Thermodynamic analysis and preferential solvation of gatifloxacin in DMF+ methanol cosolvent mixtures
Este artículo presenta el análisis termodinámico de la solubilidad de gatifloxacinaen el sistema cosolvente de N,N-Dimetilformamida (DMF) + metanol (MeOH) a 10 temperaturas. A partir de los datos de solubilidad se calculan las funciones termodinámicas de solución, mezcla y transferencia. Para el aná...
- Autores:
-
Rojas-Motta, Mónica
Rojas-Motta, Jhon Edinson
Diaz-Jimenez, Jorge Luis
Bahos-Narváez, Fabio Andrés
Blanco Márquez, Joaquín H
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/28233
- Acceso en línea:
- https://doi.org/10.15446/rcciquifa.v49n3.91337
https://hdl.handle.net/20.500.12494/28233
- Palabra clave:
- Gatifloxacina
Solubilidad
N,N-dimetilformamida
IKBI
Solvatación preferencial
Gatifloxacin
Solubility
N,N-dimethylformamide
IKBI
Preferential solvation
- Rights
- openAccess
- License
- Atribución
id |
COOPER2_6c84db5baaa9b6d954554287e9990323 |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/28233 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Thermodynamic analysis and preferential solvation of gatifloxacin in DMF+ methanol cosolvent mixtures |
title |
Thermodynamic analysis and preferential solvation of gatifloxacin in DMF+ methanol cosolvent mixtures |
spellingShingle |
Thermodynamic analysis and preferential solvation of gatifloxacin in DMF+ methanol cosolvent mixtures Gatifloxacina Solubilidad N,N-dimetilformamida IKBI Solvatación preferencial Gatifloxacin Solubility N,N-dimethylformamide IKBI Preferential solvation |
title_short |
Thermodynamic analysis and preferential solvation of gatifloxacin in DMF+ methanol cosolvent mixtures |
title_full |
Thermodynamic analysis and preferential solvation of gatifloxacin in DMF+ methanol cosolvent mixtures |
title_fullStr |
Thermodynamic analysis and preferential solvation of gatifloxacin in DMF+ methanol cosolvent mixtures |
title_full_unstemmed |
Thermodynamic analysis and preferential solvation of gatifloxacin in DMF+ methanol cosolvent mixtures |
title_sort |
Thermodynamic analysis and preferential solvation of gatifloxacin in DMF+ methanol cosolvent mixtures |
dc.creator.fl_str_mv |
Rojas-Motta, Mónica Rojas-Motta, Jhon Edinson Diaz-Jimenez, Jorge Luis Bahos-Narváez, Fabio Andrés Blanco Márquez, Joaquín H |
dc.contributor.author.none.fl_str_mv |
Rojas-Motta, Mónica Rojas-Motta, Jhon Edinson Diaz-Jimenez, Jorge Luis Bahos-Narváez, Fabio Andrés Blanco Márquez, Joaquín H |
dc.subject.spa.fl_str_mv |
Gatifloxacina Solubilidad N,N-dimetilformamida IKBI Solvatación preferencial |
topic |
Gatifloxacina Solubilidad N,N-dimetilformamida IKBI Solvatación preferencial Gatifloxacin Solubility N,N-dimethylformamide IKBI Preferential solvation |
dc.subject.other.spa.fl_str_mv |
Gatifloxacin Solubility N,N-dimethylformamide IKBI Preferential solvation |
description |
Este artículo presenta el análisis termodinámico de la solubilidad de gatifloxacinaen el sistema cosolvente de N,N-Dimetilformamida (DMF) + metanol (MeOH) a 10 temperaturas. A partir de los datos de solubilidad se calculan las funciones termodinámicas de solución, mezcla y transferencia. Para el análisis además se utiliza el método gráfico Perlovich. Por otro lado, serealiza un análisis de compensación entalpía-entropía y se calculan los parámetros de solvatación preferencial utilizando el método de las integrales inversas de Kirkwood-Buff (IIKB). Los resultados del análisis termodinámico indican que el proceso de solución de gatifloxacina es endotérmicacon favorecimiento entrópico, donde la adición de DMF tiene un efecto cosolvente positivo en todos los casos. En cuanto a la solvatación preferencial, los resultados no son del todo concluyentes, debido a que en todos los casos los valores del parámetro de solvatación preferencial son menores a 0,01 indicando una solvatación insignificante |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-11-20T17:20:00Z |
dc.date.available.none.fl_str_mv |
2020-11-20T17:20:00Z |
dc.date.issued.none.fl_str_mv |
2020-11-01 |
dc.type.none.fl_str_mv |
Artículo |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
19096356 |
dc.identifier.uri.spa.fl_str_mv |
https://doi.org/10.15446/rcciquifa.v49n3.91337 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/28233 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Rojas-Motta, M., Rojas-Motta, J. E. ., Diaz-Jimenez, J. L. ., Bahos-Narváez, F. A., Blanco-Márquez, J. H. ., Ortiz, C. P., & Delgado, D. R. . (2020). Análisis termodinámico y solvatación preferencial de gatifloxacina en mezclas cosolventes DMF + metanol. Revista Colombiana De Ciencias Químico-Farmacéuticas, 49(3). https://doi.org/10.15446/rcciquifa.v49n3.91337 |
identifier_str_mv |
19096356 Rojas-Motta, M., Rojas-Motta, J. E. ., Diaz-Jimenez, J. L. ., Bahos-Narváez, F. A., Blanco-Márquez, J. H. ., Ortiz, C. P., & Delgado, D. R. . (2020). Análisis termodinámico y solvatación preferencial de gatifloxacina en mezclas cosolventes DMF + metanol. Revista Colombiana De Ciencias Químico-Farmacéuticas, 49(3). https://doi.org/10.15446/rcciquifa.v49n3.91337 |
url |
https://doi.org/10.15446/rcciquifa.v49n3.91337 https://hdl.handle.net/20.500.12494/28233 |
dc.relation.isversionof.spa.fl_str_mv |
https://revistas.unal.edu.co/index.php/rccquifa/article/view/91337 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Revista Colombiana de Ciencias Químico-Farmacéuticas |
dc.relation.references.spa.fl_str_mv |
C. Schultz, gatifloxacin ophthalmic solution for treatment of bacterial conjunctivitis: Safety, efficacy and patient perspective, Ophthalmol. Eye Dis., 4, 65-70 (2012). D. Deshpande, J.G. Pasipanodya, S. Srivastava, P. Bendet, T. Koeuth, S.M. Bhavnani, P.G. Ambrose, W. Smythe, H. Mcilleron, G. Thwaites, M. Gumusboga, A. Van Deun, T. Gumbo, gatifloxacin pharmacokinetics/pharmacodynamics-based optimal dosing for pulmonary and meningeal multidrug-resistant tuberculosis, Clin. Infect. Dis., 67, 274-283 (2018). P.S. Coburn, F.C. Miller, A.L. LaGrow, C. Land, H. Mursalin, E. Livingston, O. Amayem, Y. Chen, W. Gao, L. Zhang, M.C. Callegan, Disarming pore-forming toxins with biomimetic nanosponges in intraocular infections, mSphere, 4, e00262-19 (2019). A.M. Romero-Nieto, N.E. Cerquera, F. Martínez, D.R. Delgado, Thermodynamic study of the solubility of ethylparaben in acetonitrile + water cosolvent mixtures at different temperatures, J. Mol. Liq., 287, 110894 (2019). D.R. Delgado, D.I. Caviedes-Rubio, C.P. Ortiz, Y.L. Parra-Pava, M.Á. Peña, A. Jouyban, S.N. Mirheydari, F. Martínez, W.E. Acree, Jr., Solubility of sulphadiazine in (acetonitrile + water) mixtures: Measurement, correlation, thermodynamics and preferential solvation, Phys. Chem. Liq., 58, 381-396 (2020). J.A. Oliveira, O.J. Oliveira, A.R. Ometto, A.S. Ferraudo, M.H. Salgado, Environmental management system ISO 14001 factors for promoting the adoption of cleaner production practices, J. Clean Prod., 133, 1384-1394 (2016). D.I. Caviedes-Rubio, D.R. Delgado, A. Olaya-Amaya, Normatividad ambiental dirigida a regular la presencia de los productos farmacéuticos residuales en ambientes acuáticos, Rev. Jurídica Piélagus, 16, 121-130 (2017). D. Yue, W.E. Acree, M.H. Abraham, Applications of Abraham solvation parameter model: estimation of the lethal median molar concentration of the antiepileptic drug levetiracetam towards aquatic organisms from measured solubility data, Phys. Chem. Liq., 58, 302-308 (2020). D.R. Delgado, M.A. Peña, F. Martínez, A. Jouyban, W.E. Acree, Further numerical analyses on the solubility of sulfapyridine in ethanol + water mixtures, Pharm. Sci., 22, 143-152 (2016). Y. Marcus, On the preferential solvation of drugs and PAHs in binary solvent mixtures, J. Mol. Liq., 140, 61-67 (2008). S.K. Samanta, O.V. Singh, R.K. Jain, Polycyclic aromatic hydrocarbons: Environmental pollution and bioremediation, Trends Biotechnol., 20, 243-248 (2002). N.T. Edwards, Polycyclic aromatic hydrocarbons (PAH’s) in the terrestrial environment-A Review, J. Environ. Quality, 12, 427-441 (1983). W.E. Acree, Jr., J.H. Rytting, Solubility in binary solvent systems I: Specific versus nonspecific interactions, J. Pharm. Sci., 71, 201-205 (1982). A. Jouyban-Gharamaleki, L. Valaee, M. Barzegar-Jalali, B.J. Clark, W.E. Acree, Jr., Comparison of various cosolvency models for calculating solute solubility in water-cosolvent mixtures, Int. J. Pharm., 177, 93-101 (1999). A. Jouyban, Solubility prediction of drugs in water-polyethylene glycol 400 mixtures using Jouyban-Acree model, Chem. Pharm. Bull., 54, 1561-1566 (2006). Z.J. Cárdenas, D.M. Jiménez, G.A. Rodríguez, D.R. Delgado, F. Martínez, M. Khoubnasabjafari, A. Jouyban, Solubility of methocarbamol in some cosolvent + water mixtures at 298.15 K and correlation with the Jouyban-Acree model, J. Mol. Liq., 188, 162-166 (2013). W.E. Acree, Jr., J.H. Rytting, Solubility in binary solvent systems. IV. Prediction of naphthalene solubilities using the UNIFAC group contribution model, Int. J. Pharm., 13, 197-204 (1983). A. Martin, J. Newburger, A. Adjei, Extended Hildebrand solubility approach: Solubility of theophylline in polar binary solvents, J. Pharm. Sci., 69, 487-491 (1980). W.E. Acree, Jr., S.A. Tucker, Thermochemical investigations of hydrogen-bonded solutions Part 6. Comparison of mobile order theory versus Kretschmer-Wiebe association model for describing anthracene solubilities in binary hydrocarbon + alcohol solvent mixtures, Fluid Phase Equilib., 102, 17-29 (1994). E. Ruckenstein, I. Shulgin, Solubility of drugs in aqueous solutions: Part 1. Ideal mixed solvent approximation, Int. J. Pharm., 258, 193-201 (2003). J. Wu, R. Xu, J. Wang, H. Zhao, Thermodynamic solubility of gatifloxacin in nonaqueous solvent mixtures of N,N-dimethylformamide plus isopropanol/methanol/ n-propanol/ethanol, J. Chem. Eng. Data, 64, 6071-6077 (2019). K. Shi, L. Feng, L. He, H. Li, Solubility determination and correlation of gatifloxacin, enrofloxacin, and ciprofloxacin in supercritical CO2, J. Chem. Eng. Data, 62, 4235-4243 (2017). J.H. Blanco-Márquez, Y.A. Quigua-Medina, J.D. García-Murillo, J.K. Castro-Camacho, C.P. Ortiz, N.E. Cerquera, D.R. Delgado, Thermodynamic analysis and applications of the Abraham solvation parameter model in the study of the solubility of some sulfonamides, Rev. Colomb. Cienc. Quím. Farm., 49, 234-255 (2020). I.P. Osorio, F. Martínez, D.R. Delgado, A. Jouyban, W.E. Acree, Jr., Solubility of sulfacetamide in aqueous propylene glycol mixtures: Measurement, correlation, dissolution thermodynamics, preferential solvation and solute volumetric contribution at saturation, J. Mol. Liq., 297, 111889 (2020). A.F.M. Barton, Handbook of solubility parameters and other cohesion parameters, 2nd ed., CRC Press, Boca Raton (FL), 1991. R.F. Fedors, A method for estimating both the solubility parameters and molar volumes of liquids, Polym. Eng. Sci., 14,147-154 (1974). J.H. Blanco-Márquez, C.P. Ortiz, N.E. Cerquera, F. Martínez, A. Jouyban, D.R. Delgado, Thermodynamic analysis of the solubility and preferential solvation of sulfamerazine in (acetonitrile + water) cosolvent mixtures at different temperatures, J. Mol. Liq., 293, 111507 (2019). J.H. Blanco-Márquez, D.I. Caviedes Rubio, C.P. Ortiz, N.E. Cerquera, F. Martínez, D.R. Delgado, Thermodynamic analysis and preferential solvation of sulfamethazine in acetonitrile + water cosolvent mixtures, Fluid Phase Equilib., 505, 112361 (2020). S.H. Yalkowsky, M. Wu, Estimation of the ideal solubility (crystal-liquid fugacity ratio) of organic compounds, J. Pharm. Sci., 99, 1100-1106 (2010). A.M. Romero-Nieto, D.I. Caviedes-Rubio, J. Polania-Orozco, N.E. Cerquera, D.R. Delgado, Temperature and cosolvent composition effects in the solubility of methylparaben in acetonitrile + water mixtures, Phys. Chem. Liq. Forthcomming 2020, doi: 10.1080/00319104.2019.1636379. M. Mirmehrabi, S. Rohani, L. Perry, Thermodynamic modeling of activity coefficient and prediction of solubility: Part 1 predictive models, J. Pharm. Sci., 95, 790-797 (2006). D.R. Delgado, A. Jouyban, F. Martínez, Solubility and preferential solvation of meloxicam in methanol+ water mixtures at 298.15 K, J. Mol. Liq., 197, 368-376 (2014). D.R. Delgado, F. Martínez, Solution thermodynamics of sulfadiazine in ethanol + water mixtures, J. Mol. Liq., 187, 99-105 (2013). R.R. Krug, W.G. Hunter, R.A. Grieger, Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van’t Hoff and arrhenius data, J. Phys. Chem., 80, 2335-2341 (1976). R.R. Krug, W.G. Hunter, R.A. Grieger, Enthalpy-entropy compensation. 2. Separation of the chemical from the statistical effect, J. Phys. Chem., 80, 2341-2351 (1976). D.R. Delgado, A. Romdhani, F. Martínez, Solubility of sulfamethizole in some propylene glycol+water mixtures at several temperatures, Fluid Phase Equilib., 322,-113-119 (2012). D.R. Delgado, G.A. Rodríguez, F. Martínez, Thermodynamic study of the solubility of sulfapyridine in some ethanol + water mixtures, J. Mol. Liq., 177, 156-161 (2013). G.L. Perlovich, A.M. Ryzhakov, N.N. Strakhova, V.P. Kazachenko, K.-J. Schaper, O.A. Raevsky, Thermodynamic aspects of solubility and partitioning processes of some sulfonamides in the solvents modeling biological media, J.Chem. Thermodyn., 69, 56-65 (2014). G.L. Perlovich, N.N. Strakhova, V.P. Kazachenko, T.V. Volkova, V.V. Tkachev, K.-J. Schaper, O.A. Raevsky, Sulfonamides as a subject to study molecular interactions in crystals and solutions: Sublimation, solubility, solvation, distribution and crystal structure, Int. J. Pharm., 349, 300-313 (2008). A.R. Holguín, D.R. Delgado, F. Martínez, Thermodynamic study of the solubility of triclocarban in ethanol + propylene glycol mixtures, Quim. Nova, 35, 280-285 (2012). G.L. Perlovich, V.V. Tkachev, N.N. Strakhova, V.P. Kazachenko, T.V. Volkova, O.V. Surov, K.J. Schaper, O.A. Raevsky, Thermodynamic and structural aspects of sulfonamide crystals and solutions, J. Pharm. Sci., 98, 4738-4755 (2009). D.R. Delgado, E.M. Mogollon-Waltero, C.P. Ortiz, M.Á. Peña, O.A. Almanza, F. Martínez, A. Jouyban, Enthalpy-entropy compensation analysis of the triclocarban dissolution process in some {1,4-dioxane (1) + water (2)} mixtures, J. Mol. Liq., 271, 522-529 (2018). M.A. Ruidiaz, D.R. Delgado, F. Martínez, Y. Marcus, Solubility and preferential solvation of indomethacin in 1,4-dioxane+water solvent mixtures, Fluid Phase Equilib., 299, 259-265 (2010). R.A. Gutiérrez, D.R. Delgado, F. Martínez, Solution thermodynamics of lysine clonixinate in some ethanol + water mixtures, Lat. Am. J. Pharm., 31, 226-234 (2012). D.R. Delgado, E.F. Vargas, F. Martínez, Thermodynamics of the mixing process of several sodium sulfonamides in ethanol + water cosolvent mixtures, Vitae, Rev. Fac. Quim. Farm., 18, 192-200 (2011). D.M. Cristancho, R.G. Sotomayor, D.R. Delgado, A. Romdhani, F. Martínez, Thermodynamics of mixing of the β-adrenergic blocker propranolol-HCl in ethanol + water mixtures, Rev. Colomb. Cienc. Quim. Farm., 40, 261-271 (2011). P. Bustamante, B. Escalera, Enthalpy and entropy contributions to the solubility of sulphamethoxypyridazine in solvent mixtures showing two solubility maxima, J. Pharm. Pharmacol., 47, 550-555 (1995). D.R. Delgado, A.R. Holguín, O.A. Almanza, F. Martínez, Y. Marcus, Solubility and preferential solvation of meloxicam in ethanol+water mixtures, Fluid Phase Equilib., 305, 88-95 (2011). J.W. Mauger, A.N. Paruta, R.J. Gerraughty, Solubilities of sulfadiazine, sulfisomidine, and sulfadimethoxine in several normal alcohols, J. Pharm. Sci., 61, 94-97 (1972). R. Lumry, S. Rajender, Enthalpy-entropy compensation phenomena in water solutions of proteins and small molecules: A ubiquitous properly of water, Biopolymers, 9, 1125-1227 (1970). A. Ben-Naim, Theory of preferential solvation of nonelectrolytes, Cell Biophys., 12, 255-269 (1988). A. Ben-Naim, A.M. Navarro, J.M. Leal, A Kirkwood-Buff analysis of local properties of solutions, Phys. Chem. Chem. Phys., 10, 2451-2460 (2008) A. Ben-Naim, Inversion of the Kirkwood-Buff theory of solutions: Application to the water-ethanol system, J. Chem. Phys., 67, 4884-4890 (1977). Y. Marcus, Solvent mixtures: Properties and selective solvation, Marcel Dekker, Inc, New York , 2002. D.R. Delgado, O.A. Almanza, F. Martínez, M.A. Peña, A. Jouyban, W.E. Acree, Jr., Solution thermodynamics and preferential solvation of sulfamethazine in (methanol + water) mixtures, J. Chem. Thermodyn., 97, 264-276 (2016). A. Ben-Naim, Preferential solvation in two- and in three-component systems, Pure Appl. Chem., 62, 25-34 (1990). J.J. Sandoval-Castro, C.P. Ortiz, J.D Rodríguez-Rubiano, G.A. Rodríguez-Rodríguez, D.R. Delgado, Preferential solvation of tricin in {ethanol (1) + water (2)} mixtures at several temperatures, Rev. Colomb. Cienc. Quím. Farm., 47, -148 (2018). A.C. Gaviria-Castillo, J.D. Artunduaga-Tole, J.D. Rodríguez-Rubiano, J.A. Zuñiga-Andrade, D.R. Delgado, A. Jouyban, F. Martínez, Solution thermodynamics and preferential solvation of triclocarban in {1,4-dioxane (1) + water (2)} mixtures at 298.15 K, Phys. Chem. Liq., 57, 55-66 (2019). D.R. Delgado, F. Martínez, Preferential solvation of sulfadiazine, sulfamerazine and sulfamethazine in ethanol + water solvent mixtures according to the IKBI method, J. Mol. Liq., 193, 152-159 (2014). Z.J. Cárdenas, D.M. Jiménez, D.R. Delgado, O.A. Almanza, A. Jouyban, F. Martínez, W.E. Acree, Jr., Solubility and preferential solvation of some n-alkyl-parabens in methanol + water mixtures at 298.15 K, J. Chem. Thermodyn., 108, 26-37 (2017). D.R. Delgado, F. Martínez, Preferential solvation of some structurally related sulfonamides in 1-propanol + water co-solvent mixtures, Phys. Chem. Liq., 53, 293-306 (2015). P. García-Giménez, J.F. Martínez-López, S.T. Blanco, I. Velasco, S. Otín, Densities and isothermal compressibilities at pressures up to 20 MPa of the systems N,N-dimethylformamide or N,N-dimethylacetamide + α,ω- dichloroalkane, J. Chem. Eng. Data, 52, 2368-2374 (2007). Y. Marcus, The Properties of Solvents, John Wiley & Sons, Ltd., New York, 1999. S. Gadžurić, A. Tot, N. Zec, S. Papović, M. Vraneš, Volumetric properties of binary mixtures of 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate with N-methylformamide, N-ethylformamide, N,N-dimethylformamide, N,N-dibutylformamide, and N,N-dimethylacetamide from (293.15 to 323, J. Chem. Eng. Data, , 1225-1231 (2014). M.L. Kijevčanin, M.M. Djuriš, I.R. Radović, B.D. Djordjević, S.P. Šerbanović, Volumetric properties of the binary methanol + chloroform and ternary methanol + chloroform + benzene mixtures at (288.15, 293.15, 298.15, 303.15, 308.15, and 313.15) K, J. Chem. Eng. Data, 52, 1136-1140 (2007). M.Á. Peña, D.R. Delgado, F. Martínez, Preferential solvation of indomethacin in 1,4-dioxane + water mixtures according to the inverse Kirkwood-Buff integrals method, Phys. Chem. Liq., 54, 462-474 (2016). D.M. Jiménez, Z.J. Cárdenas, D.R. Delgado, M.A. Peña, F. Martínez, Solubility temperature dependence and preferential solvation of sulfadiazine in 1,4-dioxane+water co-solvent mixtures, Fluid Phase Equilib., 397, 26-36 (2015). M.Á. Peña, D.R. Delgado, F. Martínez, Preferential solvation of some n-alkyl p-substituted benzoates in propylene glycol + water cosolvent mixtures, Phys. Chem. Liq., 53, 455-466 (2015). M.J. Kamlet, R.W. Taft, The solvatochromic comparison method. I. The β-scale of solvent hydrogen-bond acceptor (HBA) basicities, J. Am. Chem. Soc., 98, 377-383 (1976). C. Laurence, J. Legros, P. Nicolet, D. Vuluga, A. Chantzis, D. Jacquemin, Solvatomagnetic comparison method: A proper quantification of solvent hydrogen-bond basicity, J. Phys. Chem. B, 118, 7594-7608 (2014). |
dc.rights.license.none.fl_str_mv |
Atribución |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
p. 1-24 |
dc.coverage.temporal.spa.fl_str_mv |
49 |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, Neiva |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Industrial |
dc.publisher.place.spa.fl_str_mv |
Neiva |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/25bd5fde-cda8-43d8-a5b5-65c2d03c27d8/download https://repository.ucc.edu.co/bitstreams/6ee4bf7a-b814-43c7-80c6-da2cce63af4f/download https://repository.ucc.edu.co/bitstreams/0ffb7ca8-6535-481f-9a83-976980bfa3fa/download https://repository.ucc.edu.co/bitstreams/64d66dd7-1bf2-4b92-8f66-a52763c44309/download |
bitstream.checksum.fl_str_mv |
c0f762a57f2fb1e90d9acd443b6baa42 3bce4f7ab09dfc588f126e1e36e98a45 45e2126fbaead56d28aec5e3e81f0e0a 3eccd91466f5de8f2a6faa96e3523658 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814247295529517056 |
spelling |
Rojas-Motta, MónicaRojas-Motta, Jhon EdinsonDiaz-Jimenez, Jorge LuisBahos-Narváez, Fabio AndrésBlanco Márquez, Joaquín H492020-11-20T17:20:00Z2020-11-20T17:20:00Z2020-11-0119096356https://doi.org/10.15446/rcciquifa.v49n3.91337https://hdl.handle.net/20.500.12494/28233Rojas-Motta, M., Rojas-Motta, J. E. ., Diaz-Jimenez, J. L. ., Bahos-Narváez, F. A., Blanco-Márquez, J. H. ., Ortiz, C. P., & Delgado, D. R. . (2020). Análisis termodinámico y solvatación preferencial de gatifloxacina en mezclas cosolventes DMF + metanol. Revista Colombiana De Ciencias Químico-Farmacéuticas, 49(3). https://doi.org/10.15446/rcciquifa.v49n3.91337Este artículo presenta el análisis termodinámico de la solubilidad de gatifloxacinaen el sistema cosolvente de N,N-Dimetilformamida (DMF) + metanol (MeOH) a 10 temperaturas. A partir de los datos de solubilidad se calculan las funciones termodinámicas de solución, mezcla y transferencia. Para el análisis además se utiliza el método gráfico Perlovich. Por otro lado, serealiza un análisis de compensación entalpía-entropía y se calculan los parámetros de solvatación preferencial utilizando el método de las integrales inversas de Kirkwood-Buff (IIKB). Los resultados del análisis termodinámico indican que el proceso de solución de gatifloxacina es endotérmicacon favorecimiento entrópico, donde la adición de DMF tiene un efecto cosolvente positivo en todos los casos. En cuanto a la solvatación preferencial, los resultados no son del todo concluyentes, debido a que en todos los casos los valores del parámetro de solvatación preferencial son menores a 0,01 indicando una solvatación insignificanteThis paper presents the thermodynamic analysis of solubility of gatifloxacin in the N,N-Dimethylformamide (DMF) + methanol (MeOH) cosolvent system at 10 temperatures. From the solubility data, the thermodynamic functions of solution, mixing, and transfers are calculated and analyzed using the Perlovich graphical method. On the other hand, an enthalpy-entropy compensation analysis is performed and the preferential solvation parameters are calculated using the inverse Kirkwood-Buff integral (IKBI) method. The result of the performed calculations indicates that the gatifloxacin solution process is endothermic with entropic favor, where the addition of DMF has a positive cosolvent effect in all cases. Regarding preferential solvation, the results are not entirely conclusive, since in all cases the values of the preferential solvation parameter are less than 0.01, so that, negligible preferential solvation takes place.http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001402116https://orcid.org/0000-0002-4835-9739https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000004151danielr.delgado@campusucc.edu.cohttps://scholar.google.es/citations?user=OW0mejcAAAAJ&hl=esp. 1-24Universidad Nacional de ColombiaUniversidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, NeivaIngeniería IndustrialNeivahttps://revistas.unal.edu.co/index.php/rccquifa/article/view/91337Revista Colombiana de Ciencias Químico-FarmacéuticasC. Schultz, gatifloxacin ophthalmic solution for treatment of bacterial conjunctivitis: Safety, efficacy and patient perspective, Ophthalmol. Eye Dis., 4, 65-70 (2012).D. Deshpande, J.G. Pasipanodya, S. Srivastava, P. Bendet, T. Koeuth, S.M. Bhavnani, P.G. Ambrose, W. Smythe, H. Mcilleron, G. Thwaites, M. Gumusboga, A. Van Deun, T. Gumbo, gatifloxacin pharmacokinetics/pharmacodynamics-based optimal dosing for pulmonary and meningeal multidrug-resistant tuberculosis, Clin. Infect. Dis., 67, 274-283 (2018).P.S. Coburn, F.C. Miller, A.L. LaGrow, C. Land, H. Mursalin, E. Livingston, O. Amayem, Y. Chen, W. Gao, L. Zhang, M.C. Callegan, Disarming pore-forming toxins with biomimetic nanosponges in intraocular infections, mSphere, 4, e00262-19 (2019).A.M. Romero-Nieto, N.E. Cerquera, F. Martínez, D.R. Delgado, Thermodynamic study of the solubility of ethylparaben in acetonitrile + water cosolvent mixtures at different temperatures, J. Mol. Liq., 287, 110894 (2019).D.R. Delgado, D.I. Caviedes-Rubio, C.P. Ortiz, Y.L. Parra-Pava, M.Á. Peña, A. Jouyban, S.N. Mirheydari, F. Martínez, W.E. Acree, Jr., Solubility of sulphadiazine in (acetonitrile + water) mixtures: Measurement, correlation, thermodynamics and preferential solvation, Phys. Chem. Liq., 58, 381-396 (2020).J.A. Oliveira, O.J. Oliveira, A.R. Ometto, A.S. Ferraudo, M.H. Salgado, Environmental management system ISO 14001 factors for promoting the adoption of cleaner production practices, J. Clean Prod., 133, 1384-1394 (2016).D.I. Caviedes-Rubio, D.R. Delgado, A. Olaya-Amaya, Normatividad ambiental dirigida a regular la presencia de los productos farmacéuticos residuales en ambientes acuáticos, Rev. Jurídica Piélagus, 16, 121-130 (2017).D. Yue, W.E. Acree, M.H. Abraham, Applications of Abraham solvation parameter model: estimation of the lethal median molar concentration of the antiepileptic drug levetiracetam towards aquatic organisms from measured solubility data, Phys. Chem. Liq., 58, 302-308 (2020).D.R. Delgado, M.A. Peña, F. Martínez, A. Jouyban, W.E. Acree, Further numerical analyses on the solubility of sulfapyridine in ethanol + water mixtures, Pharm. Sci., 22, 143-152 (2016).Y. Marcus, On the preferential solvation of drugs and PAHs in binary solvent mixtures, J. Mol. Liq., 140, 61-67 (2008).S.K. Samanta, O.V. Singh, R.K. Jain, Polycyclic aromatic hydrocarbons: Environmental pollution and bioremediation, Trends Biotechnol., 20, 243-248 (2002).N.T. Edwards, Polycyclic aromatic hydrocarbons (PAH’s) in the terrestrial environment-A Review, J. Environ. Quality, 12, 427-441 (1983).W.E. Acree, Jr., J.H. Rytting, Solubility in binary solvent systems I: Specific versus nonspecific interactions, J. Pharm. Sci., 71, 201-205 (1982).A. Jouyban-Gharamaleki, L. Valaee, M. Barzegar-Jalali, B.J. Clark, W.E. Acree, Jr., Comparison of various cosolvency models for calculating solute solubility in water-cosolvent mixtures, Int. J. Pharm., 177, 93-101 (1999).A. Jouyban, Solubility prediction of drugs in water-polyethylene glycol 400 mixtures using Jouyban-Acree model, Chem. Pharm. Bull., 54, 1561-1566 (2006).Z.J. Cárdenas, D.M. Jiménez, G.A. Rodríguez, D.R. Delgado, F. Martínez, M. Khoubnasabjafari, A. Jouyban, Solubility of methocarbamol in some cosolvent + water mixtures at 298.15 K and correlation with the Jouyban-Acree model, J. Mol. Liq., 188, 162-166 (2013).W.E. Acree, Jr., J.H. Rytting, Solubility in binary solvent systems. IV. Prediction of naphthalene solubilities using the UNIFAC group contribution model, Int. J. Pharm., 13, 197-204 (1983).A. Martin, J. Newburger, A. Adjei, Extended Hildebrand solubility approach: Solubility of theophylline in polar binary solvents, J. Pharm. Sci., 69, 487-491 (1980).W.E. Acree, Jr., S.A. Tucker, Thermochemical investigations of hydrogen-bonded solutions Part 6. Comparison of mobile order theory versus Kretschmer-Wiebe association model for describing anthracene solubilities in binary hydrocarbon + alcohol solvent mixtures, Fluid Phase Equilib., 102, 17-29 (1994).E. Ruckenstein, I. Shulgin, Solubility of drugs in aqueous solutions: Part 1. Ideal mixed solvent approximation, Int. J. Pharm., 258, 193-201 (2003).J. Wu, R. Xu, J. Wang, H. Zhao, Thermodynamic solubility of gatifloxacin in nonaqueous solvent mixtures of N,N-dimethylformamide plus isopropanol/methanol/ n-propanol/ethanol, J. Chem. Eng. Data, 64, 6071-6077 (2019).K. Shi, L. Feng, L. He, H. Li, Solubility determination and correlation of gatifloxacin, enrofloxacin, and ciprofloxacin in supercritical CO2, J. Chem. Eng. Data, 62, 4235-4243 (2017).J.H. Blanco-Márquez, Y.A. Quigua-Medina, J.D. García-Murillo, J.K. Castro-Camacho, C.P. Ortiz, N.E. Cerquera, D.R. Delgado, Thermodynamic analysis and applications of the Abraham solvation parameter model in the study of the solubility of some sulfonamides, Rev. Colomb. Cienc. Quím. Farm., 49, 234-255 (2020).I.P. Osorio, F. Martínez, D.R. Delgado, A. Jouyban, W.E. Acree, Jr., Solubility of sulfacetamide in aqueous propylene glycol mixtures: Measurement, correlation, dissolution thermodynamics, preferential solvation and solute volumetric contribution at saturation, J. Mol. Liq., 297, 111889 (2020).A.F.M. Barton, Handbook of solubility parameters and other cohesion parameters, 2nd ed., CRC Press, Boca Raton (FL), 1991.R.F. Fedors, A method for estimating both the solubility parameters and molar volumes of liquids, Polym. Eng. Sci., 14,147-154 (1974).J.H. Blanco-Márquez, C.P. Ortiz, N.E. Cerquera, F. Martínez, A. Jouyban, D.R. Delgado, Thermodynamic analysis of the solubility and preferential solvation of sulfamerazine in (acetonitrile + water) cosolvent mixtures at different temperatures, J. Mol. Liq., 293, 111507 (2019).J.H. Blanco-Márquez, D.I. Caviedes Rubio, C.P. Ortiz, N.E. Cerquera, F. Martínez, D.R. Delgado, Thermodynamic analysis and preferential solvation of sulfamethazine in acetonitrile + water cosolvent mixtures, Fluid Phase Equilib., 505, 112361 (2020).S.H. Yalkowsky, M. Wu, Estimation of the ideal solubility (crystal-liquid fugacity ratio) of organic compounds, J. Pharm. Sci., 99, 1100-1106 (2010).A.M. Romero-Nieto, D.I. Caviedes-Rubio, J. Polania-Orozco, N.E. Cerquera, D.R. Delgado, Temperature and cosolvent composition effects in the solubility of methylparaben in acetonitrile + water mixtures, Phys. Chem. Liq. Forthcomming 2020, doi: 10.1080/00319104.2019.1636379.M. Mirmehrabi, S. Rohani, L. Perry, Thermodynamic modeling of activity coefficient and prediction of solubility: Part 1 predictive models, J. Pharm. Sci., 95, 790-797 (2006).D.R. Delgado, A. Jouyban, F. Martínez, Solubility and preferential solvation of meloxicam in methanol+ water mixtures at 298.15 K, J. Mol. Liq., 197, 368-376 (2014).D.R. Delgado, F. Martínez, Solution thermodynamics of sulfadiazine in ethanol + water mixtures, J. Mol. Liq., 187, 99-105 (2013).R.R. Krug, W.G. Hunter, R.A. Grieger, Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van’t Hoff and arrhenius data, J. Phys. Chem., 80, 2335-2341 (1976).R.R. Krug, W.G. Hunter, R.A. Grieger, Enthalpy-entropy compensation. 2. Separation of the chemical from the statistical effect, J. Phys. Chem., 80, 2341-2351 (1976).D.R. Delgado, A. Romdhani, F. Martínez, Solubility of sulfamethizole in some propylene glycol+water mixtures at several temperatures, Fluid Phase Equilib., 322,-113-119 (2012).D.R. Delgado, G.A. Rodríguez, F. Martínez, Thermodynamic study of the solubility of sulfapyridine in some ethanol + water mixtures, J. Mol. Liq., 177, 156-161 (2013).G.L. Perlovich, A.M. Ryzhakov, N.N. Strakhova, V.P. Kazachenko, K.-J. Schaper, O.A. Raevsky, Thermodynamic aspects of solubility and partitioning processes of some sulfonamides in the solvents modeling biological media, J.Chem. Thermodyn., 69, 56-65 (2014).G.L. Perlovich, N.N. Strakhova, V.P. Kazachenko, T.V. Volkova, V.V. Tkachev, K.-J. Schaper, O.A. Raevsky, Sulfonamides as a subject to study molecular interactions in crystals and solutions: Sublimation, solubility, solvation, distribution and crystal structure, Int. J. Pharm., 349, 300-313 (2008).A.R. Holguín, D.R. Delgado, F. Martínez, Thermodynamic study of the solubility of triclocarban in ethanol + propylene glycol mixtures, Quim. Nova, 35, 280-285 (2012).G.L. Perlovich, V.V. Tkachev, N.N. Strakhova, V.P. Kazachenko, T.V. Volkova, O.V. Surov, K.J. Schaper, O.A. Raevsky, Thermodynamic and structural aspects of sulfonamide crystals and solutions, J. Pharm. Sci., 98, 4738-4755 (2009).D.R. Delgado, E.M. Mogollon-Waltero, C.P. Ortiz, M.Á. Peña, O.A. Almanza, F. Martínez, A. Jouyban, Enthalpy-entropy compensation analysis of the triclocarban dissolution process in some {1,4-dioxane (1) + water (2)} mixtures, J. Mol. Liq., 271, 522-529 (2018).M.A. Ruidiaz, D.R. Delgado, F. Martínez, Y. Marcus, Solubility and preferential solvation of indomethacin in 1,4-dioxane+water solvent mixtures, Fluid Phase Equilib., 299, 259-265 (2010).R.A. Gutiérrez, D.R. Delgado, F. Martínez, Solution thermodynamics of lysine clonixinate in some ethanol + water mixtures, Lat. Am. J. Pharm., 31, 226-234 (2012).D.R. Delgado, E.F. Vargas, F. Martínez, Thermodynamics of the mixing process of several sodium sulfonamides in ethanol + water cosolvent mixtures, Vitae, Rev. Fac. Quim. Farm., 18, 192-200 (2011).D.M. Cristancho, R.G. Sotomayor, D.R. Delgado, A. Romdhani, F. Martínez, Thermodynamics of mixing of the β-adrenergic blocker propranolol-HCl in ethanol + water mixtures, Rev. Colomb. Cienc. Quim. Farm., 40, 261-271 (2011).P. Bustamante, B. Escalera, Enthalpy and entropy contributions to the solubility of sulphamethoxypyridazine in solvent mixtures showing two solubility maxima, J. Pharm. Pharmacol., 47, 550-555 (1995).D.R. Delgado, A.R. Holguín, O.A. Almanza, F. Martínez, Y. Marcus, Solubility and preferential solvation of meloxicam in ethanol+water mixtures, Fluid Phase Equilib., 305, 88-95 (2011).J.W. Mauger, A.N. Paruta, R.J. Gerraughty, Solubilities of sulfadiazine, sulfisomidine, and sulfadimethoxine in several normal alcohols, J. Pharm. Sci., 61, 94-97 (1972).R. Lumry, S. Rajender, Enthalpy-entropy compensation phenomena in water solutions of proteins and small molecules: A ubiquitous properly of water, Biopolymers, 9, 1125-1227 (1970).A. Ben-Naim, Theory of preferential solvation of nonelectrolytes, Cell Biophys., 12, 255-269 (1988).A. Ben-Naim, A.M. Navarro, J.M. Leal, A Kirkwood-Buff analysis of local properties of solutions, Phys. Chem. Chem. Phys., 10, 2451-2460 (2008)A. Ben-Naim, Inversion of the Kirkwood-Buff theory of solutions: Application to the water-ethanol system, J. Chem. Phys., 67, 4884-4890 (1977).Y. Marcus, Solvent mixtures: Properties and selective solvation, Marcel Dekker, Inc, New York , 2002.D.R. Delgado, O.A. Almanza, F. Martínez, M.A. Peña, A. Jouyban, W.E. Acree, Jr., Solution thermodynamics and preferential solvation of sulfamethazine in (methanol + water) mixtures, J. Chem. Thermodyn., 97, 264-276 (2016).A. Ben-Naim, Preferential solvation in two- and in three-component systems, Pure Appl. Chem., 62, 25-34 (1990).J.J. Sandoval-Castro, C.P. Ortiz, J.D Rodríguez-Rubiano, G.A. Rodríguez-Rodríguez, D.R. Delgado, Preferential solvation of tricin in {ethanol (1) + water (2)} mixtures at several temperatures, Rev. Colomb. Cienc. Quím. Farm., 47, -148 (2018).A.C. Gaviria-Castillo, J.D. Artunduaga-Tole, J.D. Rodríguez-Rubiano, J.A. Zuñiga-Andrade, D.R. Delgado, A. Jouyban, F. Martínez, Solution thermodynamics and preferential solvation of triclocarban in {1,4-dioxane (1) + water (2)} mixtures at 298.15 K, Phys. Chem. Liq., 57, 55-66 (2019).D.R. Delgado, F. Martínez, Preferential solvation of sulfadiazine, sulfamerazine and sulfamethazine in ethanol + water solvent mixtures according to the IKBI method, J. Mol. Liq., 193, 152-159 (2014).Z.J. Cárdenas, D.M. Jiménez, D.R. Delgado, O.A. Almanza, A. Jouyban, F. Martínez, W.E. Acree, Jr., Solubility and preferential solvation of some n-alkyl-parabens in methanol + water mixtures at 298.15 K, J. Chem. Thermodyn., 108, 26-37 (2017).D.R. Delgado, F. Martínez, Preferential solvation of some structurally related sulfonamides in 1-propanol + water co-solvent mixtures, Phys. Chem. Liq., 53, 293-306 (2015).P. García-Giménez, J.F. Martínez-López, S.T. Blanco, I. Velasco, S. Otín, Densities and isothermal compressibilities at pressures up to 20 MPa of the systems N,N-dimethylformamide or N,N-dimethylacetamide + α,ω- dichloroalkane, J. Chem. Eng. Data, 52, 2368-2374 (2007).Y. Marcus, The Properties of Solvents, John Wiley & Sons, Ltd., New York, 1999.S. Gadžurić, A. Tot, N. Zec, S. Papović, M. Vraneš, Volumetric properties of binary mixtures of 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate with N-methylformamide, N-ethylformamide, N,N-dimethylformamide, N,N-dibutylformamide, and N,N-dimethylacetamide from (293.15 to 323, J. Chem. Eng. Data, , 1225-1231 (2014).M.L. Kijevčanin, M.M. Djuriš, I.R. Radović, B.D. Djordjević, S.P. Šerbanović, Volumetric properties of the binary methanol + chloroform and ternary methanol + chloroform + benzene mixtures at (288.15, 293.15, 298.15, 303.15, 308.15, and 313.15) K, J. Chem. Eng. Data, 52, 1136-1140 (2007).M.Á. Peña, D.R. Delgado, F. Martínez, Preferential solvation of indomethacin in 1,4-dioxane + water mixtures according to the inverse Kirkwood-Buff integrals method, Phys. Chem. Liq., 54, 462-474 (2016).D.M. Jiménez, Z.J. Cárdenas, D.R. Delgado, M.A. Peña, F. Martínez, Solubility temperature dependence and preferential solvation of sulfadiazine in 1,4-dioxane+water co-solvent mixtures, Fluid Phase Equilib., 397, 26-36 (2015).M.Á. Peña, D.R. Delgado, F. Martínez, Preferential solvation of some n-alkyl p-substituted benzoates in propylene glycol + water cosolvent mixtures, Phys. Chem. Liq., 53, 455-466 (2015).M.J. Kamlet, R.W. Taft, The solvatochromic comparison method. I. The β-scale of solvent hydrogen-bond acceptor (HBA) basicities, J. Am. Chem. Soc., 98, 377-383 (1976).C. Laurence, J. Legros, P. Nicolet, D. Vuluga, A. Chantzis, D. Jacquemin, Solvatomagnetic comparison method: A proper quantification of solvent hydrogen-bond basicity, J. Phys. Chem. B, 118, 7594-7608 (2014).GatifloxacinaSolubilidadN,N-dimetilformamidaIKBISolvatación preferencialGatifloxacinSolubilityN,N-dimethylformamideIKBIPreferential solvationThermodynamic analysis and preferential solvation of gatifloxacin in DMF+ methanol cosolvent mixturesArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINAL2020_Thermodynamic_solvation_gatifloxacin.pdf2020_Thermodynamic_solvation_gatifloxacin.pdfArtículo científico Capplication/pdf649399https://repository.ucc.edu.co/bitstreams/25bd5fde-cda8-43d8-a5b5-65c2d03c27d8/downloadc0f762a57f2fb1e90d9acd443b6baa42MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/6ee4bf7a-b814-43c7-80c6-da2cce63af4f/download3bce4f7ab09dfc588f126e1e36e98a45MD52THUMBNAIL2020_Thermodynamic_solvation_gatifloxacin.pdf.jpg2020_Thermodynamic_solvation_gatifloxacin.pdf.jpgGenerated Thumbnailimage/jpeg4990https://repository.ucc.edu.co/bitstreams/0ffb7ca8-6535-481f-9a83-976980bfa3fa/download45e2126fbaead56d28aec5e3e81f0e0aMD53TEXT2020_Thermodynamic_solvation_gatifloxacin.pdf.txt2020_Thermodynamic_solvation_gatifloxacin.pdf.txtExtracted texttext/plain48832https://repository.ucc.edu.co/bitstreams/64d66dd7-1bf2-4b92-8f66-a52763c44309/download3eccd91466f5de8f2a6faa96e3523658MD5420.500.12494/28233oai:repository.ucc.edu.co:20.500.12494/282332024-08-10 21:01:02.864restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo= |