Formulations to overcome the divergence of iterative method of fixed-point in nonlinear equations solution
When we need to determine the solution of a nonlinear equation there are two options: closed-methods which use intervals that contain the root and during the iterative process reduce the size of natural way, and, open-methods that represent an attractive
- Autores:
-
Rodríguez Calderón, Wilson
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2023
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/49889
- Acceso en línea:
- https://doi.org/http://dx.doi.org/10.14483/udistrital.jour.tecnura.2015.2.a14
http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-921X2015000200015
https://hdl.handle.net/20.500.12494/49889
- Palabra clave:
- DIVERGENCE
FIXED POINT
LINEAR CONVERGENCE
OPEN METHODS
QUADRATIC CONVERGENCE
ROOT EQUATIONS.
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
id |
COOPER2_6a795019e30073ced66af8ed5525dd5d |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/49889 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
spelling |
Rodríguez Calderón, Wilson2023-05-24T16:21:51Z2023-05-24T16:21:51Z01/04/2015https://doi.org/http://dx.doi.org/10.14483/udistrital.jour.tecnura.2015.2.a14http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-921X20150002000150123921Xhttps://hdl.handle.net/20.500.12494/49889Rodríguez Calderón Wilson,.Formulations to overcome the divergence of iterative method of fixed-point in nonlinear equations solution.Tecnura. 2015. 19. (44): 44When we need to determine the solution of a nonlinear equation there are two options: closed-methods which use intervals that contain the root and during the iterative process reduce the size of natural way, and, open-methods that represent an attractivewilson.rodriguezca@campusucc.edu.co44Universidad Distrital Francisco José de Caldas, Facultad TecnológicaDIVERGENCEFIXED POINTLINEAR CONVERGENCEOPEN METHODSQUADRATIC CONVERGENCEROOT EQUATIONS.Formulations to overcome the divergence of iterative method of fixed-point in nonlinear equations solutionArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionTecnurainfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Publication20.500.12494/49889oai:repository.ucc.edu.co:20.500.12494/498892024-08-20 16:19:19.009metadata.onlyhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.com |
dc.title.spa.fl_str_mv |
Formulations to overcome the divergence of iterative method of fixed-point in nonlinear equations solution |
title |
Formulations to overcome the divergence of iterative method of fixed-point in nonlinear equations solution |
spellingShingle |
Formulations to overcome the divergence of iterative method of fixed-point in nonlinear equations solution DIVERGENCE FIXED POINT LINEAR CONVERGENCE OPEN METHODS QUADRATIC CONVERGENCE ROOT EQUATIONS. |
title_short |
Formulations to overcome the divergence of iterative method of fixed-point in nonlinear equations solution |
title_full |
Formulations to overcome the divergence of iterative method of fixed-point in nonlinear equations solution |
title_fullStr |
Formulations to overcome the divergence of iterative method of fixed-point in nonlinear equations solution |
title_full_unstemmed |
Formulations to overcome the divergence of iterative method of fixed-point in nonlinear equations solution |
title_sort |
Formulations to overcome the divergence of iterative method of fixed-point in nonlinear equations solution |
dc.creator.fl_str_mv |
Rodríguez Calderón, Wilson |
dc.contributor.author.none.fl_str_mv |
Rodríguez Calderón, Wilson |
dc.subject.spa.fl_str_mv |
DIVERGENCE FIXED POINT LINEAR CONVERGENCE OPEN METHODS QUADRATIC CONVERGENCE ROOT EQUATIONS. |
topic |
DIVERGENCE FIXED POINT LINEAR CONVERGENCE OPEN METHODS QUADRATIC CONVERGENCE ROOT EQUATIONS. |
description |
When we need to determine the solution of a nonlinear equation there are two options: closed-methods which use intervals that contain the root and during the iterative process reduce the size of natural way, and, open-methods that represent an attractive |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
01/04/2015 |
dc.date.accessioned.none.fl_str_mv |
2023-05-24T16:21:51Z |
dc.date.available.none.fl_str_mv |
2023-05-24T16:21:51Z |
dc.type.none.fl_str_mv |
Artículo |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://doi.org/http://dx.doi.org/10.14483/udistrital.jour.tecnura.2015.2.a14 http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-921X2015000200015 |
dc.identifier.issn.spa.fl_str_mv |
0123921X |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/49889 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Rodríguez Calderón Wilson,.Formulations to overcome the divergence of iterative method of fixed-point in nonlinear equations solution.Tecnura. 2015. 19. (44): 44 |
url |
https://doi.org/http://dx.doi.org/10.14483/udistrital.jour.tecnura.2015.2.a14 http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-921X2015000200015 https://hdl.handle.net/20.500.12494/49889 |
identifier_str_mv |
0123921X Rodríguez Calderón Wilson,.Formulations to overcome the divergence of iterative method of fixed-point in nonlinear equations solution.Tecnura. 2015. 19. (44): 44 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Tecnura |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.spa.fl_str_mv |
44 |
dc.publisher.spa.fl_str_mv |
Universidad Distrital Francisco José de Caldas, Facultad Tecnológica |
institution |
Universidad Cooperativa de Colombia |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814246943046500352 |