Ceniza de cáscara de coco como sustituto del cemento: efecto de la temperatura de calcinación.
La disposición de la cáscara de coco es un problema de eliminación de desechos en países como indonesia, filipinas y la india, donde se concentra la mayor producción de coco en el mundo. Cuando la cáscara de coco se calcina produce cenizas, las cuales son un material aglutinante potencial para prepa...
- Autores:
-
Cossio Sánchez, Ceiler Fabian
Williams Urango, Eliana
Palacios Mosquera, Dissy Giselle
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/49327
- Acceso en línea:
- https://hdl.handle.net/20.500.12494/49327
- Palabra clave:
- Cáscara de coco
Análisis de costos
Propiedades mecánicas
Tratamiento térmico
Residuos agroindustriales
Hormigón
TG 2023 ICI 49327
Coconut shell
Cost analysis
Mechanical properties
Heat-treatment
Concrete
Agro-waste
- Rights
- closedAccess
- License
- Atribución – No comercial – Sin Derivar
id |
COOPER2_69b39f0e225c78006bb7f8e40fdea7d2 |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/49327 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.none.fl_str_mv |
Ceniza de cáscara de coco como sustituto del cemento: efecto de la temperatura de calcinación. |
title |
Ceniza de cáscara de coco como sustituto del cemento: efecto de la temperatura de calcinación. |
spellingShingle |
Ceniza de cáscara de coco como sustituto del cemento: efecto de la temperatura de calcinación. Cáscara de coco Análisis de costos Propiedades mecánicas Tratamiento térmico Residuos agroindustriales Hormigón TG 2023 ICI 49327 Coconut shell Cost analysis Mechanical properties Heat-treatment Concrete Agro-waste |
title_short |
Ceniza de cáscara de coco como sustituto del cemento: efecto de la temperatura de calcinación. |
title_full |
Ceniza de cáscara de coco como sustituto del cemento: efecto de la temperatura de calcinación. |
title_fullStr |
Ceniza de cáscara de coco como sustituto del cemento: efecto de la temperatura de calcinación. |
title_full_unstemmed |
Ceniza de cáscara de coco como sustituto del cemento: efecto de la temperatura de calcinación. |
title_sort |
Ceniza de cáscara de coco como sustituto del cemento: efecto de la temperatura de calcinación. |
dc.creator.fl_str_mv |
Cossio Sánchez, Ceiler Fabian Williams Urango, Eliana Palacios Mosquera, Dissy Giselle |
dc.contributor.advisor.none.fl_str_mv |
Arbeláez Pérez, Oscar Felipe |
dc.contributor.author.none.fl_str_mv |
Cossio Sánchez, Ceiler Fabian Williams Urango, Eliana Palacios Mosquera, Dissy Giselle |
dc.subject.none.fl_str_mv |
Cáscara de coco Análisis de costos Propiedades mecánicas Tratamiento térmico Residuos agroindustriales Hormigón |
topic |
Cáscara de coco Análisis de costos Propiedades mecánicas Tratamiento térmico Residuos agroindustriales Hormigón TG 2023 ICI 49327 Coconut shell Cost analysis Mechanical properties Heat-treatment Concrete Agro-waste |
dc.subject.classification.none.fl_str_mv |
TG 2023 ICI 49327 |
dc.subject.other.none.fl_str_mv |
Coconut shell Cost analysis Mechanical properties Heat-treatment Concrete Agro-waste |
description |
La disposición de la cáscara de coco es un problema de eliminación de desechos en países como indonesia, filipinas y la india, donde se concentra la mayor producción de coco en el mundo. Cuando la cáscara de coco se calcina produce cenizas, las cuales son un material aglutinante potencial para preparar hormigón. En este trabajo se calcinó cáscara de coco a tres temperaturas diferentes a saber: 400 °C, 500 °C y 600 °C durante un periodo de 3 horas. Las cenizas producidas se emplearon como sustituto del cemento. Las características físicas y químicas de las cenizas se evaluaron por área superficial y DRX. El efecto de la sustitución parcial de las cenizas en reemplazo del cemento se evaluó mediante ensayos de trabajabilidad y resistencia mecánica como la densidad, el asentamiento, resistencia a compresión. Los resultados experimentales demostraron que 600 °C es la temperatura de combustión más adecuada para la calcinación de la cáscara de coco, con presencia de SiO2 amorfo y una menor área superficial al aumentar la temperatura de calcinación. Además, en contraste con el hormigón de control, el aumento de la temperatura de combustión disminuye la trabajabilidad medida en asentamiento del concreto. pero mejora su resistencia mecánica. Finalmente, la resistencia a compresión de la mezcla que incorporó cenizas de cáscara de coco calcinadas a 600 °C fue superior a las demás. Se encontró adicionalmente que esta temperatura era convincente considerando el costo de preparar las cenizas. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-05-17T15:27:32Z |
dc.date.available.none.fl_str_mv |
2023-05-17T15:27:32Z |
dc.date.issued.none.fl_str_mv |
2023-05-05 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/49327 |
dc.identifier.bibliographicCitation.none.fl_str_mv |
Cossio Mena, C. F., Williams Urango, E. y Palacios Mosquera, D. G. (2023). Ceniza de cáscara de coco como sustituto del cemento: efecto de la temperatura de calcinación. [Tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional Universidad Cooperativa de Colombia. https://repository.ucc.edu.co/handle/20.500.12494/49327 |
url |
https://hdl.handle.net/20.500.12494/49327 |
identifier_str_mv |
Cossio Mena, C. F., Williams Urango, E. y Palacios Mosquera, D. G. (2023). Ceniza de cáscara de coco como sustituto del cemento: efecto de la temperatura de calcinación. [Tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional Universidad Cooperativa de Colombia. https://repository.ucc.edu.co/handle/20.500.12494/49327 |
dc.relation.references.none.fl_str_mv |
Y. A. Villagrán-Zaccardi, A. T. M. Marsh, M. E. Sosa, C. J. Zega, N. De Belie, and S. A. Bernal, “Complete re-utilization of waste concretes–Valorisation pathways and research needs,” Resour. Conserv. Recycl., vol. 177, 2022, doi: 10.1016/j.resconrec.2021.105955. J. Pokorný, R. Ševčík, J. Šál, L. Fiala, L. Zárybnická, and L. Podolka, “Bio-based aggregate in the production of advanced thermal-insulating concrete with improved acoustic performance,” Constr. Build. Mater., vol. 358, no. March, 2022, doi: 10.1016/j.conbuildmat.2022.129436. K. Celik et al., “High-volume natural volcanic pozzolan and limestone powder as partial replacements for portland cement in self-compacting and sustainable concrete,” Cem. Concr. Compos., vol. 45, pp. 136–147, 2014, doi: 10.1016/j.cemconcomp.2013.09.003. W. Xing, V. W. Tam, K. N. Le, J. L. Hao, and J. Wang, “Life cycle assessment of recycled aggregate concrete on its environmental impacts: A critical review,” Constr. Build. Mater., vol. 317, 2022, doi: 10.1016/j.conbuildmat.2021.125950. S. A. Miller, G. Habert, R. J. Myers, and J. T. Harvey, “Achieving net zero greenhouse gas emissions in the cement industry via value chain mitigation strategies,” One Earth, vol. 4, no. 10, pp. 1398–1411, 2021, doi: 10.1016/j.oneear.2021.09.011. S. A. Miller, A. Horvath, and P. J. M. Monteiro, “Readily implementable techniques can cut annual CO2 emissions from the production of concrete by over 20%,” Environ. Res. Lett., vol. 11, no. 7, 2016, doi: 10.1088/1748-9326/11/7/074029. A. Alsalman, L. N. Assi, R. S. Kareem, K. Carter, and P. Ziehl, “Energy and CO2 emission assessments of alkali-activated concrete and Ordinary Portland Cement concrete: A comparative analysis of different grades of concrete,” Clean. Environ. Syst., vol. 3, no. April, p. 100047, 2021, doi: 10.1016/j.cesys.2021.100047. M. N. Amin, T. Murtaza, K. Shahzada, K. Khan, and M. Adil, “Pozzolanic potential and mechanical performance of wheat straw ash incorporated sustainable concrete,” Sustain., vol. 11, no. 2, pp. 1–20, 2019, doi: 10.3390/su11020519. S. . Banger, S. . Phalke, A. . Gawade, R. . Tambe, and A. . Rahane, “A review paper on replacement of cement with bagasse,” Int. J. Eng. Sci. Manag., vol. 7, no. March, pp. 127–131, 2017. H. M. Hamada et al., “Sustainable use of palm oil fuel ash as a supplementary cementitious material: A comprehensive review,” J. Build. Eng., vol. 40, no. July 2020, p. 102286, 2021, doi: 10.1016/j.jobe.2021.102286 A. Siddika, M. A. Al Mamun, R. Alyousef, and H. Mohammadhosseini, “State-of-the-art-review on rice husk ash: A supplementary cementitious material in concrete,” J. King Saud Univ. - Eng. Sci., vol. 33, no. 5, pp. 294–307, 2021, doi: 10.1016/j.jksues.2020.10.006. S. Ali, U. Javed, and R. Arsalan, “Eco-friendly utilization of corncob ash as partial replacement of sand in concrete,” Constr. Build. Mater., vol. 195, pp. 165–177, 2019, doi: 10.1016/j.conbuildmat.2018.11.063. S. Kumari and R. Walia, “Life cycle assessment of sustainable concrete by utilizing groundnut husk ash in concrete,” Mater. Today Proc., vol. 49, pp. 1910–1915, 2021, doi: 10.1016/j.matpr.2021.08.082. X. Li et al., “A systematic review of waste materials in cement-based composites for construction applications,” J. Build. Eng., vol. 45, no. July 2021, p. 103447, 2022, doi: 10.1016/j.jobe.2021.103447. R. Tomar, K. Kishore, H. Singh Parihar, and N. Gupta, “A comprehensive study of waste coconut shell aggregate as raw material in concrete,” Mater. Today Proc., vol. 44, pp. 437–443, 2021, doi: https://doi.org/10.1016/j.matpr.2020.09.754. H. Liu, Q. Li, and S. Ni, “Assessment of the engineering properties of biomass recycled aggregate concrete developed from coconut shells,” Constr. Build. Mater., vol. 342, p. 128015, 2022, doi: https://doi.org/10.1016/j.conbuildmat.2022.128015. E. Quiñones-Bolaños, M. Gómez-Oviedo, J. Mouthon-Bello, L. Sierra-Vitola, U. Berardi, and C. Bustillo-Lecompte, “Potential use of coconut fibre modified mortars to enhance thermal comfort in low-income housing,” J. Environ. Manage., vol. 277, no. October 2020, 2021, doi: 10.1016/j.jenvman.2020.111503. E. E. Ikponmwosa, S. Ehikhuenmen, J. Emeshie, and A. Adesina, “Performance of Coconut Shell Alkali-Activated Concrete: Experimental Investigation and Statistical Modelling,” Silicon, vol. 13, no. 2, pp. 335–340, 2021, doi: 10.1007/s12633-020-00435-z. N. Bheel, S. K. Mahro, and A. Adesina, “Influence of coconut shell ash on workability, mechanical properties, and embodied carbon of concrete,” Environ. Sci. Pollut. Res., vol. 28, no. 5, pp. 5682–5692, 2021, doi: 10.1007/s11356-020-10882-1. A. J. Adeala, J. O. Olaoye, and A. A. Adeniji, “Potential of Coconut Shell Ash as Partial Replacement of Ordinary Portland Cement in Concrete Production,” Int. J. Eng. Sci. Invent., vol. 9, no. 1, pp. 47–53, 2020. Z. Itam, A. Dzar Johar, A. Syamsir, M. Zainoodin, S. M. M. Shaikh Ahmad Fadzil, and S. Beddu, “Utilization of coconut shell as a supplementary cementitious material in concrete,” Mater. Today Proc., vol. 66, pp. 2818–2823, 2022, doi: 10.1016/j.matpr.2022.06.522. Y. Shinohara and N. Kohyama, “Quantitative Analysis of Tridymite and Cristobalite Crystallized in Rice Husk Ash by Heating,” Ind. Health, vol. 42, no. 2, pp. 277–285, 2004, doi: 10.2486/indhealth.42.277. R. S. Bie, X. F. Song, Q. Q. Liu, X. Y. Ji, and P. Chen, “Studies on effects of burning conditions and rice husk ash (RHA) blending amount on the mechanical behavior of cement,” Cem. Concr. Compos., vol. 55, pp. 162–168, 2015, doi: 10.1016/j.cemconcomp.2014.09.008. G. C. Cordeiro, R. D. Toledo Filho, and E. M. R. Fairbairn, “Effect of calcination temperature on the pozzolanic activity of sugar cane bagasse ash,” Constr. Build. Mater., vol. 23, no. 10, pp. 3301–3303, 2009, doi: 10.1016/j.conbuildmat.2009.02.013. Z. Cao, Y. Cao, H. Dong, J. Zhang, and C. Sun, “Effect of calcination condition on the microstructure and pozzolanic activity of calcined coal gangue,” Int. J. Miner. Process., vol. 146, pp. 23–28, 2016, doi: 10.1016/j.minpro.2015.11.008. Z. Guo, J. Xu, Z. Xu, J. Gao, and X. Zhu, “Performance of cement-based materials containing calcined coal gangue with different calcination regimes,” J. Build. Eng., vol. 56, no. June, p. 104821, 2022, doi: 10.1016/j.jobe.2022.104821. L. F. Vergara, “Cemento y sus especificaciones en las normas ASTM,” vol. 1, p. 2, 2013, [Online]. Available: file:///C:/Users/oscar/Documents/Escuela/Libros/Tesis/328-Texto del artículo-476-1-10-20160721.pdf A. Mathematics, “済無No Title No Title No Title,” pp. 1–23, 2016. V. M. Blanchar-amaya, E. M. Villalba-manjarres, and S. A. Monsalve-romero, “PROPIEDADES MECANICAS Y TERMICAS DE PLASTICOS TRITURADOS Y PELLETIZADOS MECHANICAL AND THERMAL PROPERTIES OF CONCRETE CONTAINING SHREDDED AND PELLETIZED PLASTIC WASTES MECHANICAL AND THERMAL PROPERTIES OF CONCRETE CONTAINING SHREDDED AND PELLETIZED PLASTI”. I. S. Agwa, A. M. Zeyad, B. A. Tayeh, and M. Amin, “Effect of different burning degrees of sugarcane leaf ash on the properties of ultrahigh-strength concrete,” J. Build. Eng., vol. 56, no. May, p. 104773, 2022, doi: 10.1016/j.jobe.2022.104773. Z. Chang, G. Long, Y. Xie, and J. L. Zhou, “Pozzolanic reactivity of aluminum-rich sewage sludge ash: Influence of calcination process and effect of calcination products on cement hydration,” Constr. Build. Mater., vol. 318, no. December 2021, p. 126096, 2022, doi: 10.1016/j.conbuildmat.2021.126096. G. P. Lyra, M. V. Borrachero, L. Soriano, J. Payá, and J. A. Rossignolo, “Comparison of original and washed pure sugar cane bagasse ashes as supplementary cementing materials,” Constr. Build. Mater., vol. 272, p. 122001, 2021, doi: 10.1016/j.conbuildmat.2020.122001. M. Rozainee, S. P. Ngo, A. A. Salema, and K. G. Tan, “Fluidized bed combustion of rice husk to produce amorphous siliceous ash,” Energy Sustain. Dev., vol. 12, no. 1, pp. 33–42, 2008, doi: 10.1016/S0973-0826(08)60417-2. S. A. Memon, S. Khan, I. Wahid, Y. Shestakova, and M. Ashraf, “Evaluating the Effect of Calcination and Grinding of Corn Stalk Ash on Pozzolanic Potential for Sustainable Cement-Based Materials,” Adv. Mater. Sci. Eng., vol. 2020, 2020, doi: 10.1155/2020/1619480. K. G. Santhosh, S. M. Subhani, and A. Bahurudeen, “Recycling of palm oil fuel ash and rice husk ash in the cleaner production of concrete,” J. Clean. Prod., vol. 354, no. November 2021, p. 131736, 2022, doi: 10.1016/j.jclepro.2022.131736. W. Cao, W. Yi, J. Peng, J. Li, and S. Yin, “Recycling of phosphogypsum to prepare gypsum plaster: Effect of calcination temperature,” J. Build. Eng., vol. 45, no. September 2021, p. 103511, 2022, doi: 10.1016/j.jobe.2021.103511. M. W. Clark et al., “High-efficiency cogeneration boiler bagasse-ash geochemistry and mineralogical change effects on the potential reuse in synthetic zeolites, geopolymers, cements, mortars, and concretes,” Heliyon, vol. 3, no. 4, p. e00294, 2017, doi: 10.1016/j.heliyon.2017.e00294. B. S. Thomas, J. Yang, K. H. Mo, J. A. Abdalla, R. A. Hawileh, and E. Ariyachandra, “Biomass ashes from agricultural wastes as supplementary cementitious materials or aggregate replacement in cement/geopolymer concrete: A comprehensive review,” J. Build. Eng., vol. 40, no. July 2020, p. 102332, 2021, doi: 10.1016/j.jobe.2021.102332. A. S. Ruviaro et al., “Characterization and investigation of the use of oat husk ash as supplementary cementitious material as partial replacement of Portland cement: Analysis of fresh and hardened properties and environmental assessment,” Constr. Build. Mater., vol. 363, no. September 2022, p. 129762, 2023, doi: 10.1016/j.conbuildmat.2022.129762. |
dc.rights.license.none.fl_str_mv |
Atribución – No comercial – Sin Derivar |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/closedAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
rights_invalid_str_mv |
Atribución – No comercial – Sin Derivar http://purl.org/coar/access_right/c_14cb |
eu_rights_str_mv |
closedAccess |
dc.format.extent.none.fl_str_mv |
11 p. |
dc.publisher.none.fl_str_mv |
Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Medellín y Envigado |
dc.publisher.program.none.fl_str_mv |
Ingeniería Civil |
dc.publisher.place.none.fl_str_mv |
Medellín |
publisher.none.fl_str_mv |
Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Medellín y Envigado |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/4d375f74-cb52-490b-92a2-53cf84cfc8ad/download https://repository.ucc.edu.co/bitstreams/863bfd44-df8d-48aa-a7fc-c70dbcdf817b/download https://repository.ucc.edu.co/bitstreams/738263b7-a9f9-4231-94ec-a5d5bd2622ef/download https://repository.ucc.edu.co/bitstreams/0646f666-10a1-424d-bddf-994f407a4fd0/download https://repository.ucc.edu.co/bitstreams/029b245c-e8f1-4d47-9bdb-d2edc87626d0/download https://repository.ucc.edu.co/bitstreams/7cc6686c-fcf1-448d-9402-657a31a33011/download https://repository.ucc.edu.co/bitstreams/67a446d9-ce73-41ea-8dad-8d4aaf51bb59/download https://repository.ucc.edu.co/bitstreams/ad41964f-82f0-49db-9087-33878caf2cec/download https://repository.ucc.edu.co/bitstreams/2cfb3a65-13d6-412d-b3d3-ab3390f800a1/download https://repository.ucc.edu.co/bitstreams/3d83841f-b128-4a0d-8dd0-01328bc77fc0/download |
bitstream.checksum.fl_str_mv |
3bce4f7ab09dfc588f126e1e36e98a45 4dcb50dc1244bba532fa3e9e3e98fb4c 475ba1a2ba679ae79cf10fc98a5a8e8e 0fb6579bca165c0908232ce2de03c431 b61c83da0c4fead46b5f185cc258cad9 ffb25e047bd8cda67e8d06e989f7fb4a 727bb177fdfb4971e163e471f623481f a8f4066bc9e5a644ac4827157c51e65c 444e797f3adac62f18a1690519377d9d 53c0e3f65c880219da072ec107c8b614 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814246641078632448 |
spelling |
Arbeláez Pérez, Oscar Felipe Cossio Sánchez, Ceiler FabianWilliams Urango, ElianaPalacios Mosquera, Dissy Giselle2023-05-17T15:27:32Z2023-05-17T15:27:32Z2023-05-05https://hdl.handle.net/20.500.12494/49327Cossio Mena, C. F., Williams Urango, E. y Palacios Mosquera, D. G. (2023). Ceniza de cáscara de coco como sustituto del cemento: efecto de la temperatura de calcinación. [Tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional Universidad Cooperativa de Colombia. https://repository.ucc.edu.co/handle/20.500.12494/49327La disposición de la cáscara de coco es un problema de eliminación de desechos en países como indonesia, filipinas y la india, donde se concentra la mayor producción de coco en el mundo. Cuando la cáscara de coco se calcina produce cenizas, las cuales son un material aglutinante potencial para preparar hormigón. En este trabajo se calcinó cáscara de coco a tres temperaturas diferentes a saber: 400 °C, 500 °C y 600 °C durante un periodo de 3 horas. Las cenizas producidas se emplearon como sustituto del cemento. Las características físicas y químicas de las cenizas se evaluaron por área superficial y DRX. El efecto de la sustitución parcial de las cenizas en reemplazo del cemento se evaluó mediante ensayos de trabajabilidad y resistencia mecánica como la densidad, el asentamiento, resistencia a compresión. Los resultados experimentales demostraron que 600 °C es la temperatura de combustión más adecuada para la calcinación de la cáscara de coco, con presencia de SiO2 amorfo y una menor área superficial al aumentar la temperatura de calcinación. Además, en contraste con el hormigón de control, el aumento de la temperatura de combustión disminuye la trabajabilidad medida en asentamiento del concreto. pero mejora su resistencia mecánica. Finalmente, la resistencia a compresión de la mezcla que incorporó cenizas de cáscara de coco calcinadas a 600 °C fue superior a las demás. Se encontró adicionalmente que esta temperatura era convincente considerando el costo de preparar las cenizas.Coconut husk disposal is a waste disposal problem in countries such as Indonesia, the Philippines and India, where the largest coconut production in the world is concentrated. When coconut shell is calcined it produces ash, which is a potential binding material for preparing concrete. In this work, coconut shell was calcined at three different temperatures, namely: 400 °C, 500 °C and 600 °C for a period of 3 hours. The ashes produced were used as a substitute for cement. The physical and chemical characteristics of the ashes were evaluated by surface area and DRX. The effect of the partial replacement of the ashes in replacement of the cement was evaluated by tests of workability and mechanical resistance such as density, settlement, compressive strength. The experimental results showed that 600 °C is the most suitable combustion temperature for the calcination of the coconut shell, with the presence of amorphous SiO2 and a lower surface area when the calcination temperature increases. Also, in contrast to the control concrete, increasing the combustion temperature decreases the slump-measured workability of the concrete. but improves its mechanical resistance. Finally, the compressive strength of the mixture that incorporated coconut shell ashes calcined at 600 °C was higher than the others. This temperature was further found to be convincing considering the cost of preparing the ashes.ceiler.cossiosan@campusucc.edu.coeliana.williams@campusucc.edu.codissy.palacios@campusucc.edu.co11 p.Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Medellín y EnvigadoIngeniería CivilMedellínCáscara de cocoAnálisis de costosPropiedades mecánicasTratamiento térmicoResiduos agroindustrialesHormigónTG 2023 ICI 49327Coconut shellCost analysisMechanical propertiesHeat-treatmentConcreteAgro-wasteCeniza de cáscara de coco como sustituto del cemento: efecto de la temperatura de calcinación.Trabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionAtribución – No comercial – Sin Derivarinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbY. A. Villagrán-Zaccardi, A. T. M. Marsh, M. E. Sosa, C. J. Zega, N. De Belie, and S. A. Bernal, “Complete re-utilization of waste concretes–Valorisation pathways and research needs,” Resour. Conserv. Recycl., vol. 177, 2022, doi: 10.1016/j.resconrec.2021.105955.J. Pokorný, R. Ševčík, J. Šál, L. Fiala, L. Zárybnická, and L. Podolka, “Bio-based aggregate in the production of advanced thermal-insulating concrete with improved acoustic performance,” Constr. Build. Mater., vol. 358, no. March, 2022, doi: 10.1016/j.conbuildmat.2022.129436.K. Celik et al., “High-volume natural volcanic pozzolan and limestone powder as partial replacements for portland cement in self-compacting and sustainable concrete,” Cem. Concr. Compos., vol. 45, pp. 136–147, 2014, doi: 10.1016/j.cemconcomp.2013.09.003.W. Xing, V. W. Tam, K. N. Le, J. L. Hao, and J. Wang, “Life cycle assessment of recycled aggregate concrete on its environmental impacts: A critical review,” Constr. Build. Mater., vol. 317, 2022, doi: 10.1016/j.conbuildmat.2021.125950.S. A. Miller, G. Habert, R. J. Myers, and J. T. Harvey, “Achieving net zero greenhouse gas emissions in the cement industry via value chain mitigation strategies,” One Earth, vol. 4, no. 10, pp. 1398–1411, 2021, doi: 10.1016/j.oneear.2021.09.011.S. A. Miller, A. Horvath, and P. J. M. Monteiro, “Readily implementable techniques can cut annual CO2 emissions from the production of concrete by over 20%,” Environ. Res. Lett., vol. 11, no. 7, 2016, doi: 10.1088/1748-9326/11/7/074029.A. Alsalman, L. N. Assi, R. S. Kareem, K. Carter, and P. Ziehl, “Energy and CO2 emission assessments of alkali-activated concrete and Ordinary Portland Cement concrete: A comparative analysis of different grades of concrete,” Clean. Environ. Syst., vol. 3, no. April, p. 100047, 2021, doi: 10.1016/j.cesys.2021.100047.M. N. Amin, T. Murtaza, K. Shahzada, K. Khan, and M. Adil, “Pozzolanic potential and mechanical performance of wheat straw ash incorporated sustainable concrete,” Sustain., vol. 11, no. 2, pp. 1–20, 2019, doi: 10.3390/su11020519.S. . Banger, S. . Phalke, A. . Gawade, R. . Tambe, and A. . Rahane, “A review paper on replacement of cement with bagasse,” Int. J. Eng. Sci. Manag., vol. 7, no. March, pp. 127–131, 2017.H. M. Hamada et al., “Sustainable use of palm oil fuel ash as a supplementary cementitious material: A comprehensive review,” J. Build. Eng., vol. 40, no. July 2020, p. 102286, 2021, doi: 10.1016/j.jobe.2021.102286A. Siddika, M. A. Al Mamun, R. Alyousef, and H. Mohammadhosseini, “State-of-the-art-review on rice husk ash: A supplementary cementitious material in concrete,” J. King Saud Univ. - Eng. Sci., vol. 33, no. 5, pp. 294–307, 2021, doi: 10.1016/j.jksues.2020.10.006.S. Ali, U. Javed, and R. Arsalan, “Eco-friendly utilization of corncob ash as partial replacement of sand in concrete,” Constr. Build. Mater., vol. 195, pp. 165–177, 2019, doi: 10.1016/j.conbuildmat.2018.11.063.S. Kumari and R. Walia, “Life cycle assessment of sustainable concrete by utilizing groundnut husk ash in concrete,” Mater. Today Proc., vol. 49, pp. 1910–1915, 2021, doi: 10.1016/j.matpr.2021.08.082.X. Li et al., “A systematic review of waste materials in cement-based composites for construction applications,” J. Build. Eng., vol. 45, no. July 2021, p. 103447, 2022, doi: 10.1016/j.jobe.2021.103447.R. Tomar, K. Kishore, H. Singh Parihar, and N. Gupta, “A comprehensive study of waste coconut shell aggregate as raw material in concrete,” Mater. Today Proc., vol. 44, pp. 437–443, 2021, doi: https://doi.org/10.1016/j.matpr.2020.09.754.H. Liu, Q. Li, and S. Ni, “Assessment of the engineering properties of biomass recycled aggregate concrete developed from coconut shells,” Constr. Build. Mater., vol. 342, p. 128015, 2022, doi: https://doi.org/10.1016/j.conbuildmat.2022.128015.E. Quiñones-Bolaños, M. Gómez-Oviedo, J. Mouthon-Bello, L. Sierra-Vitola, U. Berardi, and C. Bustillo-Lecompte, “Potential use of coconut fibre modified mortars to enhance thermal comfort in low-income housing,” J. Environ. Manage., vol. 277, no. October 2020, 2021, doi: 10.1016/j.jenvman.2020.111503.E. E. Ikponmwosa, S. Ehikhuenmen, J. Emeshie, and A. Adesina, “Performance of Coconut Shell Alkali-Activated Concrete: Experimental Investigation and Statistical Modelling,” Silicon, vol. 13, no. 2, pp. 335–340, 2021, doi: 10.1007/s12633-020-00435-z.N. Bheel, S. K. Mahro, and A. Adesina, “Influence of coconut shell ash on workability, mechanical properties, and embodied carbon of concrete,” Environ. Sci. Pollut. Res., vol. 28, no. 5, pp. 5682–5692, 2021, doi: 10.1007/s11356-020-10882-1.A. J. Adeala, J. O. Olaoye, and A. A. Adeniji, “Potential of Coconut Shell Ash as Partial Replacement of Ordinary Portland Cement in Concrete Production,” Int. J. Eng. Sci. Invent., vol. 9, no. 1, pp. 47–53, 2020.Z. Itam, A. Dzar Johar, A. Syamsir, M. Zainoodin, S. M. M. Shaikh Ahmad Fadzil, and S. Beddu, “Utilization of coconut shell as a supplementary cementitious material in concrete,” Mater. Today Proc., vol. 66, pp. 2818–2823, 2022, doi: 10.1016/j.matpr.2022.06.522.Y. Shinohara and N. Kohyama, “Quantitative Analysis of Tridymite and Cristobalite Crystallized in Rice Husk Ash by Heating,” Ind. Health, vol. 42, no. 2, pp. 277–285, 2004, doi: 10.2486/indhealth.42.277.R. S. Bie, X. F. Song, Q. Q. Liu, X. Y. Ji, and P. Chen, “Studies on effects of burning conditions and rice husk ash (RHA) blending amount on the mechanical behavior of cement,” Cem. Concr. Compos., vol. 55, pp. 162–168, 2015, doi: 10.1016/j.cemconcomp.2014.09.008.G. C. Cordeiro, R. D. Toledo Filho, and E. M. R. Fairbairn, “Effect of calcination temperature on the pozzolanic activity of sugar cane bagasse ash,” Constr. Build. Mater., vol. 23, no. 10, pp. 3301–3303, 2009, doi: 10.1016/j.conbuildmat.2009.02.013.Z. Cao, Y. Cao, H. Dong, J. Zhang, and C. Sun, “Effect of calcination condition on the microstructure and pozzolanic activity of calcined coal gangue,” Int. J. Miner. Process., vol. 146, pp. 23–28, 2016, doi: 10.1016/j.minpro.2015.11.008.Z. Guo, J. Xu, Z. Xu, J. Gao, and X. Zhu, “Performance of cement-based materials containing calcined coal gangue with different calcination regimes,” J. Build. Eng., vol. 56, no. June, p. 104821, 2022, doi: 10.1016/j.jobe.2022.104821.L. F. Vergara, “Cemento y sus especificaciones en las normas ASTM,” vol. 1, p. 2, 2013, [Online]. Available: file:///C:/Users/oscar/Documents/Escuela/Libros/Tesis/328-Texto del artículo-476-1-10-20160721.pdfA. Mathematics, “済無No Title No Title No Title,” pp. 1–23, 2016.V. M. Blanchar-amaya, E. M. Villalba-manjarres, and S. A. Monsalve-romero, “PROPIEDADES MECANICAS Y TERMICAS DE PLASTICOS TRITURADOS Y PELLETIZADOS MECHANICAL AND THERMAL PROPERTIES OF CONCRETE CONTAINING SHREDDED AND PELLETIZED PLASTIC WASTES MECHANICAL AND THERMAL PROPERTIES OF CONCRETE CONTAINING SHREDDED AND PELLETIZED PLASTI”.I. S. Agwa, A. M. Zeyad, B. A. Tayeh, and M. Amin, “Effect of different burning degrees of sugarcane leaf ash on the properties of ultrahigh-strength concrete,” J. Build. Eng., vol. 56, no. May, p. 104773, 2022, doi: 10.1016/j.jobe.2022.104773.Z. Chang, G. Long, Y. Xie, and J. L. Zhou, “Pozzolanic reactivity of aluminum-rich sewage sludge ash: Influence of calcination process and effect of calcination products on cement hydration,” Constr. Build. Mater., vol. 318, no. December 2021, p. 126096, 2022, doi: 10.1016/j.conbuildmat.2021.126096.G. P. Lyra, M. V. Borrachero, L. Soriano, J. Payá, and J. A. Rossignolo, “Comparison of original and washed pure sugar cane bagasse ashes as supplementary cementing materials,” Constr. Build. Mater., vol. 272, p. 122001, 2021, doi: 10.1016/j.conbuildmat.2020.122001.M. Rozainee, S. P. Ngo, A. A. Salema, and K. G. Tan, “Fluidized bed combustion of rice husk to produce amorphous siliceous ash,” Energy Sustain. Dev., vol. 12, no. 1, pp. 33–42, 2008, doi: 10.1016/S0973-0826(08)60417-2.S. A. Memon, S. Khan, I. Wahid, Y. Shestakova, and M. Ashraf, “Evaluating the Effect of Calcination and Grinding of Corn Stalk Ash on Pozzolanic Potential for Sustainable Cement-Based Materials,” Adv. Mater. Sci. Eng., vol. 2020, 2020, doi: 10.1155/2020/1619480.K. G. Santhosh, S. M. Subhani, and A. Bahurudeen, “Recycling of palm oil fuel ash and rice husk ash in the cleaner production of concrete,” J. Clean. Prod., vol. 354, no. November 2021, p. 131736, 2022, doi: 10.1016/j.jclepro.2022.131736.W. Cao, W. Yi, J. Peng, J. Li, and S. Yin, “Recycling of phosphogypsum to prepare gypsum plaster: Effect of calcination temperature,” J. Build. Eng., vol. 45, no. September 2021, p. 103511, 2022, doi: 10.1016/j.jobe.2021.103511.M. W. Clark et al., “High-efficiency cogeneration boiler bagasse-ash geochemistry and mineralogical change effects on the potential reuse in synthetic zeolites, geopolymers, cements, mortars, and concretes,” Heliyon, vol. 3, no. 4, p. e00294, 2017, doi: 10.1016/j.heliyon.2017.e00294.B. S. Thomas, J. Yang, K. H. Mo, J. A. Abdalla, R. A. Hawileh, and E. Ariyachandra, “Biomass ashes from agricultural wastes as supplementary cementitious materials or aggregate replacement in cement/geopolymer concrete: A comprehensive review,” J. Build. Eng., vol. 40, no. July 2020, p. 102332, 2021, doi: 10.1016/j.jobe.2021.102332.A. S. Ruviaro et al., “Characterization and investigation of the use of oat husk ash as supplementary cementitious material as partial replacement of Portland cement: Analysis of fresh and hardened properties and environmental assessment,” Constr. Build. Mater., vol. 363, no. September 2022, p. 129762, 2023, doi: 10.1016/j.conbuildmat.2022.129762.PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/4d375f74-cb52-490b-92a2-53cf84cfc8ad/download3bce4f7ab09dfc588f126e1e36e98a45MD51ORIGINAL2023_Ceniza_Cascara_Coco-FormatoLicenciaUso.pdf2023_Ceniza_Cascara_Coco-FormatoLicenciaUso.pdfapplication/pdf215252https://repository.ucc.edu.co/bitstreams/863bfd44-df8d-48aa-a7fc-c70dbcdf817b/download4dcb50dc1244bba532fa3e9e3e98fb4cMD512023_Ceniza_Cascara_Coco.pdf2023_Ceniza_Cascara_Coco.pdfapplication/pdf263896https://repository.ucc.edu.co/bitstreams/738263b7-a9f9-4231-94ec-a5d5bd2622ef/download475ba1a2ba679ae79cf10fc98a5a8e8eMD522023_ Ceniza_Cascara_Coco-ActaSustentacion.pdf2023_ Ceniza_Cascara_Coco-ActaSustentacion.pdfapplication/pdf77795https://repository.ucc.edu.co/bitstreams/0646f666-10a1-424d-bddf-994f407a4fd0/download0fb6579bca165c0908232ce2de03c431MD53TEXT2023_Ceniza_Cascara_Coco-FormatoLicenciaUso.pdf.txt2023_Ceniza_Cascara_Coco-FormatoLicenciaUso.pdf.txtExtracted texttext/plain5956https://repository.ucc.edu.co/bitstreams/029b245c-e8f1-4d47-9bdb-d2edc87626d0/downloadb61c83da0c4fead46b5f185cc258cad9MD542023_Ceniza_Cascara_Coco.pdf.txt2023_Ceniza_Cascara_Coco.pdf.txtExtracted texttext/plain35628https://repository.ucc.edu.co/bitstreams/7cc6686c-fcf1-448d-9402-657a31a33011/downloadffb25e047bd8cda67e8d06e989f7fb4aMD562023_ Ceniza_Cascara_Coco-ActaSustentacion.pdf.txt2023_ Ceniza_Cascara_Coco-ActaSustentacion.pdf.txtExtracted texttext/plain1471https://repository.ucc.edu.co/bitstreams/67a446d9-ce73-41ea-8dad-8d4aaf51bb59/download727bb177fdfb4971e163e471f623481fMD58THUMBNAIL2023_Ceniza_Cascara_Coco-FormatoLicenciaUso.pdf.jpg2023_Ceniza_Cascara_Coco-FormatoLicenciaUso.pdf.jpgGenerated Thumbnailimage/jpeg13165https://repository.ucc.edu.co/bitstreams/ad41964f-82f0-49db-9087-33878caf2cec/downloada8f4066bc9e5a644ac4827157c51e65cMD552023_Ceniza_Cascara_Coco.pdf.jpg2023_Ceniza_Cascara_Coco.pdf.jpgGenerated Thumbnailimage/jpeg15104https://repository.ucc.edu.co/bitstreams/2cfb3a65-13d6-412d-b3d3-ab3390f800a1/download444e797f3adac62f18a1690519377d9dMD572023_ Ceniza_Cascara_Coco-ActaSustentacion.pdf.jpg2023_ Ceniza_Cascara_Coco-ActaSustentacion.pdf.jpgGenerated Thumbnailimage/jpeg12187https://repository.ucc.edu.co/bitstreams/3d83841f-b128-4a0d-8dd0-01328bc77fc0/download53c0e3f65c880219da072ec107c8b614MD5920.500.12494/49327oai:repository.ucc.edu.co:20.500.12494/493272024-08-10 21:13:43.97restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo= |