Thermodynamic analysis and applications of the Abraham solvation parameter model in the study of the solubility of some sulfonamides
Se investigó la solubilidad de sulfadiazina (SD), sulfamerazina (SMR) y sulfametazina (SMT) en mezclas codisolventes de octanol + metanol a 278,15 K, 298,15 y 313,15 K. En todos los casos, la solubilidad más baja de cada fármaco se obtuvo en octanol puro a 278,15 K. La solubilidad máxima depende de...
- Autores:
-
Blanco Márquez, Joaquín H
Quigua-Medina, Yina Andrea
García-Murillo, José Darwin
Castro-Camacho, Jennifer Katiusca
Ortiz, Claudia Patricia
Cerquera, Néstor Enrique
Delgado, Daniel Ricardo
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/28234
- Acceso en línea:
- https://doi.org/10.15446/rcciquifa.v49n1.87038
https://hdl.handle.net/20.500.12494/28234
- Palabra clave:
- Sulfonamidas
Solubilidad
Van’t Hoff
Modelo de Abraham
Concentración letal media
Sulfonamides
Solubility
Van’t Hoff
Abraham model
Lethal median molar concentration
- Rights
- openAccess
- License
- Atribución
id |
COOPER2_6cf6b4acaba6d4cf404b981d5c19c6ec |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/28234 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Thermodynamic analysis and applications of the Abraham solvation parameter model in the study of the solubility of some sulfonamides |
title |
Thermodynamic analysis and applications of the Abraham solvation parameter model in the study of the solubility of some sulfonamides |
spellingShingle |
Thermodynamic analysis and applications of the Abraham solvation parameter model in the study of the solubility of some sulfonamides Sulfonamidas Solubilidad Van’t Hoff Modelo de Abraham Concentración letal media Sulfonamides Solubility Van’t Hoff Abraham model Lethal median molar concentration |
title_short |
Thermodynamic analysis and applications of the Abraham solvation parameter model in the study of the solubility of some sulfonamides |
title_full |
Thermodynamic analysis and applications of the Abraham solvation parameter model in the study of the solubility of some sulfonamides |
title_fullStr |
Thermodynamic analysis and applications of the Abraham solvation parameter model in the study of the solubility of some sulfonamides |
title_full_unstemmed |
Thermodynamic analysis and applications of the Abraham solvation parameter model in the study of the solubility of some sulfonamides |
title_sort |
Thermodynamic analysis and applications of the Abraham solvation parameter model in the study of the solubility of some sulfonamides |
dc.creator.fl_str_mv |
Blanco Márquez, Joaquín H Quigua-Medina, Yina Andrea García-Murillo, José Darwin Castro-Camacho, Jennifer Katiusca Ortiz, Claudia Patricia Cerquera, Néstor Enrique Delgado, Daniel Ricardo |
dc.contributor.author.none.fl_str_mv |
Blanco Márquez, Joaquín H Quigua-Medina, Yina Andrea García-Murillo, José Darwin Castro-Camacho, Jennifer Katiusca Ortiz, Claudia Patricia Cerquera, Néstor Enrique Delgado, Daniel Ricardo |
dc.subject.spa.fl_str_mv |
Sulfonamidas Solubilidad Van’t Hoff Modelo de Abraham Concentración letal media |
topic |
Sulfonamidas Solubilidad Van’t Hoff Modelo de Abraham Concentración letal media Sulfonamides Solubility Van’t Hoff Abraham model Lethal median molar concentration |
dc.subject.other.spa.fl_str_mv |
Sulfonamides Solubility Van’t Hoff Abraham model Lethal median molar concentration |
description |
Se investigó la solubilidad de sulfadiazina (SD), sulfamerazina (SMR) y sulfametazina (SMT) en mezclas codisolventes de octanol + metanol a 278,15 K, 298,15 y 313,15 K. En todos los casos, la solubilidad más baja de cada fármaco se obtuvo en octanol puro a 278,15 K. La solubilidad máxima depende de la polaridad del fármaco, por lo que SMR y SMT alcanzaron su máxima solubilidad en mezclas cosolventes ricas en metanol. Las funciones termodinámicas de solución se calcularon a partir de los datos experimentales de solubilidad, utilizando las ecuaciones de van’t Hoff y Gibbs, siguiendo el enfoque propuesto por Krug et al. La entalpía de la solución es positiva en todos los casos, lo cual es una indicación del proceso endotérmico con un marcado favorecimiento entrópico. La solubilidad teórica y la concentración letal media se calcularon utilizando el modelo de Abraham. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-11-20T17:36:16Z |
dc.date.available.none.fl_str_mv |
2020-11-20T17:36:16Z |
dc.date.issued.none.fl_str_mv |
2020-01-01 |
dc.type.none.fl_str_mv |
Artículo |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
19096356 |
dc.identifier.uri.spa.fl_str_mv |
https://doi.org/10.15446/rcciquifa.v49n1.87038 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/28234 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Blanco-Márquez, J. H., Quigua-Medina, Y. A., García-Murillo, J. D., Castro-Camacho, J. K., Ortiz, C. P., Cerquera, N. E., & Delgado, D. R. (2020). Análisis termodinámico y aplicaciones del modelo de parámetros de solvatación de Abraham en el estudio de la solubilidad de algunas sulfonamidas. Revista Colombiana De Ciencias Químico-Farmacéuticas, 49(1). https://doi.org/10.15446/rcciquifa.v49n1.87038 |
identifier_str_mv |
19096356 Blanco-Márquez, J. H., Quigua-Medina, Y. A., García-Murillo, J. D., Castro-Camacho, J. K., Ortiz, C. P., Cerquera, N. E., & Delgado, D. R. (2020). Análisis termodinámico y aplicaciones del modelo de parámetros de solvatación de Abraham en el estudio de la solubilidad de algunas sulfonamidas. Revista Colombiana De Ciencias Químico-Farmacéuticas, 49(1). https://doi.org/10.15446/rcciquifa.v49n1.87038 |
url |
https://doi.org/10.15446/rcciquifa.v49n1.87038 https://hdl.handle.net/20.500.12494/28234 |
dc.relation.isversionof.spa.fl_str_mv |
https://revistas.unal.edu.co/index.php/rccquifa/article/view/87038 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Revista Colombiana de Ciencias Químico-Farmacéuticas |
dc.relation.references.spa.fl_str_mv |
R.J. Henry, The mode of action of sulfonamides, Bacteriol. Rev., 7, 175-262 (1943). A. Auta, M.A. Hadi, E. Oga, E.O. Adewuyi, S.N. Abdu-Aguye, D. Adeloye, B. Strickland-Hodge, D.J. Morgan, Global access to antibiotics without prescription in community pharmacies: A systematic review and meta-analysis, J. Infect., 78, 8-18 (2018). A.K. Sarmah, M.T. Meyer, A.B.A. Boxall, A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment, Chemosphere, 65, 725-759 (2006). M. Lahtinen, J. Kudva, P. Hegde, K. Bhat, E. Kolehmainen, V. Nonappa, D. Naral, Synthesis, characterization, thermal and antimicrobial studies of N-substituted sulfanilamide derivatives, J. Mol. Struct., 1060, 280-290 (2014). L. Puccetti, G. Fasolis, D. Vullo, Z.H. Chohan, A. Scozzafava, C.T. Supuran, Carbonic anhydrase inhibitors. Inhibition of cytosolic/tumor-associated carbonic anhydrase isozymes I, II, IX, and XII with Schiff’s bases incorporating chromone and aromatic sulfonamide moieties, and their zinc complexes, Bioorg. Med. Chem. Lett., 15, 3096-3101 (2005). F. Carta, C.T. Supuran. Diuretics with carbonic anhydrase inhibitory action: A patent and literature review (2005-2013), Expert Opin. Ther. Pat., 23, 681-691 (2013). F. Carta, L. Di Cesare Mannelli, M. Pinard, C. Ghelardini, A. Scozzafava, R. McKenna, C.T. Supuran, A class of sulfonamide carbonic anhydrase inhibitors with neuropathic pain modulating effects, Bioorg. Med. Chem., 23, 1828-1840 (2015). C.T. Supuran, Carbonic anhydrases: Novel therapeutic applications for inhibitors and activators, Nat. Rev. Drug Discov., 7, 168-181 (2008). J.H. Blanco-Márquez, D.I. Caviedes-Rubio, C.P. Ortiz, N.E. Cerquera, F. Martínez, D.R. Delgado, Thermodynamic analysis and preferential solvation of sulfamethazine in acetonitrile+ water cosolvent mixtures, Fluid Phase Equilib., 505, 112361 (2020). D.I. Caviedes-Rubio, D.M. Camacho-Feria, D.R. Delgado, Tratamientos para la remoción de antibacteriales y agentes antimicrobiales presentes en aguas residuales. Revista Logos Ciencia & Tecnología, 9, 43-62 (2017). A.M. Romero-Nieto, N.E. Cerquera, D.R. Delgado, Measurement and correlation of solubility of ethylparaben in pure and binary solvents and thermodynamic properties of solution, Rev. Colomb. Cienc. Quím. Farm., 48, 332-347 (2019). T. Higuchi, K.A. Connors, Phase-solubility techniques. Advances in Analytical Chemistry and Instrumentation, vol. 4, John Wiley & Sons, Inc, New York, 1965. D.M. Jiménez, Z.J. Cardenas, D.R. Delgado, M.Á. Peña, F. Martínez, Solubility temperature dependence and preferential solvation of sulfadiazine in 1, 4-dioxane+ water co-solvent mixtures, Fluid Phase Equilib., 397, 26-36 (2015). D.R. Delgado, E.M. Mogollon-Waltero, C.P. Ortiz, M.Á. Peña, O.A. Almanza, F. Martinez, A. Jouyban, Enthalpy-entropy compensation analysis of the triclocarban dissolution process in some {1, 4-dioxane (1)+ water (2)} mixtures, J. Mol. Liq., 271, 522-529 (2018). D.R. Delgado, F. Martínez, Solubility and preferential solvation of sulfadiazine in methanol+ water mixtures at several temperatures, Fluid Phase Equilib., 379, 128-138 (2015). D.R. Delgado, F. Martínez, Solution thermodynamics and preferential solvation of sulfamerazine in methanol+ water mixtures, J. Solution Chem., 44(2), 360-377 (2015). Y. Marcus, The Properties of solvents, John Wiley & Sons, New York, 1998. D.R. Delgado, F. Martínez, Preferential solvation of some structurally related sulfonamides in 1-propanol+ water co-solvent mixtures, Phys. Chem. Liq., 53, 293-306 (2015). A. Kristl, Thermodynamic investigation of the effect of the mutual miscibility of some higher alkanols and water on the partitioning and solubility of some guanine derivatives, J. Chem. Soc., Faraday Trans., 92, 1721-1724 (1996). R.R. Krug, W.G. Hunter, R.A. Grieger, Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van’t Hoff and Arrhenius data, J. Phys. Chem., 80, 2335-2341 (1976). R.R. Krug, W.G. Hunter, R.A. Grieger, Enthalpy-entropy compensation. 2. Separation of the chemical from the statistical effect, J. Phys. Chem., 80, 2341-2351 (1976). J.H. Blanco-Márquez, C.P. Ortiz, N.E. Cerquera, F. Martínez, A. Jouyban, D.R. Delgado, Thermodynamic analysis of the solubility and preferential solvation of sulfamerazine in (acetonitrile+ water) cosolvent mixtures at different temperatures, J. Mol. Liq., 293, 111507 (2019). D.R. Delgado, O.A. Almanza, F. Martínez, M.A. Peña, A. Jouyban, W.E. Acree Jr., Solution thermodynamics and preferential solvation of sulfamethazine in (methanol+ water) mixtures, J. Chem. Thermodyn., 97, 264-276 (2016). D.R. Delgado, E.F. Vargas, F. Martínez, Thermodynamic study of the solubility of procaine HCl in some ethanol+ water cosolvent mixtures, J. Chem. Eng. Data, 55, 2900-2904 (2010). I.P. Osorio, F. Martínez, D.R. Delgado, A. Jouyban, W.E Acree Jr., Solubility of sulfacetamide in aqueous propylene glycol mixtures: Measurement, correlation, dissolution thermodynamics, preferential solvation, and solute volumetric contribution at saturation, J. Mol. Liq., 297, 1118891 (2020). D.R. Delgado, D.I. Caviedes-Rubio, C. Patricia Ortiz, Y.L. Parra-Pava, M.A. Peña, A. Jouyban, S.N. Mirheydari, F. Martínez, W.E. Acree Jr., Solubility of sulphadiazine in (acetonitrile+ water) mixtures: measurement, correlation, thermodynamics and preferential solvation, Phys. Chem. Liq., DOI: 10.1080/00319104.2019.1594227 R.A. Gutiérrez, D.R. Delgado, F. Martínez, Solution thermodynamics of lysine clonixinate in some ethanol+ water mixtures, Lat. Am. J. Pharm., 31, 226-234 (2012). J.L. Gómez, G.A. Rodríguez, D.M. Cristancho, D.R. Delgado, F. Martínez, Solution thermodynamics of nimodipine in some PEG 400+ ethanol mixtures, Phys. Chem. Liq., 51, 651-662 (2013). A.R. Holguín, D.R. Delgado, F. Martínez, Thermodynamic study of the solubility of triclocarban in ethanol+ propylene glycol mixtures, Quím. Nova, 35, 280-285 (2012). D.I. Caviedes-Rubio, G.A. Rodríguez-Rodríguez, D.R. Delgado, Thermodynamic study of the solubility of naproxen in some 2-propanol+ water mixtures, Revista Facultad de Ciencias Básicas, 12, 45-55 (2016). G.L. Perlovich, S.V. Kurkov, A.N. Kinchin, A. Bauer-Brandl, Thermodynamics of solutions III: Comparison of the solvation of (+)-naproxen with other NSAIDs, Eur. J. Pharm. Biopharm., 57, 411-420 (2004). E.A. Cantillo, D.R. Delgado, F. Martinez, Solution thermodynamics of indomethacin in ethanol+ propylene glycol mixtures, J. Mol. Liq., 181, 62-67 (2013). D.R. Delgado, F. Martínez, Thermodynamic analysis of the solubility of propranolol-HCl in ethanol+ water mixtures, Lat. Am. J. Pharm., 30, 89-95 (2011). D.R. Delgado, A.R. Holguin, F. Martinez, Solution thermodynamics of triclosan and triclocarban in some volatile organic solvents, Vitae, 19, 79-92 (2012). K.C. Mercado, G.A. Rodríguez, D.R Delgado, F. Martínez, A. Romdhani, Solution thermodynamics of methocarbamol in some ethanol+ water mixtures. Quím. Nova, 35, 1967-1972 (2012). L.S. Bigman, Y. Levy, Entropy-enthalpy compensation in conjugated proteins, Chem. Phys., 514, 95-105 (2018) P. Bustamante, S. Romero, M.A. Peña, M. Escalera, A. Reillo, Nonlinear enthalpy-entropy compensation for the solubility of drugs in solvent mixtures: Paracetamol, acetanilide and nalidixic acid in dioxane-water, J. Pharm. Sci., 87, 1590-1596 (1998). F. Martínez, M.Á. Peña, P. Bustamante, Thermodynamic analysis and enthalpy-entropy compensation for the solubility of indomethacin in aqueous and non-aqueous mixtures, Fluid Phase Equilib., 308, 98-106 (2011). E. Tomlinson, Enthalpy-entropy compensation analysis of pharmaceutical, biochemical, and biological systems, Int. J. Pharm., 13, 115-144 (1983). A.M. Romero-Nieto, N.E. Cerquera, F. Martínez, D.R. Delgado, Thermodynamic study of the solubility of ethylparaben in acetonitrile + water cosolvent mixtures at different temperatures, J. Mol. Liq., 287, 110894 (2019). N. Ulrich, S. Endo, T.N. Brown, N. Watanabe, G. Bronner, M.H. Abraham, K.-U. Goss, UFZ-LSER database v 3.2.1 [Internet], Leipzig, Germany, Helmholtz Centre for Environmental Research-UFZ. 2017 [accessed on 09.04.2020], available from http://www.ufz.de/lserd D. Yue, W.E. Acree Jr., M.H. Abraham, Applications of Abraham solvation parameter model: Estimation of the lethal median molar concentration of the antiepileptic drug levetiracetam towards aquatic organisms from measured solubility data, Phys. Chem. Liq., DOI: 10.1080/00319104.2019.1584801. F. Martínez, A. Gómez, Thermodynamic study of the solubility of some sulfonamides in octanol, water, and the mutually saturated solvents, J. Solution Chem., 30, 909-923 (2001). K.R. Hoover, W.E. Acree Jr, M.H. Abraham. Chemical toxicity correlations for several fish species based on the Abraham solvation parameter model, Chem. Res. Toxicol., 18, 1497-1505 (2005). K.R. Hoover, K.B. Flanagan, W.E. Acree, Jr., M.H. Abraham, Chemical toxicity correlations for several protozoas, bacteria, and water fleas based on the Abraham solvation parameter model, J. Environ. Eng. Sci., 6, 165-174 (2007). |
dc.rights.license.none.fl_str_mv |
Atribución |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
p. 234-255 |
dc.coverage.temporal.spa.fl_str_mv |
49 |
dc.publisher.spa.fl_str_mv |
Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, Neiva Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Industrial |
dc.publisher.place.spa.fl_str_mv |
Neiva |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/3e8ad7fc-1c07-4373-b4e3-cc2250235994/download https://repository.ucc.edu.co/bitstreams/c0a732f6-dc38-4345-bc4a-809bd4c5d392/download https://repository.ucc.edu.co/bitstreams/a7cfc23f-b060-4878-a1fa-a4fccaf89440/download https://repository.ucc.edu.co/bitstreams/361c3045-a178-4908-9c9d-2185a6c7114a/download |
bitstream.checksum.fl_str_mv |
3bce4f7ab09dfc588f126e1e36e98a45 e3dbf839d98dd71cb3f1bc589852f0fa 60c4121cfcf55c45da511ff0734215b3 f7b3a8bee2bf9ae479ea4bb68d5e7c1c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814246984323694592 |
spelling |
Blanco Márquez, Joaquín H Quigua-Medina, Yina AndreaGarcía-Murillo, José DarwinCastro-Camacho, Jennifer KatiuscaOrtiz, Claudia PatriciaCerquera, Néstor EnriqueDelgado, Daniel Ricardo492020-11-20T17:36:16Z2020-11-20T17:36:16Z2020-01-0119096356https://doi.org/10.15446/rcciquifa.v49n1.87038https://hdl.handle.net/20.500.12494/28234Blanco-Márquez, J. H., Quigua-Medina, Y. A., García-Murillo, J. D., Castro-Camacho, J. K., Ortiz, C. P., Cerquera, N. E., & Delgado, D. R. (2020). Análisis termodinámico y aplicaciones del modelo de parámetros de solvatación de Abraham en el estudio de la solubilidad de algunas sulfonamidas. Revista Colombiana De Ciencias Químico-Farmacéuticas, 49(1). https://doi.org/10.15446/rcciquifa.v49n1.87038Se investigó la solubilidad de sulfadiazina (SD), sulfamerazina (SMR) y sulfametazina (SMT) en mezclas codisolventes de octanol + metanol a 278,15 K, 298,15 y 313,15 K. En todos los casos, la solubilidad más baja de cada fármaco se obtuvo en octanol puro a 278,15 K. La solubilidad máxima depende de la polaridad del fármaco, por lo que SMR y SMT alcanzaron su máxima solubilidad en mezclas cosolventes ricas en metanol. Las funciones termodinámicas de solución se calcularon a partir de los datos experimentales de solubilidad, utilizando las ecuaciones de van’t Hoff y Gibbs, siguiendo el enfoque propuesto por Krug et al. La entalpía de la solución es positiva en todos los casos, lo cual es una indicación del proceso endotérmico con un marcado favorecimiento entrópico. La solubilidad teórica y la concentración letal media se calcularon utilizando el modelo de Abraham.Solubility of sulfadiazine (SD), sulfamerazine (SMR) and sulfamethazine (SMT) in cosolvent mixtures octanol+methanol was investigated to 278.15 K, 298.15 and 313.15 K. In all cases, the lowest solubility of each drug was obtained in pure octanol at 278.15 K. The maximum solubility depends on the polarity of the drug, thus SMR and SMT reached their maximum solubility in cosolvent mixtures methanol-rich. The solution thermodynamic functions were calculated from the experimental solubility data, using the van’t Hoff and Gibbs equations, following the approach proposed by Krug et al. The enthalpy of solution is positive in all cases, which is an indication of the endothermic process with a marked entropic favor. Theoretical solubility and mean lethal concentration were calculated using the Abraham model.http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001402116https://orcid.org/0000-0002-4835-9739https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000004151danielr.delgado@campusucc.edu.cohttps://scholar.google.es/citations?user=OW0mejcAAAAJ&hl=esp. 234-255Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, NeivaUniversidad Nacional de ColombiaIngeniería IndustrialNeivahttps://revistas.unal.edu.co/index.php/rccquifa/article/view/87038Revista Colombiana de Ciencias Químico-FarmacéuticasR.J. Henry, The mode of action of sulfonamides, Bacteriol. Rev., 7, 175-262 (1943).A. Auta, M.A. Hadi, E. Oga, E.O. Adewuyi, S.N. Abdu-Aguye, D. Adeloye, B. Strickland-Hodge, D.J. Morgan, Global access to antibiotics without prescription in community pharmacies: A systematic review and meta-analysis, J. Infect., 78, 8-18 (2018).A.K. Sarmah, M.T. Meyer, A.B.A. Boxall, A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment, Chemosphere, 65, 725-759 (2006).M. Lahtinen, J. Kudva, P. Hegde, K. Bhat, E. Kolehmainen, V. Nonappa, D. Naral, Synthesis, characterization, thermal and antimicrobial studies of N-substituted sulfanilamide derivatives, J. Mol. Struct., 1060, 280-290 (2014).L. Puccetti, G. Fasolis, D. Vullo, Z.H. Chohan, A. Scozzafava, C.T. Supuran, Carbonic anhydrase inhibitors. Inhibition of cytosolic/tumor-associated carbonic anhydrase isozymes I, II, IX, and XII with Schiff’s bases incorporating chromone and aromatic sulfonamide moieties, and their zinc complexes, Bioorg. Med. Chem. Lett., 15, 3096-3101 (2005).F. Carta, C.T. Supuran. Diuretics with carbonic anhydrase inhibitory action: A patent and literature review (2005-2013), Expert Opin. Ther. Pat., 23, 681-691 (2013).F. Carta, L. Di Cesare Mannelli, M. Pinard, C. Ghelardini, A. Scozzafava, R. McKenna, C.T. Supuran, A class of sulfonamide carbonic anhydrase inhibitors with neuropathic pain modulating effects, Bioorg. Med. Chem., 23, 1828-1840 (2015).C.T. Supuran, Carbonic anhydrases: Novel therapeutic applications for inhibitors and activators, Nat. Rev. Drug Discov., 7, 168-181 (2008).J.H. Blanco-Márquez, D.I. Caviedes-Rubio, C.P. Ortiz, N.E. Cerquera, F. Martínez, D.R. Delgado, Thermodynamic analysis and preferential solvation of sulfamethazine in acetonitrile+ water cosolvent mixtures, Fluid Phase Equilib., 505, 112361 (2020).D.I. Caviedes-Rubio, D.M. Camacho-Feria, D.R. Delgado, Tratamientos para la remoción de antibacteriales y agentes antimicrobiales presentes en aguas residuales. Revista Logos Ciencia & Tecnología, 9, 43-62 (2017).A.M. Romero-Nieto, N.E. Cerquera, D.R. Delgado, Measurement and correlation of solubility of ethylparaben in pure and binary solvents and thermodynamic properties of solution, Rev. Colomb. Cienc. Quím. Farm., 48, 332-347 (2019).T. Higuchi, K.A. Connors, Phase-solubility techniques. Advances in Analytical Chemistry and Instrumentation, vol. 4, John Wiley & Sons, Inc, New York, 1965.D.M. Jiménez, Z.J. Cardenas, D.R. Delgado, M.Á. Peña, F. Martínez, Solubility temperature dependence and preferential solvation of sulfadiazine in 1, 4-dioxane+ water co-solvent mixtures, Fluid Phase Equilib., 397, 26-36 (2015).D.R. Delgado, E.M. Mogollon-Waltero, C.P. Ortiz, M.Á. Peña, O.A. Almanza, F. Martinez, A. Jouyban, Enthalpy-entropy compensation analysis of the triclocarban dissolution process in some {1, 4-dioxane (1)+ water (2)} mixtures, J. Mol. Liq., 271, 522-529 (2018).D.R. Delgado, F. Martínez, Solubility and preferential solvation of sulfadiazine in methanol+ water mixtures at several temperatures, Fluid Phase Equilib., 379, 128-138 (2015).D.R. Delgado, F. Martínez, Solution thermodynamics and preferential solvation of sulfamerazine in methanol+ water mixtures, J. Solution Chem., 44(2), 360-377 (2015).Y. Marcus, The Properties of solvents, John Wiley & Sons, New York, 1998.D.R. Delgado, F. Martínez, Preferential solvation of some structurally related sulfonamides in 1-propanol+ water co-solvent mixtures, Phys. Chem. Liq., 53, 293-306 (2015).A. Kristl, Thermodynamic investigation of the effect of the mutual miscibility of some higher alkanols and water on the partitioning and solubility of some guanine derivatives, J. Chem. Soc., Faraday Trans., 92, 1721-1724 (1996).R.R. Krug, W.G. Hunter, R.A. Grieger, Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van’t Hoff and Arrhenius data, J. Phys. Chem., 80, 2335-2341 (1976).R.R. Krug, W.G. Hunter, R.A. Grieger, Enthalpy-entropy compensation. 2. Separation of the chemical from the statistical effect, J. Phys. Chem., 80, 2341-2351 (1976).J.H. Blanco-Márquez, C.P. Ortiz, N.E. Cerquera, F. Martínez, A. Jouyban, D.R. Delgado, Thermodynamic analysis of the solubility and preferential solvation of sulfamerazine in (acetonitrile+ water) cosolvent mixtures at different temperatures, J. Mol. Liq., 293, 111507 (2019).D.R. Delgado, O.A. Almanza, F. Martínez, M.A. Peña, A. Jouyban, W.E. Acree Jr., Solution thermodynamics and preferential solvation of sulfamethazine in (methanol+ water) mixtures, J. Chem. Thermodyn., 97, 264-276 (2016).D.R. Delgado, E.F. Vargas, F. Martínez, Thermodynamic study of the solubility of procaine HCl in some ethanol+ water cosolvent mixtures, J. Chem. Eng. Data, 55, 2900-2904 (2010).I.P. Osorio, F. Martínez, D.R. Delgado, A. Jouyban, W.E Acree Jr., Solubility of sulfacetamide in aqueous propylene glycol mixtures: Measurement, correlation, dissolution thermodynamics, preferential solvation, and solute volumetric contribution at saturation, J. Mol. Liq., 297, 1118891 (2020).D.R. Delgado, D.I. Caviedes-Rubio, C. Patricia Ortiz, Y.L. Parra-Pava, M.A. Peña, A. Jouyban, S.N. Mirheydari, F. Martínez, W.E. Acree Jr., Solubility of sulphadiazine in (acetonitrile+ water) mixtures: measurement, correlation, thermodynamics and preferential solvation, Phys. Chem. Liq., DOI: 10.1080/00319104.2019.1594227R.A. Gutiérrez, D.R. Delgado, F. Martínez, Solution thermodynamics of lysine clonixinate in some ethanol+ water mixtures, Lat. Am. J. Pharm., 31, 226-234 (2012).J.L. Gómez, G.A. Rodríguez, D.M. Cristancho, D.R. Delgado, F. Martínez, Solution thermodynamics of nimodipine in some PEG 400+ ethanol mixtures, Phys. Chem. Liq., 51, 651-662 (2013).A.R. Holguín, D.R. Delgado, F. Martínez, Thermodynamic study of the solubility of triclocarban in ethanol+ propylene glycol mixtures, Quím. Nova, 35, 280-285 (2012).D.I. Caviedes-Rubio, G.A. Rodríguez-Rodríguez, D.R. Delgado, Thermodynamic study of the solubility of naproxen in some 2-propanol+ water mixtures, Revista Facultad de Ciencias Básicas, 12, 45-55 (2016).G.L. Perlovich, S.V. Kurkov, A.N. Kinchin, A. Bauer-Brandl, Thermodynamics of solutions III: Comparison of the solvation of (+)-naproxen with other NSAIDs, Eur. J. Pharm. Biopharm., 57, 411-420 (2004).E.A. Cantillo, D.R. Delgado, F. Martinez, Solution thermodynamics of indomethacin in ethanol+ propylene glycol mixtures, J. Mol. Liq., 181, 62-67 (2013).D.R. Delgado, F. Martínez, Thermodynamic analysis of the solubility of propranolol-HCl in ethanol+ water mixtures, Lat. Am. J. Pharm., 30, 89-95 (2011).D.R. Delgado, A.R. Holguin, F. Martinez, Solution thermodynamics of triclosan and triclocarban in some volatile organic solvents, Vitae, 19, 79-92 (2012).K.C. Mercado, G.A. Rodríguez, D.R Delgado, F. Martínez, A. Romdhani, Solution thermodynamics of methocarbamol in some ethanol+ water mixtures. Quím. Nova, 35, 1967-1972 (2012).L.S. Bigman, Y. Levy, Entropy-enthalpy compensation in conjugated proteins, Chem. Phys., 514, 95-105 (2018)P. Bustamante, S. Romero, M.A. Peña, M. Escalera, A. Reillo, Nonlinear enthalpy-entropy compensation for the solubility of drugs in solvent mixtures: Paracetamol, acetanilide and nalidixic acid in dioxane-water, J. Pharm. Sci., 87, 1590-1596 (1998).F. Martínez, M.Á. Peña, P. Bustamante, Thermodynamic analysis and enthalpy-entropy compensation for the solubility of indomethacin in aqueous and non-aqueous mixtures, Fluid Phase Equilib., 308, 98-106 (2011).E. Tomlinson, Enthalpy-entropy compensation analysis of pharmaceutical, biochemical, and biological systems, Int. J. Pharm., 13, 115-144 (1983).A.M. Romero-Nieto, N.E. Cerquera, F. Martínez, D.R. Delgado, Thermodynamic study of the solubility of ethylparaben in acetonitrile + water cosolvent mixtures at different temperatures, J. Mol. Liq., 287, 110894 (2019).N. Ulrich, S. Endo, T.N. Brown, N. Watanabe, G. Bronner, M.H. Abraham, K.-U. Goss, UFZ-LSER database v 3.2.1 [Internet], Leipzig, Germany, Helmholtz Centre for Environmental Research-UFZ. 2017 [accessed on 09.04.2020], available from http://www.ufz.de/lserdD. Yue, W.E. Acree Jr., M.H. Abraham, Applications of Abraham solvation parameter model: Estimation of the lethal median molar concentration of the antiepileptic drug levetiracetam towards aquatic organisms from measured solubility data, Phys. Chem. Liq., DOI: 10.1080/00319104.2019.1584801.F. Martínez, A. Gómez, Thermodynamic study of the solubility of some sulfonamides in octanol, water, and the mutually saturated solvents, J. Solution Chem., 30, 909-923 (2001).K.R. Hoover, W.E. Acree Jr, M.H. Abraham. Chemical toxicity correlations for several fish species based on the Abraham solvation parameter model, Chem. Res. Toxicol., 18, 1497-1505 (2005).K.R. Hoover, K.B. Flanagan, W.E. Acree, Jr., M.H. Abraham, Chemical toxicity correlations for several protozoas, bacteria, and water fleas based on the Abraham solvation parameter model, J. Environ. Eng. Sci., 6, 165-174 (2007).SulfonamidasSolubilidadVan’t HoffModelo de AbrahamConcentración letal mediaSulfonamidesSolubilityVan’t HoffAbraham modelLethal median molar concentrationThermodynamic analysis and applications of the Abraham solvation parameter model in the study of the solubility of some sulfonamidesArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/3e8ad7fc-1c07-4373-b4e3-cc2250235994/download3bce4f7ab09dfc588f126e1e36e98a45MD52ORIGINAL2020_Abraham_solvation_sulfonamides.pdf2020_Abraham_solvation_sulfonamides.pdfArtículo científico Capplication/pdf821398https://repository.ucc.edu.co/bitstreams/c0a732f6-dc38-4345-bc4a-809bd4c5d392/downloade3dbf839d98dd71cb3f1bc589852f0faMD51THUMBNAIL2020_Abraham_solvation_sulfonamides.pdf.jpg2020_Abraham_solvation_sulfonamides.pdf.jpgGenerated Thumbnailimage/jpeg5219https://repository.ucc.edu.co/bitstreams/a7cfc23f-b060-4878-a1fa-a4fccaf89440/download60c4121cfcf55c45da511ff0734215b3MD53TEXT2020_Abraham_solvation_sulfonamides.pdf.txt2020_Abraham_solvation_sulfonamides.pdf.txtExtracted texttext/plain42350https://repository.ucc.edu.co/bitstreams/361c3045-a178-4908-9c9d-2185a6c7114a/downloadf7b3a8bee2bf9ae479ea4bb68d5e7c1cMD5420.500.12494/28234oai:repository.ucc.edu.co:20.500.12494/282342024-08-10 21:00:52.916restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo= |