Formulations to overcome the divergence of iterative method of fixed-point in nonlinear equations solution
When we need to determine the solution of a nonlinear equation there are two options: closed-methods which use intervals that contain the root and during the iterative process reduce the size of natural way, and, open-methods that represent an attractive
- Autores:
-
Rodríguez Calderón, Wilson
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2023
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/49889
- Acceso en línea:
- https://doi.org/http://dx.doi.org/10.14483/udistrital.jour.tecnura.2015.2.a14
http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-921X2015000200015
https://hdl.handle.net/20.500.12494/49889
- Palabra clave:
- DIVERGENCE
FIXED POINT
LINEAR CONVERGENCE
OPEN METHODS
QUADRATIC CONVERGENCE
ROOT EQUATIONS.
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
Summary: | When we need to determine the solution of a nonlinear equation there are two options: closed-methods which use intervals that contain the root and during the iterative process reduce the size of natural way, and, open-methods that represent an attractive |
---|