Efecto de la incorporación de residuos de vidrio en las propiedades del hormigón con poliestireno
Introducción: El hormigón preparado con poliestireno expandido (PE) es un material ambientalmente amigable; sin embargo, la resistencia a compresión es inferior a la observada en el hormigón tradicional, por lo cual, se requieren estrategias que mejoren su resistencia. Este artículo informa el efect...
- Autores:
-
Arbeláez Pérez, Oscar Felipe
Carvajal Graciano, Juan Pablo
Aguirre Sierra, Daniel David
Valoyes Mena, Werlin
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2022
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/52513
- Acceso en línea:
- https://hdl.handle.net/20.500.12494/52513
- Palabra clave:
- Hormigón modificado
Resistencia a Compresión
Residuos de vidrio
Propiedades Mecánicas
Propiedades Mecánicas
Modified Concrete
Compressive Strength
Glass waste
Mechanical Properties
Expanded Polystyrene
- Rights
- closedAccess
- License
- Atribución – Sin Derivar
id |
COOPER2_6728f6e71a68f7340a58e70753e6df9a |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/52513 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.none.fl_str_mv |
Efecto de la incorporación de residuos de vidrio en las propiedades del hormigón con poliestireno |
title |
Efecto de la incorporación de residuos de vidrio en las propiedades del hormigón con poliestireno |
spellingShingle |
Efecto de la incorporación de residuos de vidrio en las propiedades del hormigón con poliestireno Hormigón modificado Resistencia a Compresión Residuos de vidrio Propiedades Mecánicas Propiedades Mecánicas Modified Concrete Compressive Strength Glass waste Mechanical Properties Expanded Polystyrene |
title_short |
Efecto de la incorporación de residuos de vidrio en las propiedades del hormigón con poliestireno |
title_full |
Efecto de la incorporación de residuos de vidrio en las propiedades del hormigón con poliestireno |
title_fullStr |
Efecto de la incorporación de residuos de vidrio en las propiedades del hormigón con poliestireno |
title_full_unstemmed |
Efecto de la incorporación de residuos de vidrio en las propiedades del hormigón con poliestireno |
title_sort |
Efecto de la incorporación de residuos de vidrio en las propiedades del hormigón con poliestireno |
dc.creator.fl_str_mv |
Arbeláez Pérez, Oscar Felipe Carvajal Graciano, Juan Pablo Aguirre Sierra, Daniel David Valoyes Mena, Werlin |
dc.contributor.author.none.fl_str_mv |
Arbeláez Pérez, Oscar Felipe Carvajal Graciano, Juan Pablo Aguirre Sierra, Daniel David Valoyes Mena, Werlin |
dc.subject.none.fl_str_mv |
Hormigón modificado Resistencia a Compresión Residuos de vidrio Propiedades Mecánicas Propiedades Mecánicas |
topic |
Hormigón modificado Resistencia a Compresión Residuos de vidrio Propiedades Mecánicas Propiedades Mecánicas Modified Concrete Compressive Strength Glass waste Mechanical Properties Expanded Polystyrene |
dc.subject.other.none.fl_str_mv |
Modified Concrete Compressive Strength Glass waste Mechanical Properties Expanded Polystyrene |
description |
Introducción: El hormigón preparado con poliestireno expandido (PE) es un material ambientalmente amigable; sin embargo, la resistencia a compresión es inferior a la observada en el hormigón tradicional, por lo cual, se requieren estrategias que mejoren su resistencia. Este artículo informa el efecto que tiene la adición de vidrio en las características de hormigón preparado con poliestireno como sustituto de los agregados finos. Objetivo: Evaluar las características mecánicas y físicas del hormigón preparado con poliestireno sustituido por vidrio. Metodología: El hormigón se preparó con 10% de reemplazo en volumen del agregado fino. Se prepararon diferentes proporciones en volumen PE:WG 1:0, 1:1, 1:2, 1:3 y 1:4 (volumen PE +RV = 10% volumen del agregado fino). Se evaluó el asentamiento de las mezclas frescas, asi como la resistencia y la densidad de los cilindros fraguados a los 28 días; la durabilidad se evaluó mediante la reacción álcali-sílice. Resultados: El incremento en el contenido de vidrio fue inversamente proporcional al asentamiento, adicionalmente, la incorporación de vidrio no afectó la densidad de manera significativa. La incorporación de residuos de vidrio aumentó considerablemente la resistencia a compresión, siendo la mezcla PE:RV, 1:3 la de mayor resistencia; 37.2% superior al hormigón de referencia (1:0). Asimismo, en la mezcla 1:3, la adición de vidrio no generó un efecto nocivo mediante la reacción álcali-sílice. Conclusiones: La adición de residuos de vidrio al hormigón preparado con poliestireno mejoró sus propiedades mecánicas, convirtiéndolo en un sistema potencial para reemplazar los precursores comúnmente empleados en la producción de hormigón. |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-12-12 |
dc.date.accessioned.none.fl_str_mv |
2023-08-22T20:02:15Z |
dc.date.available.none.fl_str_mv |
2023-08-22T20:02:15Z 2027-08-14 |
dc.type.none.fl_str_mv |
Artículos Científicos |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
2256-3938 |
dc.identifier.uri.none.fl_str_mv |
10.22507/rli.v19n2a12 https://hdl.handle.net/20.500.12494/52513 |
dc.identifier.bibliographicCitation.none.fl_str_mv |
Revista Lasallista de Investigación-Vol. 19 No. 2 / julio-diciembre-2022 |
identifier_str_mv |
2256-3938 10.22507/rli.v19n2a12 Revista Lasallista de Investigación-Vol. 19 No. 2 / julio-diciembre-2022 |
url |
https://hdl.handle.net/20.500.12494/52513 |
dc.relation.isversionof.none.fl_str_mv |
http://revistas.unilasallista.edu.co/index.php/rldi/article/view/3075/210210747 |
dc.relation.ispartofjournal.none.fl_str_mv |
Revista Lasallista de Investigacion |
dc.relation.references.none.fl_str_mv |
Adaway, M., & Wang, Y. J. E. J. O. S. E. (2015). Recycled glass as a partial replacement for fine aggregate in structural concrete–Effects on compressive strength. Electronic Journal of Structural Engineering, 14, 116-122. https://doi.org/10.56748/ejse.141951 Afshinnia, K., & Rangaraju, P. R. (2015). Influence of fineness of ground recycled glass on mitigation of alkali-silica reaction in mortars. Construction and Building Materials, 81, 257–267. https://doi.org/10.1016/j.conbuildmat.2015.02.041 Bahij, S., Omary, S., Feugeas, F., & Faqiri, A. (2020). Fresh and hardened properties of concrete containing different forms of plastic waste – A review. Waste Management, 113, 157–175. https://doi.org/10.1016/j.wasman.2020.05.048 Balasubramanian, B., Gopala Krishna, G. V. T., Saraswathy, V., & Srinivasan, K. (2021). Experimental investigation on concrete partially replaced with waste glass powder and waste E-plastic. Construction and Building Materials, 278, 122400. https://doi.org/10.1016/j.conbuildmat.2021.122400 Cadere, C. A., Barbuta, M., Rosca, B., Serbanoiu, A. A., Burlacu, A., & Oancea, I. (2018). Engineering properties of concrete with polystyrene granules. Procedia Manufacturing, 22, 288–293. https://doi.org/10.1016/j.promfg.2018.03.044 De Paula, F. G. F., De Castro, M. C. M., Ortega, P. F. R., Blanco, C., Lavall, R. L., & Santamaría, R. (2018). High value activated carbons from waste polystyrene foams. Microporous and Mesoporous Materials, 267, 181–184. https://doi.org/10.1016/j.micromeso.2018.03.027 Elaqra, H. A., Haloub, M. A. A., & Rustom, R. N. (2019). Effect of new mixing method of glass powder as cement replacement on mechanical behavior of concrete. Construction and Building Materials, 203, 75–82. https://doi.org/10.1016/j.conbuildmat.2019.01.077 Gu, L., & Ozbakkaloglu, T. (2016). Use of recycled plastics in concrete: A critical review. Waste Management, 51, 19–42. https://doi.org/10.1016/j.wasman.2016.03.005 Guo, P., Meng, W., Nassif, H., Gou, H., & Bao, Y. (2020). New perspectives on recycling waste glass in manufacturing concrete for sustainable civil infrastructure. Construction and Building Materials, 257, 119579. https://doi.org/10.1016/j.conbuildmat.2020.119579 Hajimohammadi, A., Ngo, T., & Kashani, A. (2018). Glass waste versus sand as aggregates: The characteristics of the evolving geopolymer binders. Journal of Cleaner Production, 193, 593–603. https://doi.org/10.1016/j.jclepro.2018.05.086 Hamada, H., Alattar, A., Tayeh, B., Yahaya, F., & Thomas, B. (2022). Effect of recycled waste glass on the properties of high-performance concrete: A critical review. Case Studies in Construction Materials, 17, e01149. https://doi.org/10.1016/j.cscm.2022.e01149 Ibrahim, K. I. M. (2017). The Effect of Using Waste Glass [ WG ] as Partial Replacement of sand on Concrete. Journal of Mechanical and Civil Engineering, 14, 41–45. https://doi.org/10.9790/1684-1402024145 Maghfouri, M., Alimohammadi, V., Gupta, R., Saberian, M., Azarsa, P., Hashemi, M., Asadi, I., & Roychand, R. (2022). Drying shrinkage properties of expanded polystyrene (EPS) lightweight aggregate concrete: A review. Case Studies in Construction Materials, 16, e00919. https://doi.org/10.1016/j.cscm.2022.e00919 Mallum, I., Abdul, A. R., Lim, N. H. A. S., & Omolayo, N. (2022). Sustainable Utilization of Waste Glass in Concrete: A Review. Silicon, 14, 3199–3214. https://doi.org/10.1007/s12633-021-01152-x Mercante, I., Alejandrino, C., Ojeda, J. P., Chini, J., Maroto, C., & Fajardo, N. (2018). Mortar and concrete composites with recycled plastic: A review. Science and Technology of Materials, 30, 69–79. https://doi.org/10.1016/j.stmat.2018.11.003 Naran, J. M., Gonzalez, R. E. G., del Rey Castillo, E., Toma, C. L., Almesfer, N., van Vreden, P., & Saggi, O. (2022). Incorporating waste to develop environmentally-friendly concrete mixes. Construction and Building Materials, 314(PA), 125599. https://doi.org/10.1016/j.conbuildmat.2021.125599 Nikbin, I. M., & Golshekan, M. (2018). The effect of expanded polystyrene synthetic particles on the fracture parameters, brittleness and mechanical properties of concrete. Theoretical and Applied Fracture Mechanics, 94, 160–172. https://doi.org/10.1016/j.tafmec.2018.02.002 Nodehi, M., & Mohamad Taghvaee, V. (2022). Sustainable concrete for circular economy: a review on use of waste glass. Glass Structures and Engineering, 7(1), 3–22. https://doi.org/10.1007/s40940-021-00155-9 Ohemeng, E. A., & Ekolu, S. O. (2019). Strength prediction model for cement mortar made with waste LDPE plastic as fine aggregate. Journal of Sustainable Cement-Based Materials, 8(4), 228–243. https://doi.org/10.1080/21650373.2019.1625826 Ojeda, J. P., Mercante, I. T., & Fajardo, N. H. (2020). Mechanical tests on mortars with recycled plastic aggregates dosed under a model of thermal conductivity. Revista Internacional de Contaminacion Ambiental, 36(2), 465–474. https://doi.org/10.20937/RICA.53452 Olofinnade, O., Chandra, S., & Chakraborty, P. (2020). Recycling of high impact polystyrene and low-density polyethylene plastic wastes in lightweight based concrete for sustainable construction. Materials Today: Proceedings, 38, 2151–2156. https://doi.org/10.1016/j.matpr.2020.05.176 Ojeda, J. P. (2021). A meta-analysis on the use of plastic waste as fibers and aggregates in concrete composites. Construction and Building Materials, 295, 123420. https://doi.org/10.1016/j.conbuildmat.2021.123420 Pecce, M., Ceroni, F., Bibbò, F. A., & Acierno, S. (2015). Steel–concrete bond behaviour of lightweight concrete with expanded polystyrene (EPS). Materials and Structures/Materiaux et Constructions, 48(1–2), 139–152. https://doi.org/10.1617/s11527-013-0173-7 Rosca, B. (2021). Comparative aspects regarding a novel lightweight concrete of structural grade containing brick aggregate as coarse particles and expanded polystyrene beads. Materials Today: Proceedings, 45(6), 4979-4986. https://doi.org/10.1016/j.matpr.2021.01.415 Rosca, B., & Corobceanu, V. (2020). Structural grade concrete containing expanded polystyrene beads with different particle distributions of normal weight aggregate. Materials Today: Proceedings, 42(2), 548-554. https://doi.org/10.1016/j.matpr.2020.10.517 Shiva Srikanth, K., & Lalitha, G. (2022). Durability properties of self compacting concrete partial replacement of fine aggregate with waste crushed glass. Materials Today: Proceedings, 51(8), 2411–2416. https://doi.org/10.1016/j.matpr.2021.11.594 Su, H., Yang, J., Ling, T., Ghataora, G. S., & Dirar, S. (2015). Properties of concrete prepared with waste tyre rubber particles of uniform and varying sizes. Journal of Cleaner Production, 91, 288–296. https://doi.org/10.1016/j.jclepro.2014.12.022 Sun, L., Zhu, X., Kim, M., & Zi, G. (2021). Alkali-silica reaction and strength of concrete with pretreated glass particles as fine aggregates. Construction and Building Materials, 271, 121809. https://doi.org/10.1016/j.conbuildmat.2020.121809 Tamanna, N., Tuladhar, R., & Sivakugan, N. (2020a). Performance of recycled waste glass sand as partial replacement of sand in concrete. Construction and Building Materials, 239, 117804. https://doi.org/10.1016/j.conbuildmat.2019.117804 Tamanna, N., Tuladhar, R., & Sivakugan, N. (2020b). Performance of recycled waste glass sand as partial replacement of sand in concrete. Construction and Building Materials, 239, 117804. https://doi.org/10.1016/j.conbuildmat.2019.117804 Thorneycroft, J., Orr, J., Savoikar, P., & Ball, R. J. (2018). Performance of structural concrete with recycled plastic waste as a partial replacement for sand. Construction and Building Materials, 161, 63–69. https://doi.org/10.1016/j.conbuildmat.2017.11.127 Uttaravalli, A. N., Dinda, S., & Gidla, B. R. (2020). Scientific and engineering aspects of potential applications of post-consumer (waste) expanded polystyrene: A review. Process Safety and Environmental Protection, 137, 140–148. https://doi.org/10.1016/j.psep.2020.02.023 Wu, J. D., Guo, L. P., Cao, Y. Z., & Lyu, B. C. (2022). Mechanical and fiber/matrix interfacial behavior of ultra-high-strength and high-ductility cementitious composites incorporating waste glass powder. Cement and Concrete Composites, 126, 104371. https://doi.org/10.1016/j.cemconcomp.2021.104371 Xu, Y., Xu, J., Jiang, L., Chu, H., & Li, Y. (2015). Prediction of compressive strength and elastic modulus of expanded polystyrene lightweight concrete. Magazine of Concrete Research, 67(17), 954–962. https://doi.org/10.1680/macr.14.00375 |
dc.rights.license.none.fl_str_mv |
Atribución – Sin Derivar |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/closedAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
rights_invalid_str_mv |
Atribución – Sin Derivar http://purl.org/coar/access_right/c_14cb |
eu_rights_str_mv |
closedAccess |
dc.format.extent.none.fl_str_mv |
184-197 |
dc.coverage.temporal.none.fl_str_mv |
19 |
dc.publisher.none.fl_str_mv |
Universidad Cooperativa de Colombia |
dc.publisher.program.none.fl_str_mv |
Ingeniería Civil |
dc.publisher.place.none.fl_str_mv |
Medellín |
publisher.none.fl_str_mv |
Universidad Cooperativa de Colombia |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/1e91ac72-fb55-4492-aa2f-0afaccce57e2/download https://repository.ucc.edu.co/bitstreams/bc0682a1-ecc8-4100-b8de-37fcf1ca8533/download https://repository.ucc.edu.co/bitstreams/de3209d2-e07a-4be1-b224-cfbbe4302da9/download https://repository.ucc.edu.co/bitstreams/1fced79a-18d5-4f64-8ef4-c855a58d257b/download |
bitstream.checksum.fl_str_mv |
3bce4f7ab09dfc588f126e1e36e98a45 5cab7fd7cb5b62245b361fefa79b8732 a757f2de8f88e02afe11a00dd5c6f7d5 ca6521252b81f3e7e0deb08229d4d6da |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1811564880846651392 |
spelling |
Arbeláez Pérez, Oscar FelipeCarvajal Graciano, Juan PabloAguirre Sierra, Daniel DavidValoyes Mena, Werlin192023-08-22T20:02:15Z2023-08-22T20:02:15Z2027-08-142022-12-122256-393810.22507/rli.v19n2a12https://hdl.handle.net/20.500.12494/52513Revista Lasallista de Investigación-Vol. 19 No. 2 / julio-diciembre-2022Introducción: El hormigón preparado con poliestireno expandido (PE) es un material ambientalmente amigable; sin embargo, la resistencia a compresión es inferior a la observada en el hormigón tradicional, por lo cual, se requieren estrategias que mejoren su resistencia. Este artículo informa el efecto que tiene la adición de vidrio en las características de hormigón preparado con poliestireno como sustituto de los agregados finos. Objetivo: Evaluar las características mecánicas y físicas del hormigón preparado con poliestireno sustituido por vidrio. Metodología: El hormigón se preparó con 10% de reemplazo en volumen del agregado fino. Se prepararon diferentes proporciones en volumen PE:WG 1:0, 1:1, 1:2, 1:3 y 1:4 (volumen PE +RV = 10% volumen del agregado fino). Se evaluó el asentamiento de las mezclas frescas, asi como la resistencia y la densidad de los cilindros fraguados a los 28 días; la durabilidad se evaluó mediante la reacción álcali-sílice. Resultados: El incremento en el contenido de vidrio fue inversamente proporcional al asentamiento, adicionalmente, la incorporación de vidrio no afectó la densidad de manera significativa. La incorporación de residuos de vidrio aumentó considerablemente la resistencia a compresión, siendo la mezcla PE:RV, 1:3 la de mayor resistencia; 37.2% superior al hormigón de referencia (1:0). Asimismo, en la mezcla 1:3, la adición de vidrio no generó un efecto nocivo mediante la reacción álcali-sílice. Conclusiones: La adición de residuos de vidrio al hormigón preparado con poliestireno mejoró sus propiedades mecánicas, convirtiéndolo en un sistema potencial para reemplazar los precursores comúnmente empleados en la producción de hormigón.Introduction: Expanded polystyrene (EPS) concrete is an environmentally friendly material; however, its compressive strength is lower than traditional concrete, requiring the incorporation of materials that improve its compressive strength. This paper reports the effect of waste glass (WG) incorporation on the properties of concrete containing polystyrene as partial replacement of fine aggregate. Objective: To evaluate the effect of the incorporation of glass residues on the physical and mechanical properties of concrete made from polystyrene. Methodology: Concrete was produced with 10% by volume replacement of fine aggregate. Different EPS:WG volume ratio 1:0, 1:1, 1:2, 1:3 and 1:4 (volume EPS +WG = 10% volume fine aggregates replacement) were prepared. The slump of fresh of mixtures was evaluated, density and compressive strength of hardened concrete at 28 days was evaluated; the durability was assessed through alkali silica reaction test. Results: An increasing in glass content was inversely proportional to slump, additionally, with the incorporation of glass, the density was not significantly affected. The incorporation of waste glass greatly increases the compressive strength, being the EPS:WG 1:3 mixture that showed the highest compressive strength, which was 37.2% higher than reference concrete (1:0) was. Additionally, in 1:3 mixture was evidenced that the addition of waste glass does not lead to deleterious alkali silica reaction effect. Conclusions: The addition of waste glass to concrete prepared from expanded polystyrene improved its mechanical properties, making it a potential system to replace traditional materials used in concrete production.juan.carvajalg@campusucc.edu.cooscar.arbelaez@campusucc.edu.codaniel.aguirres@campusucc.edu.cowerlin0699@gmail.com184-197Universidad Cooperativa de ColombiaIngeniería CivilMedellínhttp://revistas.unilasallista.edu.co/index.php/rldi/article/view/3075/210210747Revista Lasallista de InvestigacionAdaway, M., & Wang, Y. J. E. J. O. S. E. (2015). Recycled glass as a partial replacement for fine aggregate in structural concrete–Effects on compressive strength. Electronic Journal of Structural Engineering, 14, 116-122. https://doi.org/10.56748/ejse.141951 Afshinnia, K., & Rangaraju, P. R. (2015). Influence of fineness of ground recycled glass on mitigation of alkali-silica reaction in mortars. Construction and Building Materials, 81, 257–267. https://doi.org/10.1016/j.conbuildmat.2015.02.041 Bahij, S., Omary, S., Feugeas, F., & Faqiri, A. (2020). Fresh and hardened properties of concrete containing different forms of plastic waste – A review. Waste Management, 113, 157–175. https://doi.org/10.1016/j.wasman.2020.05.048 Balasubramanian, B., Gopala Krishna, G. V. T., Saraswathy, V., & Srinivasan, K. (2021). Experimental investigation on concrete partially replaced with waste glass powder and waste E-plastic. Construction and Building Materials, 278, 122400. https://doi.org/10.1016/j.conbuildmat.2021.122400 Cadere, C. A., Barbuta, M., Rosca, B., Serbanoiu, A. A., Burlacu, A., & Oancea, I. (2018). Engineering properties of concrete with polystyrene granules. Procedia Manufacturing, 22, 288–293. https://doi.org/10.1016/j.promfg.2018.03.044 De Paula, F. G. F., De Castro, M. C. M., Ortega, P. F. R., Blanco, C., Lavall, R. L., & Santamaría, R. (2018). High value activated carbons from waste polystyrene foams. Microporous and Mesoporous Materials, 267, 181–184. https://doi.org/10.1016/j.micromeso.2018.03.027 Elaqra, H. A., Haloub, M. A. A., & Rustom, R. N. (2019). Effect of new mixing method of glass powder as cement replacement on mechanical behavior of concrete. Construction and Building Materials, 203, 75–82. https://doi.org/10.1016/j.conbuildmat.2019.01.077 Gu, L., & Ozbakkaloglu, T. (2016). Use of recycled plastics in concrete: A critical review. Waste Management, 51, 19–42. https://doi.org/10.1016/j.wasman.2016.03.005 Guo, P., Meng, W., Nassif, H., Gou, H., & Bao, Y. (2020). New perspectives on recycling waste glass in manufacturing concrete for sustainable civil infrastructure. Construction and Building Materials, 257, 119579. https://doi.org/10.1016/j.conbuildmat.2020.119579 Hajimohammadi, A., Ngo, T., & Kashani, A. (2018). Glass waste versus sand as aggregates: The characteristics of the evolving geopolymer binders. Journal of Cleaner Production, 193, 593–603. https://doi.org/10.1016/j.jclepro.2018.05.086 Hamada, H., Alattar, A., Tayeh, B., Yahaya, F., & Thomas, B. (2022). Effect of recycled waste glass on the properties of high-performance concrete: A critical review. Case Studies in Construction Materials, 17, e01149. https://doi.org/10.1016/j.cscm.2022.e01149 Ibrahim, K. I. M. (2017). The Effect of Using Waste Glass [ WG ] as Partial Replacement of sand on Concrete. Journal of Mechanical and Civil Engineering, 14, 41–45. https://doi.org/10.9790/1684-1402024145 Maghfouri, M., Alimohammadi, V., Gupta, R., Saberian, M., Azarsa, P., Hashemi, M., Asadi, I., & Roychand, R. (2022). Drying shrinkage properties of expanded polystyrene (EPS) lightweight aggregate concrete: A review. Case Studies in Construction Materials, 16, e00919. https://doi.org/10.1016/j.cscm.2022.e00919 Mallum, I., Abdul, A. R., Lim, N. H. A. S., & Omolayo, N. (2022). Sustainable Utilization of Waste Glass in Concrete: A Review. Silicon, 14, 3199–3214. https://doi.org/10.1007/s12633-021-01152-x Mercante, I., Alejandrino, C., Ojeda, J. P., Chini, J., Maroto, C., & Fajardo, N. (2018). Mortar and concrete composites with recycled plastic: A review. Science and Technology of Materials, 30, 69–79. https://doi.org/10.1016/j.stmat.2018.11.003 Naran, J. M., Gonzalez, R. E. G., del Rey Castillo, E., Toma, C. L., Almesfer, N., van Vreden, P., & Saggi, O. (2022). Incorporating waste to develop environmentally-friendly concrete mixes. Construction and Building Materials, 314(PA), 125599. https://doi.org/10.1016/j.conbuildmat.2021.125599 Nikbin, I. M., & Golshekan, M. (2018). The effect of expanded polystyrene synthetic particles on the fracture parameters, brittleness and mechanical properties of concrete. Theoretical and Applied Fracture Mechanics, 94, 160–172. https://doi.org/10.1016/j.tafmec.2018.02.002 Nodehi, M., & Mohamad Taghvaee, V. (2022). Sustainable concrete for circular economy: a review on use of waste glass. Glass Structures and Engineering, 7(1), 3–22. https://doi.org/10.1007/s40940-021-00155-9 Ohemeng, E. A., & Ekolu, S. O. (2019). Strength prediction model for cement mortar made with waste LDPE plastic as fine aggregate. Journal of Sustainable Cement-Based Materials, 8(4), 228–243. https://doi.org/10.1080/21650373.2019.1625826 Ojeda, J. P., Mercante, I. T., & Fajardo, N. H. (2020). Mechanical tests on mortars with recycled plastic aggregates dosed under a model of thermal conductivity. Revista Internacional de Contaminacion Ambiental, 36(2), 465–474. https://doi.org/10.20937/RICA.53452 Olofinnade, O., Chandra, S., & Chakraborty, P. (2020). Recycling of high impact polystyrene and low-density polyethylene plastic wastes in lightweight based concrete for sustainable construction. Materials Today: Proceedings, 38, 2151–2156. https://doi.org/10.1016/j.matpr.2020.05.176 Ojeda, J. P. (2021). A meta-analysis on the use of plastic waste as fibers and aggregates in concrete composites. Construction and Building Materials, 295, 123420. https://doi.org/10.1016/j.conbuildmat.2021.123420 Pecce, M., Ceroni, F., Bibbò, F. A., & Acierno, S. (2015). Steel–concrete bond behaviour of lightweight concrete with expanded polystyrene (EPS). Materials and Structures/Materiaux et Constructions, 48(1–2), 139–152. https://doi.org/10.1617/s11527-013-0173-7 Rosca, B. (2021). Comparative aspects regarding a novel lightweight concrete of structural grade containing brick aggregate as coarse particles and expanded polystyrene beads. Materials Today: Proceedings, 45(6), 4979-4986. https://doi.org/10.1016/j.matpr.2021.01.415 Rosca, B., & Corobceanu, V. (2020). Structural grade concrete containing expanded polystyrene beads with different particle distributions of normal weight aggregate. Materials Today: Proceedings, 42(2), 548-554. https://doi.org/10.1016/j.matpr.2020.10.517 Shiva Srikanth, K., & Lalitha, G. (2022). Durability properties of self compacting concrete partial replacement of fine aggregate with waste crushed glass. Materials Today: Proceedings, 51(8), 2411–2416. https://doi.org/10.1016/j.matpr.2021.11.594 Su, H., Yang, J., Ling, T., Ghataora, G. S., & Dirar, S. (2015). Properties of concrete prepared with waste tyre rubber particles of uniform and varying sizes. Journal of Cleaner Production, 91, 288–296. https://doi.org/10.1016/j.jclepro.2014.12.022 Sun, L., Zhu, X., Kim, M., & Zi, G. (2021). Alkali-silica reaction and strength of concrete with pretreated glass particles as fine aggregates. Construction and Building Materials, 271, 121809. https://doi.org/10.1016/j.conbuildmat.2020.121809 Tamanna, N., Tuladhar, R., & Sivakugan, N. (2020a). Performance of recycled waste glass sand as partial replacement of sand in concrete. Construction and Building Materials, 239, 117804. https://doi.org/10.1016/j.conbuildmat.2019.117804 Tamanna, N., Tuladhar, R., & Sivakugan, N. (2020b). Performance of recycled waste glass sand as partial replacement of sand in concrete. Construction and Building Materials, 239, 117804. https://doi.org/10.1016/j.conbuildmat.2019.117804 Thorneycroft, J., Orr, J., Savoikar, P., & Ball, R. J. (2018). Performance of structural concrete with recycled plastic waste as a partial replacement for sand. Construction and Building Materials, 161, 63–69. https://doi.org/10.1016/j.conbuildmat.2017.11.127 Uttaravalli, A. N., Dinda, S., & Gidla, B. R. (2020). Scientific and engineering aspects of potential applications of post-consumer (waste) expanded polystyrene: A review. Process Safety and Environmental Protection, 137, 140–148. https://doi.org/10.1016/j.psep.2020.02.023 Wu, J. D., Guo, L. P., Cao, Y. Z., & Lyu, B. C. (2022). Mechanical and fiber/matrix interfacial behavior of ultra-high-strength and high-ductility cementitious composites incorporating waste glass powder. Cement and Concrete Composites, 126, 104371. https://doi.org/10.1016/j.cemconcomp.2021.104371 Xu, Y., Xu, J., Jiang, L., Chu, H., & Li, Y. (2015). Prediction of compressive strength and elastic modulus of expanded polystyrene lightweight concrete. Magazine of Concrete Research, 67(17), 954–962. https://doi.org/10.1680/macr.14.00375Hormigón modificadoResistencia a CompresiónResiduos de vidrioPropiedades MecánicasPropiedades MecánicasModified ConcreteCompressive StrengthGlass wasteMechanical PropertiesExpanded PolystyreneEfecto de la incorporación de residuos de vidrio en las propiedades del hormigón con poliestirenoArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribución – Sin Derivarinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/1e91ac72-fb55-4492-aa2f-0afaccce57e2/download3bce4f7ab09dfc588f126e1e36e98a45MD51ORIGINAL2023-Efecto_Incorporacion_Residuos.pdfapplication/pdf344607https://repository.ucc.edu.co/bitstreams/bc0682a1-ecc8-4100-b8de-37fcf1ca8533/download5cab7fd7cb5b62245b361fefa79b8732MD52TEXT2023-Efecto_Incorporacion_Residuos.pdf.txt2023-Efecto_Incorporacion_Residuos.pdf.txtExtracted texttext/plain38596https://repository.ucc.edu.co/bitstreams/de3209d2-e07a-4be1-b224-cfbbe4302da9/downloada757f2de8f88e02afe11a00dd5c6f7d5MD53THUMBNAIL2023-Efecto_Incorporacion_Residuos.pdf.jpg2023-Efecto_Incorporacion_Residuos.pdf.jpgGenerated Thumbnailimage/jpeg14060https://repository.ucc.edu.co/bitstreams/1fced79a-18d5-4f64-8ef4-c855a58d257b/downloadca6521252b81f3e7e0deb08229d4d6daMD5420.500.12494/52513oai:repository.ucc.edu.co:20.500.12494/525132024-08-10 21:02:31.463restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo= |