Formulations to overcome the divergence of iterative method of fixed-point in nonlinear equations solution

When we need to determine the solution of a nonlinear equation there are two options: closed-methods which use intervals that contain the root and during the iterative process reduce the size of natural way, and, open-methods that represent an attractive

Autores:
Rodríguez Calderón, Wilson
Tipo de recurso:
Article of journal
Fecha de publicación:
2023
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/49889
Acceso en línea:
https://doi.org/http://dx.doi.org/10.14483/udistrital.jour.tecnura.2015.2.a14
http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-921X2015000200015
https://hdl.handle.net/20.500.12494/49889
Palabra clave:
DIVERGENCE
FIXED POINT
LINEAR CONVERGENCE
OPEN METHODS
QUADRATIC CONVERGENCE
ROOT EQUATIONS.
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
Description
Summary:When we need to determine the solution of a nonlinear equation there are two options: closed-methods which use intervals that contain the root and during the iterative process reduce the size of natural way, and, open-methods that represent an attractive