Influencia de la incorporación de microesferas de vidrio en las propiedades mecánicas de concretos preparados con poliestireno

El concreto preparado a partir de poliestireno expandido (PE) es un material de construcción ligero, ambientalmente amigable, dependiendo de la densidad y los requisitos de resistencia, el concreto de poliestireno expandido PE se utiliza ampliamente en diferentes elementos estructurales. En este tra...

Full description

Autores:
Limas Granados, David Santiago
Echeverry Sánchez, Nicol Fernanda
Valle Zapata, Elizabeth
Arbeláez Pérez, Oscar Felipe
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/35816
Acceso en línea:
https://hdl.handle.net/20.500.12494/35816
Palabra clave:
Concreto modificado
Resistencia a Compresión
Microesferas de vidrio
Propiedades Mecánicas
TG 2021 ICI
Rights
closedAccess
License
Atribución
id COOPER2_6b940852448cdd864f362520ee4bea26
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/35816
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Influencia de la incorporación de microesferas de vidrio en las propiedades mecánicas de concretos preparados con poliestireno
title Influencia de la incorporación de microesferas de vidrio en las propiedades mecánicas de concretos preparados con poliestireno
spellingShingle Influencia de la incorporación de microesferas de vidrio en las propiedades mecánicas de concretos preparados con poliestireno
Concreto modificado
Resistencia a Compresión
Microesferas de vidrio
Propiedades Mecánicas
TG 2021 ICI
title_short Influencia de la incorporación de microesferas de vidrio en las propiedades mecánicas de concretos preparados con poliestireno
title_full Influencia de la incorporación de microesferas de vidrio en las propiedades mecánicas de concretos preparados con poliestireno
title_fullStr Influencia de la incorporación de microesferas de vidrio en las propiedades mecánicas de concretos preparados con poliestireno
title_full_unstemmed Influencia de la incorporación de microesferas de vidrio en las propiedades mecánicas de concretos preparados con poliestireno
title_sort Influencia de la incorporación de microesferas de vidrio en las propiedades mecánicas de concretos preparados con poliestireno
dc.creator.fl_str_mv Limas Granados, David Santiago
Echeverry Sánchez, Nicol Fernanda
Valle Zapata, Elizabeth
Arbeláez Pérez, Oscar Felipe
dc.contributor.author.none.fl_str_mv Limas Granados, David Santiago
Echeverry Sánchez, Nicol Fernanda
Valle Zapata, Elizabeth
Arbeláez Pérez, Oscar Felipe
dc.subject.spa.fl_str_mv Concreto modificado
Resistencia a Compresión
Microesferas de vidrio
Propiedades Mecánicas
topic Concreto modificado
Resistencia a Compresión
Microesferas de vidrio
Propiedades Mecánicas
TG 2021 ICI
dc.subject.classification.spa.fl_str_mv TG 2021 ICI
description El concreto preparado a partir de poliestireno expandido (PE) es un material de construcción ligero, ambientalmente amigable, dependiendo de la densidad y los requisitos de resistencia, el concreto de poliestireno expandido PE se utiliza ampliamente en diferentes elementos estructurales. En este trabajo presenta los resultados de la incorporación de microesferas de vidrio en las propiedades mecánicas de concretos modificados con poliestireno expandido. Se prepararon especímenes cilíndricos de concreto modificado con una incorporación de 25% de poliestireno y reemplazos del 5, 10 y 15% de los agregados finos por microesferas de vidrio. Se encontró que un incremento en el contenido de microesferas fue directamente proporcional al asentamiento, la densidad y la resistencia a la compresión. El concreto preparado con un mayor contenido de microesferas, presentó la mayor resistencia a la compresión, alcanzado un aumento del 19% con respecto al material tradicional. La sustitución de microesferas de vidrio por agregado fino en las mezclas de concreto elaboradas a partir de poliestireno expandido mejora las propiedades mecánicas, asimismo se convierte en un sistema potencial como reemplazo de los materiales tradicionales en la elaboración de concreto.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-09-02T21:37:32Z
dc.date.available.none.fl_str_mv 2021-09-02T21:37:32Z
dc.date.issued.none.fl_str_mv 2021-09-02
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/35816
dc.identifier.bibliographicCitation.spa.fl_str_mv Valle, E; Limas, D. Echeverry, N; y Arbeláez O. (2021). Influencia de la incorporación de microesferas de vidrio en las propiedades mecánicas de concretos preparados con poliestireno. [Tesis de grado. Universidad Cooperativa de Colombia]. Repositorio Institucional UCC
url https://hdl.handle.net/20.500.12494/35816
identifier_str_mv Valle, E; Limas, D. Echeverry, N; y Arbeláez O. (2021). Influencia de la incorporación de microesferas de vidrio en las propiedades mecánicas de concretos preparados con poliestireno. [Tesis de grado. Universidad Cooperativa de Colombia]. Repositorio Institucional UCC
dc.relation.references.spa.fl_str_mv K. Robalo, H. Costa, R. do Carmo, E. Júlio, Experimental development of low cement content and recycled construction and demolition waste aggregates concrete, Constr. Build. Mater. 273 (2021) 121680. https://doi.org/10.1016/j.conbuildmat.2020.121680.
V.K. Kumar, A.K. Priya, G. Manikandan, A.S. Naveen, B. Nitishkumar, P. Pradeep, Review of materials used in light weight concrete, Mater. Today Proc. 37 (2020) 3538–3539. https://doi.org/10.1016/j.matpr.2020.09.425
N. Chaukura, W. Gwenzi, T. Bunhu, D.T. Ruziwa, I. Pumure, Potential uses and value-added products derived from waste polystyrene in developing countries: A review, Resour. Conserv. Recycl. 107 (2016) 157–165. https://doi.org/10.1016/j.resconrec.2015.10.031
O.F. Arbelaez-Perez, J.F. Venites-Mosquera, Y.M. Córdoba-Palacios, K.P. Mena-Ramírez, Propiedades mecánicas de concretos modificados con plástico marino reciclado en reemplazo de los agregados finos, Rev. Politécnica. 16 (2020) 77–84. https://doi.org/10.33571/rpolitec.v16n31a6.
Z. Hamid, S. Rafiq, An experimental study on behavior of wood ash in concrete as partial replacement of cement, Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2020.11.776.
A.A. Aliabdo, A.E.M. Abd Elmoaty, A.Y. Aboshama, Utilization of waste glass powder in the production of cement and concrete, Constr. Build. Mater. 124 (2016) 866–877. https://doi.org/10.1016/j.conbuildmat.2016.08.016.
E. Aprianti, P. Shafigh, S. Bahri, J.N. Farahani, Supplementary cementitious materials origin from agricultural wastes - A review, Constr. Build. Mater. 74 (2015) 176–187. https://doi.org/10.1016/j.conbuildmat.2014.10.010.
N. Kumar Sharma, Experimental study of concrete prepared by different waste products, Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2020.12.1150.
https://www.grandviewresearch.com/industry-analysis/expanded-polystyrene- eps-market/toc. 2017, (2017) 2017.
L. Gu, T. Ozbakkaloglu, Use of recycled plastics in concrete: A critical review, Waste Manag. 51 (2016) 19–42. https://doi.org/10.1016/j.wasman.2016.03.005.
A.N. Uttaravalli, S. Dinda, B.R. Gidla, Scientific and engineering aspects of potential applications of post-consumer (waste) expanded polystyrene: A review, Process Saf. Environ. Prot. 137 (2020) 140–148. https://doi.org/10.1016/j.psep.2020.02.023.
C.A. Cadere, M. Barbuta, B. Rosca, A.A. Serbanoiu, A. Burlacu, I. Oancea, Engineering properties of concrete with polystyrene granules, Procedia Manuf. 22 (2018) 288–293. https://doi.org/10.1016/j.promfg.2018.03.044.
D.S. Babu, K. Ganesh Babu, T.H. Wee, Properties of lightweight expanded polystyrene aggregate concretes containing fly ash, Cem. Concr. Res. 35 (2005) 1218–1223. https://doi.org/10.1016/j.cemconres.2004.11.015.
H.J. Mohammed, O.K. Aayeel, Flexural behavior of reinforced concrete beams containing recycled expandable polystyrene particles, J. Build. Eng. 32 (2020) 101805. https://doi.org/10.1016/j.jobe.2020.101805.
R. Madandoust, M.M. Ranjbar, S. Yasin Mousavi, An investigation on the fresh properties of self-compacted lightweight concrete containing expanded polystyrene, Constr. Build. Mater. 25 (2011) 3721–3731. https://doi.org/10.1016/j.conbuildmat.2011.04.018.
I.M. Nikbin, M. Golshekan, The effect of expanded polystyrene synthetic particles on the fracture parameters, brittleness and mechanical properties of concrete, Theor. Appl. Fract. Mech. 94 (2018) 160–172. https://doi.org/10.1016/j.tafmec.2018.02.002.
B. Rosca, V. Corobceanu, Structural grade concrete containing expanded polystyrene beads with different particle distributions of normal weight aggregate, Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.10.517.
D. Oreshkin, V. Semenov, T. Rozovskaya, Properties of Light-weight Extruded Concrete with Hollow Glass Microspheres, Procedia Eng. 153 (2016) 638–643. https://doi.org/10.1016/j.proeng.2016.08.214.
J.P. Valencia-Villegas, A.M. González Mesa, O.F. Arbeláez-Pérez, Properties of modified concrete with crumb rubber: Effect of the incorporation of hollow glass microspheres, Rev. Fac. Ing. Univ. Antioquia. (2020) 1–10. https://doi.org/10.17533/udea.redin.20200473.
J.P. Valencia Villegas, A.M. González Mesa, O.F. Arbelaez Perez, Evaluación de las propiedades mecánicas de concretos modificados con microesferas de vidrio y residuos de llantas, Lámpsakos. (2019). https://doi.org/10.21501/21454086.3283.
L. Wang, F. Aslani, I. Hajirasouliha, E. Roquino, Ultra-lightweight engineered cementitious composite using waste recycled hollow glass microspheres, J. Clean. Prod. 249 (2020) 119331. https://doi.org/10.1016/j.jclepro.2019.119331.
ASTM International, Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate, ASTM C29/C29M-07. United States, 2007.
ASTM International, Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate, ASTM C127-15. United States, 2015.
ASTM International, Standard Test Method for Total Evaporable Moisture Content of Aggregate by Drying, ASTM C566-19. United States, 2019.
ASTM International, Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates, ASTM C136/C136M-19. United States, 2019.
ACI Committee, Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete, ACI 211.1-91. United States, 1991.
ASTM International, Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, ASTM C192/C192M-19. United States, 2019.
ASTM International, Standard Test Method for Slump of Hydraulic-Cement Concrete, ASTM C143/C143M-20. United States, 2020.
ASTM International, Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM C496/C496M-17. United States, 2017.
EFNARC (European Federation of Specialist Construction Chemicals and Concrete Systems). The European guidelines for selfcompacting concrete: Specification, production and use 2005 U.K., (2005) 2020.
B. Balasubramanian, G.V.T. Gopala Krishna, V. Saraswathy, K. Srinivasan, Experimental investigation on concrete partially replaced with waste glass powder and waste E-plastic, Constr. Build. Mater. 278 (2021) 122400. https://doi.org/10.1016/j.conbuildmat.2021.122400.
A.H. Medher, A.I. Al-Hadithi, N. Hilal, The Possibility of Producing Self-Compacting Lightweight Concrete by Using Expanded Polystyrene Beads as Coarse Aggregate, Arab. J. Sci. Eng. (2020). https://doi.org/10.1007/s13369-020-04886-9.
S. Grzeszczyk, G. Janus, Reactive powder concrete with lightweight aggregates, Constr. Build. Mater. 263 (2020) 120164. https://doi.org/10.1016/j.conbuildmat.2020.120164.
H. Su, J. Yang, T. Ling, G.S. Ghataora, S. Dirar, Properties of concrete prepared with waste tyre rubber particles of uniform and varying sizes, J. Clean. Prod. 91 (2015) 288–296. https://doi.org/10.1016/j.jclepro.2014.12.022.
dc.rights.license.none.fl_str_mv Atribución
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_14cb
rights_invalid_str_mv Atribución
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.extent.spa.fl_str_mv 11 p.
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Medellín y Envigado
dc.publisher.program.spa.fl_str_mv Ingeniería Civil
dc.publisher.place.spa.fl_str_mv Medellín
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/6d30aaca-8d89-4053-bdf7-dec845920f0d/download
https://repository.ucc.edu.co/bitstreams/590aa7d8-7a87-4c04-936c-d9a17053141c/download
https://repository.ucc.edu.co/bitstreams/8cdcfbf2-d652-4504-a95a-46900d21b9ae/download
https://repository.ucc.edu.co/bitstreams/4cdfb510-a6e6-41c2-8474-1d247ee31c46/download
https://repository.ucc.edu.co/bitstreams/2d4e9927-2e06-48e7-bb89-3fdd48fe71fe/download
https://repository.ucc.edu.co/bitstreams/02889ebf-c6c2-46ff-9cd2-4df446e1e23b/download
https://repository.ucc.edu.co/bitstreams/ba667c4f-e52d-4989-a0f6-84a72f1cb3a7/download
bitstream.checksum.fl_str_mv 3bce4f7ab09dfc588f126e1e36e98a45
9d193e79cb71c09d4116f75201bfb19d
cfdb394511e61a17228990bfdb829e10
7fcdaa87d6cfd0632584af7b0ecf411a
8bd3180f444bc548514cd8a51531757c
d3a22fd7c9cf59e2ce7b10151e47d99a
3e49004a0e49dee639002ec2403de0d2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814247303913930752
spelling Limas Granados, David SantiagoEcheverry Sánchez, Nicol FernandaValle Zapata, ElizabethArbeláez Pérez, Oscar Felipe2021-09-02T21:37:32Z2021-09-02T21:37:32Z2021-09-02https://hdl.handle.net/20.500.12494/35816Valle, E; Limas, D. Echeverry, N; y Arbeláez O. (2021). Influencia de la incorporación de microesferas de vidrio en las propiedades mecánicas de concretos preparados con poliestireno. [Tesis de grado. Universidad Cooperativa de Colombia]. Repositorio Institucional UCCEl concreto preparado a partir de poliestireno expandido (PE) es un material de construcción ligero, ambientalmente amigable, dependiendo de la densidad y los requisitos de resistencia, el concreto de poliestireno expandido PE se utiliza ampliamente en diferentes elementos estructurales. En este trabajo presenta los resultados de la incorporación de microesferas de vidrio en las propiedades mecánicas de concretos modificados con poliestireno expandido. Se prepararon especímenes cilíndricos de concreto modificado con una incorporación de 25% de poliestireno y reemplazos del 5, 10 y 15% de los agregados finos por microesferas de vidrio. Se encontró que un incremento en el contenido de microesferas fue directamente proporcional al asentamiento, la densidad y la resistencia a la compresión. El concreto preparado con un mayor contenido de microesferas, presentó la mayor resistencia a la compresión, alcanzado un aumento del 19% con respecto al material tradicional. La sustitución de microesferas de vidrio por agregado fino en las mezclas de concreto elaboradas a partir de poliestireno expandido mejora las propiedades mecánicas, asimismo se convierte en un sistema potencial como reemplazo de los materiales tradicionales en la elaboración de concreto.Concrete prepared from expanded polystyrene EPS is lightweight building material and environmentally friendly, depending on the concrete density and strength requirements, EPS concrete is used extensively in different structural elements. This work presents the results of the incorporation of glass microspheres in the mechanical properties of concrete modified with expanded polystyrene. Cylindrical specimens of modified concrete were prepared with an incorporation of 25% polystyrene and replacements of 5, 10 and 15% of the fine aggregates by glass microspheres. It was found that an increase in microsphere content was directly proportional to slump, density and compressive strength. The concrete prepared with higher content of microspheres exhibited the highest compressive strength, reaching an increase of 19% over the control specimen. The incorporation of glass microspheres for fine aggregate in concrete mixtures made from expanded polystyrene improves the mechanical properties; it also becomes a potential system as a replacement for traditional materials in the preparation of concrete.elizabeth.vallez@campusucc.edu.codavid.limasg@campusucc.edu.conicol.echeverrys@campusucc.edu.cooscar.arbelaez@campusucc.edu.co11 p.Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Medellín y EnvigadoIngeniería CivilMedellínConcreto modificadoResistencia a CompresiónMicroesferas de vidrioPropiedades MecánicasTG 2021 ICIInfluencia de la incorporación de microesferas de vidrio en las propiedades mecánicas de concretos preparados con poliestirenoTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionAtribucióninfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbK. Robalo, H. Costa, R. do Carmo, E. Júlio, Experimental development of low cement content and recycled construction and demolition waste aggregates concrete, Constr. Build. Mater. 273 (2021) 121680. https://doi.org/10.1016/j.conbuildmat.2020.121680.V.K. Kumar, A.K. Priya, G. Manikandan, A.S. Naveen, B. Nitishkumar, P. Pradeep, Review of materials used in light weight concrete, Mater. Today Proc. 37 (2020) 3538–3539. https://doi.org/10.1016/j.matpr.2020.09.425N. Chaukura, W. Gwenzi, T. Bunhu, D.T. Ruziwa, I. Pumure, Potential uses and value-added products derived from waste polystyrene in developing countries: A review, Resour. Conserv. Recycl. 107 (2016) 157–165. https://doi.org/10.1016/j.resconrec.2015.10.031O.F. Arbelaez-Perez, J.F. Venites-Mosquera, Y.M. Córdoba-Palacios, K.P. Mena-Ramírez, Propiedades mecánicas de concretos modificados con plástico marino reciclado en reemplazo de los agregados finos, Rev. Politécnica. 16 (2020) 77–84. https://doi.org/10.33571/rpolitec.v16n31a6.Z. Hamid, S. Rafiq, An experimental study on behavior of wood ash in concrete as partial replacement of cement, Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2020.11.776.A.A. Aliabdo, A.E.M. Abd Elmoaty, A.Y. Aboshama, Utilization of waste glass powder in the production of cement and concrete, Constr. Build. Mater. 124 (2016) 866–877. https://doi.org/10.1016/j.conbuildmat.2016.08.016.E. Aprianti, P. Shafigh, S. Bahri, J.N. Farahani, Supplementary cementitious materials origin from agricultural wastes - A review, Constr. Build. Mater. 74 (2015) 176–187. https://doi.org/10.1016/j.conbuildmat.2014.10.010.N. Kumar Sharma, Experimental study of concrete prepared by different waste products, Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2020.12.1150.https://www.grandviewresearch.com/industry-analysis/expanded-polystyrene- eps-market/toc. 2017, (2017) 2017.L. Gu, T. Ozbakkaloglu, Use of recycled plastics in concrete: A critical review, Waste Manag. 51 (2016) 19–42. https://doi.org/10.1016/j.wasman.2016.03.005.A.N. Uttaravalli, S. Dinda, B.R. Gidla, Scientific and engineering aspects of potential applications of post-consumer (waste) expanded polystyrene: A review, Process Saf. Environ. Prot. 137 (2020) 140–148. https://doi.org/10.1016/j.psep.2020.02.023.C.A. Cadere, M. Barbuta, B. Rosca, A.A. Serbanoiu, A. Burlacu, I. Oancea, Engineering properties of concrete with polystyrene granules, Procedia Manuf. 22 (2018) 288–293. https://doi.org/10.1016/j.promfg.2018.03.044.D.S. Babu, K. Ganesh Babu, T.H. Wee, Properties of lightweight expanded polystyrene aggregate concretes containing fly ash, Cem. Concr. Res. 35 (2005) 1218–1223. https://doi.org/10.1016/j.cemconres.2004.11.015.H.J. Mohammed, O.K. Aayeel, Flexural behavior of reinforced concrete beams containing recycled expandable polystyrene particles, J. Build. Eng. 32 (2020) 101805. https://doi.org/10.1016/j.jobe.2020.101805.R. Madandoust, M.M. Ranjbar, S. Yasin Mousavi, An investigation on the fresh properties of self-compacted lightweight concrete containing expanded polystyrene, Constr. Build. Mater. 25 (2011) 3721–3731. https://doi.org/10.1016/j.conbuildmat.2011.04.018.I.M. Nikbin, M. Golshekan, The effect of expanded polystyrene synthetic particles on the fracture parameters, brittleness and mechanical properties of concrete, Theor. Appl. Fract. Mech. 94 (2018) 160–172. https://doi.org/10.1016/j.tafmec.2018.02.002.B. Rosca, V. Corobceanu, Structural grade concrete containing expanded polystyrene beads with different particle distributions of normal weight aggregate, Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.10.517.D. Oreshkin, V. Semenov, T. Rozovskaya, Properties of Light-weight Extruded Concrete with Hollow Glass Microspheres, Procedia Eng. 153 (2016) 638–643. https://doi.org/10.1016/j.proeng.2016.08.214.J.P. Valencia-Villegas, A.M. González Mesa, O.F. Arbeláez-Pérez, Properties of modified concrete with crumb rubber: Effect of the incorporation of hollow glass microspheres, Rev. Fac. Ing. Univ. Antioquia. (2020) 1–10. https://doi.org/10.17533/udea.redin.20200473.J.P. Valencia Villegas, A.M. González Mesa, O.F. Arbelaez Perez, Evaluación de las propiedades mecánicas de concretos modificados con microesferas de vidrio y residuos de llantas, Lámpsakos. (2019). https://doi.org/10.21501/21454086.3283.L. Wang, F. Aslani, I. Hajirasouliha, E. Roquino, Ultra-lightweight engineered cementitious composite using waste recycled hollow glass microspheres, J. Clean. Prod. 249 (2020) 119331. https://doi.org/10.1016/j.jclepro.2019.119331.ASTM International, Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate, ASTM C29/C29M-07. United States, 2007.ASTM International, Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate, ASTM C127-15. United States, 2015.ASTM International, Standard Test Method for Total Evaporable Moisture Content of Aggregate by Drying, ASTM C566-19. United States, 2019.ASTM International, Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates, ASTM C136/C136M-19. United States, 2019.ACI Committee, Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete, ACI 211.1-91. United States, 1991.ASTM International, Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, ASTM C192/C192M-19. United States, 2019.ASTM International, Standard Test Method for Slump of Hydraulic-Cement Concrete, ASTM C143/C143M-20. United States, 2020.ASTM International, Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM C496/C496M-17. United States, 2017.EFNARC (European Federation of Specialist Construction Chemicals and Concrete Systems). The European guidelines for selfcompacting concrete: Specification, production and use 2005 U.K., (2005) 2020.B. Balasubramanian, G.V.T. Gopala Krishna, V. Saraswathy, K. Srinivasan, Experimental investigation on concrete partially replaced with waste glass powder and waste E-plastic, Constr. Build. Mater. 278 (2021) 122400. https://doi.org/10.1016/j.conbuildmat.2021.122400.A.H. Medher, A.I. Al-Hadithi, N. Hilal, The Possibility of Producing Self-Compacting Lightweight Concrete by Using Expanded Polystyrene Beads as Coarse Aggregate, Arab. J. Sci. Eng. (2020). https://doi.org/10.1007/s13369-020-04886-9.S. Grzeszczyk, G. Janus, Reactive powder concrete with lightweight aggregates, Constr. Build. Mater. 263 (2020) 120164. https://doi.org/10.1016/j.conbuildmat.2020.120164.H. Su, J. Yang, T. Ling, G.S. Ghataora, S. Dirar, Properties of concrete prepared with waste tyre rubber particles of uniform and varying sizes, J. Clean. Prod. 91 (2015) 288–296. https://doi.org/10.1016/j.jclepro.2014.12.022.PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/6d30aaca-8d89-4053-bdf7-dec845920f0d/download3bce4f7ab09dfc588f126e1e36e98a45MD53ORIGINAL2021_Influencia_Incorporacion_Microesferas_Vidrio_LicenciaUso.pdf2021_Influencia_Incorporacion_Microesferas_Vidrio_LicenciaUso.pdfLicencia de usoapplication/pdf223210https://repository.ucc.edu.co/bitstreams/590aa7d8-7a87-4c04-936c-d9a17053141c/download9d193e79cb71c09d4116f75201bfb19dMD512021_Influencia_Incorporacion_Microesferas_Vidrio.pdf2021_Influencia_Incorporacion_Microesferas_Vidrio.pdfTrabajo de gradoapplication/pdf343313https://repository.ucc.edu.co/bitstreams/8cdcfbf2-d652-4504-a95a-46900d21b9ae/downloadcfdb394511e61a17228990bfdb829e10MD52THUMBNAIL2021_Influencia_Incorporacion_Microesferas_Vidrio_LicenciaUso.pdf.jpg2021_Influencia_Incorporacion_Microesferas_Vidrio_LicenciaUso.pdf.jpgGenerated Thumbnailimage/jpeg4872https://repository.ucc.edu.co/bitstreams/4cdfb510-a6e6-41c2-8474-1d247ee31c46/download7fcdaa87d6cfd0632584af7b0ecf411aMD542021_Influencia_Incorporacion_Microesferas_Vidrio.pdf.jpg2021_Influencia_Incorporacion_Microesferas_Vidrio.pdf.jpgGenerated Thumbnailimage/jpeg5470https://repository.ucc.edu.co/bitstreams/2d4e9927-2e06-48e7-bb89-3fdd48fe71fe/download8bd3180f444bc548514cd8a51531757cMD55TEXT2021_Influencia_Incorporacion_Microesferas_Vidrio_LicenciaUso.pdf.txt2021_Influencia_Incorporacion_Microesferas_Vidrio_LicenciaUso.pdf.txtExtracted texttext/plain6085https://repository.ucc.edu.co/bitstreams/02889ebf-c6c2-46ff-9cd2-4df446e1e23b/downloadd3a22fd7c9cf59e2ce7b10151e47d99aMD562021_Influencia_Incorporacion_Microesferas_Vidrio.pdf.txt2021_Influencia_Incorporacion_Microesferas_Vidrio.pdf.txtExtracted texttext/plain29023https://repository.ucc.edu.co/bitstreams/ba667c4f-e52d-4989-a0f6-84a72f1cb3a7/download3e49004a0e49dee639002ec2403de0d2MD5720.500.12494/35816oai:repository.ucc.edu.co:20.500.12494/358162024-08-10 21:28:57.72restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=