En todos los casos, la solubilidad más baja de cada fármaco se obtuvo en octanol puro a 278,15 K. La solubilidad máxima depende de la polaridad del fármaco, por lo que SMR y SMT alcanzaron su máxima solubilidad en mezclas cosolventes ricas en metanol. Las funciones termodinámicas de solución se calcularon a partir de los datos experimentales de solubilidad, utilizando las ecuaciones de van’t Hoff y Gibbs, siguiendo el enfoque propuesto por Krug et al. La entalpía de la solución es positiva en todos los casos, lo cual es una indicación del proceso endotérmico con un marcado favorecimiento entrópico. La solubilidad teórica y la concentración letal media se calcularon utilizando el modelo de Abraham.Solubility of sulfadiazine (SD), sulfamerazine (SMR) and sulfamethazine (SMT) in cosolvent mixtures octanol+methanol was investigated to 278.15 K, 298.15 and 313.15 K. In all cases, the lowest solubility of each drug was obtained in pure octanol at 278.15 K. The maximum solubility depends on the polarity of the drug, thus SMR and SMT reached their maximum solubility in cosolvent mixtures methanol-rich. The solution thermodynamic functions were calculated from the experimental solubility data, using the van’t Hoff and Gibbs equations, following the approach proposed by Krug et al. The enthalpy of solution is positive in all cases, which is an indication of the endothermic process with a marked entropic favor. Theoretical solubility and mean lethal concentration were calculated using the Abraham model.http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001402116https://orcid.org/0000-0002-4835-9739https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000004151danielr.delgado@campusucc.edu.cohttps://scholar.google.es/citations?user=OW0mejcAAAAJ&hl=esp. 234-255Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, NeivaUniversidad Nacional de ColombiaIngeniería IndustrialNeivahttps://revistas.unal.edu.co/index.php/rccquifa/article/view/87038Revista Colombiana de Ciencias Químico-FarmacéuticasR.J. Henry, The mode of action of sulfonamides, Bacteriol. Rev., 7, 175-262 (1943).A. Auta, M.A. Hadi, E. Oga, E.O. Adewuyi, S.N. Abdu-Aguye, D. Adeloye, B. Strickland-Hodge, D.J. Morgan, Global access to antibiotics without prescription in community pharmacies: A systematic review and meta-analysis, J. Infect., 78, 8-18 (2018).A.K. Sarmah, M.T. Meyer, A.B.A. Boxall, A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment, Chemosphere, 65, 725-759 (2006).M. Lahtinen, J. Kudva, P. Hegde, K. Bhat, E. Kolehmainen, V. Nonappa, D. Naral, Synthesis, characterization, thermal and antimicrobial studies of N-substituted sulfanilamide derivatives, J. Mol. Struct., 1060, 280-290 (2014).L. Puccetti, G. Fasolis, D. Vullo, Z.H. Chohan, A. Scozzafava, C.T. Supuran, Carbonic anhydrase inhibitors. Inhibition of cytosolic/tumor-associated carbonic anhydrase isozymes I, II, IX, and XII with Schiff’s bases incorporating chromone and aromatic sulfonamide moieties, and their zinc complexes, Bioorg. Med. Chem. Lett., 15, 3096-3101 (2005).F. Carta, C.T. Supuran. Diuretics with carbonic anhydrase inhibitory action: A patent and literature review (2005-2013), Expert Opin. Ther. Pat., 23, 681-691 (2013).F. Carta, L. Di Cesare Mannelli, M. Pinard, C. Ghelardini, A. Scozzafava, R. McKenna, C.T. Supuran, A class of sulfonamide carbonic anhydrase inhibitors with neuropathic pain modulating effects, Bioorg. Med. Chem., 23, 1828-1840 (2015).C.T. Supuran, Carbonic anhydrases: Novel therapeutic applications for inhibitors and activators, Nat. Rev. Drug Discov., 7, 168-181 (2008).J.H. Blanco-Márquez, D.I. Caviedes-Rubio, C.P. Ortiz, N.E. Cerquera, F. Martínez, D.R. Delgado, Thermodynamic analysis and preferential solvation of sulfamethazine in acetonitrile+ water cosolvent mixtures, Fluid Phase Equilib., 505, 112361 (2020).D.I. Caviedes-Rubio, D.M. Camacho-Feria, D.R. Delgado, Tratamientos para la remoción de antibacteriales y agentes antimicrobiales presentes en aguas residuales. Revista Logos Ciencia & Tecnología, 9, 43-62 (2017).A.M. Romero-Nieto, N.E. Cerquera, D.R. Delgado, Measurement and correlation of solubility of ethylparaben in pure and binary solvents and thermodynamic properties of solution, Rev. Colomb. Cienc. Quím. Farm., 48, 332-347 (2019).T. Higuchi, K.A. Connors, Phase-solubility techniques. Advances in Analytical Chemistry and Instrumentation, vol. 4, John Wiley & Sons, Inc, New York, 1965.D.M. Jiménez, Z.J. Cardenas, D.R. Delgado, M.Á. Peña, F. Martínez, Solubility temperature dependence and preferential solvation of sulfadiazine in 1, 4-dioxane+ water co-solvent mixtures, Fluid Phase Equilib., 397, 26-36 (2015).D.R. Delgado, E.M. Mogollon-Waltero, C.P. Ortiz, M.Á. Peña, O.A. Almanza, F. Martinez, A. Jouyban, Enthalpy-entropy compensation analysis of the triclocarban dissolution process in some {1, 4-dioxane (1)+ water (2)} mixtures, J. Mol. Liq., 271, 522-529 (2018).D.R. Delgado, F. Martínez, Solubility and preferential solvation of sulfadiazine in methanol+ water mixtures at several temperatures, Fluid Phase Equilib., 379, 128-138 (2015).D.R. Delgado, F. Martínez, Solution thermodynamics and preferential solvation of sulfamerazine in methanol+ water mixtures, J. Solution Chem., 44(2), 360-377 (2015).Y. Marcus, The Properties of solvents, John Wiley & Sons, New York, 1998.D.R. Delgado, F. Martínez, Preferential solvation of some structurally related sulfonamides in 1-propanol+ water co-solvent mixtures, Phys. Chem. Liq., 53, 293-306 (2015).A. Kristl, Thermodynamic investigation of the effect of the mutual miscibility of some higher alkanols and water on the partitioning and solubility of some guanine derivatives, J. Chem. Soc., Faraday Trans., 92, 1721-1724 (1996).R.R. Krug, W.G. Hunter, R.A. Grieger, Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van’t Hoff and Arrhenius data, J. Phys. Chem., 80, 2335-2341 (1976).R.R. Krug, W.G. Hunter, R.A. Grieger, Enthalpy-entropy compensation. 2. Separation of the chemical from the statistical effect, J. Phys. Chem., 80, 2341-2351 (1976).J.H. Blanco-Márquez, C.P. Ortiz, N.E. Cerquera, F. Martínez, A. Jouyban, D.R. Delgado, Thermodynamic analysis of the solubility and preferential solvation of sulfamerazine in (acetonitrile+ water) cosolvent mixtures at different temperatures, J. Mol. Liq., 293, 111507 (2019).D.R. Delgado, O.A. Almanza, F. Martínez, M.A. Peña, A. Jouyban, W.E. Acree Jr., Solution thermodynamics and preferential solvation of sulfamethazine in (methanol+ water) mixtures, J. Chem. Thermodyn., 97, 264-276 (2016).D.R. Delgado, E.F. Vargas, F. Martínez, Thermodynamic study of the solubility of procaine HCl in some ethanol+ water cosolvent mixtures, J. Chem. Eng. Data, 55, 2900-2904 (2010).I.P. Osorio, F. Martínez, D.R. Delgado, A. Jouyban, W.E Acree Jr., Solubility of sulfacetamide in aqueous propylene glycol mixtures: Measurement, correlation, dissolution thermodynamics, preferential solvation, and solute volumetric contribution at saturation, J. Mol. Liq., 297, 1118891 (2020).D.R. Delgado, D.I. Caviedes-Rubio, C. Patricia Ortiz, Y.L. Parra-Pava, M.A. Peña, A. Jouyban, S.N. Mirheydari, F. Martínez, W.E. Acree Jr., Solubility of sulphadiazine in (acetonitrile+ water) mixtures: measurement, correlation, thermodynamics and preferential solvation, Phys. Chem. Liq., DOI: 10.1080/00319104.2019.1594227R.A. Gutiérrez, D.R. Delgado, F. Martínez, Solution thermodynamics of lysine clonixinate in some ethanol+ water mixtures, Lat. Am. J. Pharm., 31, 226-234 (2012).J.L. Gómez, G.A. Rodríguez, D.M. Cristancho, D.R. Delgado, F. Martínez, Solution thermodynamics of nimodipine in some PEG 400+ ethanol mixtures, Phys. Chem. Liq., 51, 651-662 (2013).A.R. Holguín, D.R. Delgado, F. Martínez, Thermodynamic study of the solubility of triclocarban in ethanol+ propylene glycol mixtures, Quím. Nova, 35, 280-285 (2012).D.I. Caviedes-Rubio, G.A. Rodríguez-Rodríguez, D.R. Delgado, Thermodynamic study of the solubility of naproxen in some 2-propanol+ water mixtures, Revista Facultad de Ciencias Básicas, 12, 45-55 (2016).G.L. Perlovich, S.V. Kurkov, A.N. Kinchin, A. Bauer-Brandl, Thermodynamics of solutions III: Comparison of the solvation of (+)-naproxen with other NSAIDs, Eur. J. Pharm. Biopharm., 57, 411-420 (2004).E.A. Cantillo, D.R. Delgado, F. Martinez, Solution thermodynamics of indomethacin in ethanol+ propylene glycol mixtures, J. Mol. Liq., 181, 62-67 (2013).D.R. Delgado, F. Martínez, Thermodynamic analysis of the solubility of propranolol-HCl in ethanol+ water mixtures, Lat. Am. J. Pharm., 30, 89-95 (2011).D.R. Delgado, A.R. Holguin, F. Martinez, Solution thermodynamics of triclosan and triclocarban in some volatile organic solvents, Vitae, 19, 79-92 (2012).K.C. Mercado, G.A. Rodríguez, D.R Delgado, F. Martínez, A. Romdhani, Solution thermodynamics of methocarbamol in some ethanol+ water mixtures. Quím. Nova, 35, 1967-1972 (2012).L.S. Bigman, Y. Levy, Entropy-enthalpy compensation in conjugated proteins, Chem. Phys., 514, 95-105 (2018)P. Bustamante, S. Romero, M.A. Peña, M. Escalera, A. Reillo, Nonlinear enthalpy-entropy compensation for the solubility of drugs in solvent mixtures: Paracetamol, acetanilide and nalidixic acid in dioxane-water, J. Pharm. Sci., 87, 1590-1596 (1998).F. Martínez, M.Á. Peña, P. Bustamante, Thermodynamic analysis and enthalpy-entropy compensation for the solubility of indomethacin in aqueous and non-aqueous mixtures, Fluid Phase Equilib., 308, 98-106 (2011).E. Tomlinson, Enthalpy-entropy compensation analysis of pharmaceutical, biochemical, and biological systems, Int. J. Pharm., 13, 115-144 (1983).A.M. Romero-Nieto, N.E. Cerquera, F. Martínez, D.R. Delgado, Thermodynamic study of the solubility of ethylparaben in acetonitrile + water cosolvent mixtures at different temperatures, J. Mol. Liq., 287, 110894 (2019).N. Ulrich, S. Endo, T.N. Brown, N. Watanabe, G. Bronner, M.H. Abraham, K.-U. Goss, UFZ-LSER database v 3.2.1 [Internet], Leipzig, Germany, Helmholtz Centre for Environmental Research-UFZ. 2017 [accessed on 09.04.2020], available from http://www.ufz.de/lserdD. Yue, W.E. Acree Jr., M.H. Abraham, Applications of Abraham solvation parameter model: Estimation of the lethal median molar concentration of the antiepileptic drug levetiracetam towards aquatic organisms from measured solubility data, Phys. Chem. Liq., DOI: 10.1080/00319104.2019.1584801.F. Martínez, A. Gómez, Thermodynamic study of the solubility of some sulfonamides in octanol, water, and the mutually saturated solvents, J. Solution Chem., 30, 909-923 (2001).K.R. Hoover, W.E. Acree Jr, M.H. Abraham. Chemical toxicity correlations for several fish species based on the Abraham solvation parameter model, Chem. Res. Toxicol., 18, 1497-1505 (2005).K.R. Hoover, K.B. Flanagan, W.E. Acree, Jr., M.H. Abraham, Chemical toxicity correlations for several protozoas, bacteria, and water fleas based on the Abraham solvation parameter model, J. Environ. Eng. Sci., 6, 165-174 (2007).SulfonamidasSolubilidadVan’t HoffModelo de AbrahamConcentración letal mediaSulfonamidesSolubilityVan’t HoffAbraham modelLethal median molar concentrationThermodynamic analysis and applications of the Abraham solvation parameter model in the study of the solubility of some sulfonamidesArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/3e8ad7fc-1c07-4373-b4e3-cc2250235994/download3bce4f7ab09dfc588f126e1e36e98a45MD52ORIGINAL2020_Abraham_solvation_sulfonamides.pdf2020_Abraham_solvation_sulfonamides.pdfArtículo científico Capplication/pdf821398https://repository.ucc.edu.co/bitstreams/c0a732f6-dc38-4345-bc4a-809bd4c5d392/downloade3dbf839d98dd71cb3f1bc589852f0faMD51THUMBNAIL2020_Abraham_solvation_sulfonamides.pdf.jpg2020_Abraham_solvation_sulfonamides.pdf.jpgGenerated Thumbnailimage/jpeg5219https://repository.ucc.edu.co/bitstreams/a7cfc23f-b060-4878-a1fa-a4fccaf89440/download60c4121cfcf55c45da511ff0734215b3MD53TEXT2020_Abraham_solvation_sulfonamides.pdf.txt2020_Abraham_solvation_sulfonamides.pdf.txtExtracted texttext/plain42350https://repository.ucc.edu.co/bitstreams/361c3045-a178-4908-9c9d-2185a6c7114a/downloadf7b3a8bee2bf9ae479ea4bb68d5e7c1cMD5420.500.12494/28234oai:repository.ucc.edu.co:20.500.12494/282342024-08-10 21:00:52.916restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=