Efecto de la incorporación de residuos de vidrio en las propiedades del hormigón con poliestireno

Introducción: El hormigón preparado con poliestireno expandido (PE) es un material ambientalmente amigable; sin embargo, la resistencia a compresión es inferior a la observada en el hormigón tradicional, por lo cual, se requieren estrategias que mejoren su resistencia. Este artículo informa el efect...

Full description

Autores:
Arbeláez Pérez, Oscar Felipe
Carvajal Graciano, Juan Pablo
Aguirre Sierra, Daniel David
Valoyes Mena, Werlin
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/52513
Acceso en línea:
https://hdl.handle.net/20.500.12494/52513
Palabra clave:
Hormigón modificado
Resistencia a Compresión
Residuos de vidrio
Propiedades Mecánicas
Propiedades Mecánicas
Modified Concrete
Compressive Strength
Glass waste
Mechanical Properties
Expanded Polystyrene
Rights
closedAccess
License
Atribución – Sin Derivar
id COOPER2_6728f6e71a68f7340a58e70753e6df9a
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/52513
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.none.fl_str_mv Efecto de la incorporación de residuos de vidrio en las propiedades del hormigón con poliestireno
title Efecto de la incorporación de residuos de vidrio en las propiedades del hormigón con poliestireno
spellingShingle Efecto de la incorporación de residuos de vidrio en las propiedades del hormigón con poliestireno
Hormigón modificado
Resistencia a Compresión
Residuos de vidrio
Propiedades Mecánicas
Propiedades Mecánicas
Modified Concrete
Compressive Strength
Glass waste
Mechanical Properties
Expanded Polystyrene
title_short Efecto de la incorporación de residuos de vidrio en las propiedades del hormigón con poliestireno
title_full Efecto de la incorporación de residuos de vidrio en las propiedades del hormigón con poliestireno
title_fullStr Efecto de la incorporación de residuos de vidrio en las propiedades del hormigón con poliestireno
title_full_unstemmed Efecto de la incorporación de residuos de vidrio en las propiedades del hormigón con poliestireno
title_sort Efecto de la incorporación de residuos de vidrio en las propiedades del hormigón con poliestireno
dc.creator.fl_str_mv Arbeláez Pérez, Oscar Felipe
Carvajal Graciano, Juan Pablo
Aguirre Sierra, Daniel David
Valoyes Mena, Werlin
dc.contributor.author.none.fl_str_mv Arbeláez Pérez, Oscar Felipe
Carvajal Graciano, Juan Pablo
Aguirre Sierra, Daniel David
Valoyes Mena, Werlin
dc.subject.none.fl_str_mv Hormigón modificado
Resistencia a Compresión
Residuos de vidrio
Propiedades Mecánicas
Propiedades Mecánicas
topic Hormigón modificado
Resistencia a Compresión
Residuos de vidrio
Propiedades Mecánicas
Propiedades Mecánicas
Modified Concrete
Compressive Strength
Glass waste
Mechanical Properties
Expanded Polystyrene
dc.subject.other.none.fl_str_mv Modified Concrete
Compressive Strength
Glass waste
Mechanical Properties
Expanded Polystyrene
description Introducción: El hormigón preparado con poliestireno expandido (PE) es un material ambientalmente amigable; sin embargo, la resistencia a compresión es inferior a la observada en el hormigón tradicional, por lo cual, se requieren estrategias que mejoren su resistencia. Este artículo informa el efecto que tiene la adición de vidrio en las características de hormigón preparado con poliestireno como sustituto de los agregados finos. Objetivo: Evaluar las características mecánicas y físicas del hormigón preparado con poliestireno sustituido por vidrio. Metodología: El hormigón se preparó con 10% de reemplazo en volumen del agregado fino. Se prepararon diferentes proporciones en volumen PE:WG 1:0, 1:1, 1:2, 1:3 y 1:4 (volumen PE +RV = 10% volumen del agregado fino). Se evaluó el asentamiento de las mezclas frescas, asi como la resistencia y la densidad de los cilindros fraguados a los 28 días; la durabilidad se evaluó mediante la reacción álcali-sílice. Resultados: El incremento en el contenido de vidrio fue inversamente proporcional al asentamiento, adicionalmente, la incorporación de vidrio no afectó la densidad de manera significativa. La incorporación de residuos de vidrio aumentó considerablemente la resistencia a compresión, siendo la mezcla PE:RV, 1:3 la de mayor resistencia; 37.2% superior al hormigón de referencia (1:0). Asimismo, en la mezcla 1:3, la adición de vidrio no generó un efecto nocivo mediante la reacción álcali-sílice. Conclusiones: La adición de residuos de vidrio al hormigón preparado con poliestireno mejoró sus propiedades mecánicas, convirtiéndolo en un sistema potencial para reemplazar los precursores comúnmente empleados en la producción de hormigón.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-12-12
dc.date.accessioned.none.fl_str_mv 2023-08-22T20:02:15Z
dc.date.available.none.fl_str_mv 2023-08-22T20:02:15Z
2027-08-14
dc.type.none.fl_str_mv Artículos Científicos
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2256-3938
dc.identifier.uri.none.fl_str_mv 10.22507/rli.v19n2a12
https://hdl.handle.net/20.500.12494/52513
dc.identifier.bibliographicCitation.none.fl_str_mv Revista Lasallista de Investigación-Vol. 19 No. 2 / julio-diciembre-2022
identifier_str_mv 2256-3938
10.22507/rli.v19n2a12
Revista Lasallista de Investigación-Vol. 19 No. 2 / julio-diciembre-2022
url https://hdl.handle.net/20.500.12494/52513
dc.relation.isversionof.none.fl_str_mv http://revistas.unilasallista.edu.co/index.php/rldi/article/view/3075/210210747
dc.relation.ispartofjournal.none.fl_str_mv Revista Lasallista de Investigacion
dc.relation.references.none.fl_str_mv Adaway, M., & Wang, Y. J. E. J. O. S. E. (2015). Recycled glass as a partial replacement for fine aggregate in structural concrete–Effects on compressive strength. Electronic Journal of Structural Engineering, 14, 116-122. https://doi.org/10.56748/ejse.141951 Afshinnia, K., & Rangaraju, P. R. (2015). Influence of fineness of ground recycled glass on mitigation of alkali-silica reaction in mortars. Construction and Building Materials, 81, 257–267. https://doi.org/10.1016/j.conbuildmat.2015.02.041 Bahij, S., Omary, S., Feugeas, F., & Faqiri, A. (2020). Fresh and hardened properties of concrete containing different forms of plastic waste – A review. Waste Management, 113, 157–175. https://doi.org/10.1016/j.wasman.2020.05.048 Balasubramanian, B., Gopala Krishna, G. V. T., Saraswathy, V., & Srinivasan, K. (2021). Experimental investigation on concrete partially replaced with waste glass powder and waste E-plastic. Construction and Building Materials, 278, 122400. https://doi.org/10.1016/j.conbuildmat.2021.122400 Cadere, C. A., Barbuta, M., Rosca, B., Serbanoiu, A. A., Burlacu, A., & Oancea, I. (2018). Engineering properties of concrete with polystyrene granules. Procedia Manufacturing, 22, 288–293. https://doi.org/10.1016/j.promfg.2018.03.044 De Paula, F. G. F., De Castro, M. C. M., Ortega, P. F. R., Blanco, C., Lavall, R. L., & Santamaría, R. (2018). High value activated carbons from waste polystyrene foams. Microporous and Mesoporous Materials, 267, 181–184. https://doi.org/10.1016/j.micromeso.2018.03.027 Elaqra, H. A., Haloub, M. A. A., & Rustom, R. N. (2019). Effect of new mixing method of glass powder as cement replacement on mechanical behavior of concrete. Construction and Building Materials, 203, 75–82. https://doi.org/10.1016/j.conbuildmat.2019.01.077 Gu, L., & Ozbakkaloglu, T. (2016). Use of recycled plastics in concrete: A critical review. Waste Management, 51, 19–42. https://doi.org/10.1016/j.wasman.2016.03.005 Guo, P., Meng, W., Nassif, H., Gou, H., & Bao, Y. (2020). New perspectives on recycling waste glass in manufacturing concrete for sustainable civil infrastructure. Construction and Building Materials, 257, 119579. https://doi.org/10.1016/j.conbuildmat.2020.119579 Hajimohammadi, A., Ngo, T., & Kashani, A. (2018). Glass waste versus sand as aggregates: The characteristics of the evolving geopolymer binders. Journal of Cleaner Production, 193, 593–603. https://doi.org/10.1016/j.jclepro.2018.05.086 Hamada, H., Alattar, A., Tayeh, B., Yahaya, F., & Thomas, B. (2022). Effect of recycled waste glass on the properties of high-performance concrete: A critical review. Case Studies in Construction Materials, 17, e01149. https://doi.org/10.1016/j.cscm.2022.e01149 Ibrahim, K. I. M. (2017). The Effect of Using Waste Glass [ WG ] as Partial Replacement of sand on Concrete. Journal of Mechanical and Civil Engineering, 14, 41–45. https://doi.org/10.9790/1684-1402024145 Maghfouri, M., Alimohammadi, V., Gupta, R., Saberian, M., Azarsa, P., Hashemi, M., Asadi, I., & Roychand, R. (2022). Drying shrinkage properties of expanded polystyrene (EPS) lightweight aggregate concrete: A review. Case Studies in Construction Materials, 16, e00919. https://doi.org/10.1016/j.cscm.2022.e00919 Mallum, I., Abdul, A. R., Lim, N. H. A. S., & Omolayo, N. (2022). Sustainable Utilization of Waste Glass in Concrete: A Review. Silicon, 14, 3199–3214. https://doi.org/10.1007/s12633-021-01152-x Mercante, I., Alejandrino, C., Ojeda, J. P., Chini, J., Maroto, C., & Fajardo, N. (2018). Mortar and concrete composites with recycled plastic: A review. Science and Technology of Materials, 30, 69–79. https://doi.org/10.1016/j.stmat.2018.11.003 Naran, J. M., Gonzalez, R. E. G., del Rey Castillo, E., Toma, C. L., Almesfer, N., van Vreden, P., & Saggi, O. (2022). Incorporating waste to develop environmentally-friendly concrete mixes. Construction and Building Materials, 314(PA), 125599. https://doi.org/10.1016/j.conbuildmat.2021.125599 Nikbin, I. M., & Golshekan, M. (2018). The effect of expanded polystyrene synthetic particles on the fracture parameters, brittleness and mechanical properties of concrete. Theoretical and Applied Fracture Mechanics, 94, 160–172. https://doi.org/10.1016/j.tafmec.2018.02.002 Nodehi, M., & Mohamad Taghvaee, V. (2022). Sustainable concrete for circular economy: a review on use of waste glass. Glass Structures and Engineering, 7(1), 3–22. https://doi.org/10.1007/s40940-021-00155-9 Ohemeng, E. A., & Ekolu, S. O. (2019). Strength prediction model for cement mortar made with waste LDPE plastic as fine aggregate. Journal of Sustainable Cement-Based Materials, 8(4), 228–243. https://doi.org/10.1080/21650373.2019.1625826 Ojeda, J. P., Mercante, I. T., & Fajardo, N. H. (2020). Mechanical tests on mortars with recycled plastic aggregates dosed under a model of thermal conductivity. Revista Internacional de Contaminacion Ambiental, 36(2), 465–474. https://doi.org/10.20937/RICA.53452 Olofinnade, O., Chandra, S., & Chakraborty, P. (2020). Recycling of high impact polystyrene and low-density polyethylene plastic wastes in lightweight based concrete for sustainable construction. Materials Today: Proceedings, 38, 2151–2156. https://doi.org/10.1016/j.matpr.2020.05.176 Ojeda, J. P. (2021). A meta-analysis on the use of plastic waste as fibers and aggregates in concrete composites. Construction and Building Materials, 295, 123420. https://doi.org/10.1016/j.conbuildmat.2021.123420 Pecce, M., Ceroni, F., Bibbò, F. A., & Acierno, S. (2015). Steel–concrete bond behaviour of lightweight concrete with expanded polystyrene (EPS). Materials and Structures/Materiaux et Constructions, 48(1–2), 139–152. https://doi.org/10.1617/s11527-013-0173-7 Rosca, B. (2021). Comparative aspects regarding a novel lightweight concrete of structural grade containing brick aggregate as coarse particles and expanded polystyrene beads. Materials Today: Proceedings, 45(6), 4979-4986. https://doi.org/10.1016/j.matpr.2021.01.415 Rosca, B., & Corobceanu, V. (2020). Structural grade concrete containing expanded polystyrene beads with different particle distributions of normal weight aggregate. Materials Today: Proceedings, 42(2), 548-554. https://doi.org/10.1016/j.matpr.2020.10.517 Shiva Srikanth, K., & Lalitha, G. (2022). Durability properties of self compacting concrete partial replacement of fine aggregate with waste crushed glass. Materials Today: Proceedings, 51(8), 2411–2416. https://doi.org/10.1016/j.matpr.2021.11.594 Su, H., Yang, J., Ling, T., Ghataora, G. S., & Dirar, S. (2015). Properties of concrete prepared with waste tyre rubber particles of uniform and varying sizes. Journal of Cleaner Production, 91, 288–296. https://doi.org/10.1016/j.jclepro.2014.12.022 Sun, L., Zhu, X., Kim, M., & Zi, G. (2021). Alkali-silica reaction and strength of concrete with pretreated glass particles as fine aggregates. Construction and Building Materials, 271, 121809. https://doi.org/10.1016/j.conbuildmat.2020.121809 Tamanna, N., Tuladhar, R., & Sivakugan, N. (2020a). Performance of recycled waste glass sand as partial replacement of sand in concrete. Construction and Building Materials, 239, 117804. https://doi.org/10.1016/j.conbuildmat.2019.117804 Tamanna, N., Tuladhar, R., & Sivakugan, N. (2020b). Performance of recycled waste glass sand as partial replacement of sand in concrete. Construction and Building Materials, 239, 117804. https://doi.org/10.1016/j.conbuildmat.2019.117804 Thorneycroft, J., Orr, J., Savoikar, P., & Ball, R. J. (2018). Performance of structural concrete with recycled plastic waste as a partial replacement for sand. Construction and Building Materials, 161, 63–69. https://doi.org/10.1016/j.conbuildmat.2017.11.127 Uttaravalli, A. N., Dinda, S., & Gidla, B. R. (2020). Scientific and engineering aspects of potential applications of post-consumer (waste) expanded polystyrene: A review. Process Safety and Environmental Protection, 137, 140–148. https://doi.org/10.1016/j.psep.2020.02.023 Wu, J. D., Guo, L. P., Cao, Y. Z., & Lyu, B. C. (2022). Mechanical and fiber/matrix interfacial behavior of ultra-high-strength and high-ductility cementitious composites incorporating waste glass powder. Cement and Concrete Composites, 126, 104371. https://doi.org/10.1016/j.cemconcomp.2021.104371 Xu, Y., Xu, J., Jiang, L., Chu, H., & Li, Y. (2015). Prediction of compressive strength and elastic modulus of expanded polystyrene lightweight concrete. Magazine of Concrete Research, 67(17), 954–962. https://doi.org/10.1680/macr.14.00375
dc.rights.license.none.fl_str_mv Atribución – Sin Derivar
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_14cb
rights_invalid_str_mv Atribución – Sin Derivar
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.extent.none.fl_str_mv 184-197
dc.coverage.temporal.none.fl_str_mv 19
dc.publisher.none.fl_str_mv Universidad Cooperativa de Colombia
dc.publisher.program.none.fl_str_mv Ingeniería Civil
dc.publisher.place.none.fl_str_mv Medellín
publisher.none.fl_str_mv Universidad Cooperativa de Colombia
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/1e91ac72-fb55-4492-aa2f-0afaccce57e2/download
https://repository.ucc.edu.co/bitstreams/bc0682a1-ecc8-4100-b8de-37fcf1ca8533/download
https://repository.ucc.edu.co/bitstreams/de3209d2-e07a-4be1-b224-cfbbe4302da9/download
https://repository.ucc.edu.co/bitstreams/1fced79a-18d5-4f64-8ef4-c855a58d257b/download
bitstream.checksum.fl_str_mv 3bce4f7ab09dfc588f126e1e36e98a45
5cab7fd7cb5b62245b361fefa79b8732
a757f2de8f88e02afe11a00dd5c6f7d5
ca6521252b81f3e7e0deb08229d4d6da
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1811564880846651392
spelling Arbeláez Pérez, Oscar FelipeCarvajal Graciano, Juan PabloAguirre Sierra, Daniel DavidValoyes Mena, Werlin192023-08-22T20:02:15Z2023-08-22T20:02:15Z2027-08-142022-12-122256-393810.22507/rli.v19n2a12https://hdl.handle.net/20.500.12494/52513Revista Lasallista de Investigación-Vol. 19 No. 2 / julio-diciembre-2022Introducción: El hormigón preparado con poliestireno expandido (PE) es un material ambientalmente amigable; sin embargo, la resistencia a compresión es inferior a la observada en el hormigón tradicional, por lo cual, se requieren estrategias que mejoren su resistencia. Este artículo informa el efecto que tiene la adición de vidrio en las características de hormigón preparado con poliestireno como sustituto de los agregados finos. Objetivo: Evaluar las características mecánicas y físicas del hormigón preparado con poliestireno sustituido por vidrio. Metodología: El hormigón se preparó con 10% de reemplazo en volumen del agregado fino. Se prepararon diferentes proporciones en volumen PE:WG 1:0, 1:1, 1:2, 1:3 y 1:4 (volumen PE +RV = 10% volumen del agregado fino). Se evaluó el asentamiento de las mezclas frescas, asi como la resistencia y la densidad de los cilindros fraguados a los 28 días; la durabilidad se evaluó mediante la reacción álcali-sílice. Resultados: El incremento en el contenido de vidrio fue inversamente proporcional al asentamiento, adicionalmente, la incorporación de vidrio no afectó la densidad de manera significativa. La incorporación de residuos de vidrio aumentó considerablemente la resistencia a compresión, siendo la mezcla PE:RV, 1:3 la de mayor resistencia; 37.2% superior al hormigón de referencia (1:0). Asimismo, en la mezcla 1:3, la adición de vidrio no generó un efecto nocivo mediante la reacción álcali-sílice. Conclusiones: La adición de residuos de vidrio al hormigón preparado con poliestireno mejoró sus propiedades mecánicas, convirtiéndolo en un sistema potencial para reemplazar los precursores comúnmente empleados en la producción de hormigón.Introduction: Expanded polystyrene (EPS) concrete is an environmentally friendly material; however, its compressive strength is lower than traditional concrete, requiring the incorporation of materials that improve its compressive strength. This paper reports the effect of waste glass (WG) incorporation on the properties of concrete containing polystyrene as partial replacement of fine aggregate. Objective: To evaluate the effect of the incorporation of glass residues on the physical and mechanical properties of concrete made from polystyrene. Methodology: Concrete was produced with 10% by volume replacement of fine aggregate. Different EPS:WG volume ratio 1:0, 1:1, 1:2, 1:3 and 1:4 (volume EPS +WG = 10% volume fine aggregates replacement) were prepared. The slump of fresh of mixtures was evaluated, density and compressive strength of hardened concrete at 28 days was evaluated; the durability was assessed through alkali silica reaction test. Results: An increasing in glass content was inversely proportional to slump, additionally, with the incorporation of glass, the density was not significantly affected. The incorporation of waste glass greatly increases the compressive strength, being the EPS:WG 1:3 mixture that showed the highest compressive strength, which was 37.2% higher than reference concrete (1:0) was. Additionally, in 1:3 mixture was evidenced that the addition of waste glass does not lead to deleterious alkali silica reaction effect. Conclusions: The addition of waste glass to concrete prepared from expanded polystyrene improved its mechanical properties, making it a potential system to replace traditional materials used in concrete production.juan.carvajalg@campusucc.edu.cooscar.arbelaez@campusucc.edu.codaniel.aguirres@campusucc.edu.cowerlin0699@gmail.com184-197Universidad Cooperativa de ColombiaIngeniería CivilMedellínhttp://revistas.unilasallista.edu.co/index.php/rldi/article/view/3075/210210747Revista Lasallista de InvestigacionAdaway, M., & Wang, Y. J. E. J. O. S. E. (2015). Recycled glass as a partial replacement for fine aggregate in structural concrete–Effects on compressive strength. Electronic Journal of Structural Engineering, 14, 116-122. https://doi.org/10.56748/ejse.141951 Afshinnia, K., & Rangaraju, P. R. (2015). Influence of fineness of ground recycled glass on mitigation of alkali-silica reaction in mortars. Construction and Building Materials, 81, 257–267. https://doi.org/10.1016/j.conbuildmat.2015.02.041 Bahij, S., Omary, S., Feugeas, F., & Faqiri, A. (2020). Fresh and hardened properties of concrete containing different forms of plastic waste – A review. Waste Management, 113, 157–175. https://doi.org/10.1016/j.wasman.2020.05.048 Balasubramanian, B., Gopala Krishna, G. V. T., Saraswathy, V., & Srinivasan, K. (2021). Experimental investigation on concrete partially replaced with waste glass powder and waste E-plastic. Construction and Building Materials, 278, 122400. https://doi.org/10.1016/j.conbuildmat.2021.122400 Cadere, C. A., Barbuta, M., Rosca, B., Serbanoiu, A. A., Burlacu, A., & Oancea, I. (2018). Engineering properties of concrete with polystyrene granules. Procedia Manufacturing, 22, 288–293. https://doi.org/10.1016/j.promfg.2018.03.044 De Paula, F. G. F., De Castro, M. C. M., Ortega, P. F. R., Blanco, C., Lavall, R. L., & Santamaría, R. (2018). High value activated carbons from waste polystyrene foams. Microporous and Mesoporous Materials, 267, 181–184. https://doi.org/10.1016/j.micromeso.2018.03.027 Elaqra, H. A., Haloub, M. A. A., & Rustom, R. N. (2019). Effect of new mixing method of glass powder as cement replacement on mechanical behavior of concrete. Construction and Building Materials, 203, 75–82. https://doi.org/10.1016/j.conbuildmat.2019.01.077 Gu, L., & Ozbakkaloglu, T. (2016). Use of recycled plastics in concrete: A critical review. Waste Management, 51, 19–42. https://doi.org/10.1016/j.wasman.2016.03.005 Guo, P., Meng, W., Nassif, H., Gou, H., & Bao, Y. (2020). New perspectives on recycling waste glass in manufacturing concrete for sustainable civil infrastructure. Construction and Building Materials, 257, 119579. https://doi.org/10.1016/j.conbuildmat.2020.119579 Hajimohammadi, A., Ngo, T., & Kashani, A. (2018). Glass waste versus sand as aggregates: The characteristics of the evolving geopolymer binders. Journal of Cleaner Production, 193, 593–603. https://doi.org/10.1016/j.jclepro.2018.05.086 Hamada, H., Alattar, A., Tayeh, B., Yahaya, F., & Thomas, B. (2022). Effect of recycled waste glass on the properties of high-performance concrete: A critical review. Case Studies in Construction Materials, 17, e01149. https://doi.org/10.1016/j.cscm.2022.e01149 Ibrahim, K. I. M. (2017). The Effect of Using Waste Glass [ WG ] as Partial Replacement of sand on Concrete. Journal of Mechanical and Civil Engineering, 14, 41–45. https://doi.org/10.9790/1684-1402024145 Maghfouri, M., Alimohammadi, V., Gupta, R., Saberian, M., Azarsa, P., Hashemi, M., Asadi, I., & Roychand, R. (2022). Drying shrinkage properties of expanded polystyrene (EPS) lightweight aggregate concrete: A review. Case Studies in Construction Materials, 16, e00919. https://doi.org/10.1016/j.cscm.2022.e00919 Mallum, I., Abdul, A. R., Lim, N. H. A. S., & Omolayo, N. (2022). Sustainable Utilization of Waste Glass in Concrete: A Review. Silicon, 14, 3199–3214. https://doi.org/10.1007/s12633-021-01152-x Mercante, I., Alejandrino, C., Ojeda, J. P., Chini, J., Maroto, C., & Fajardo, N. (2018). Mortar and concrete composites with recycled plastic: A review. Science and Technology of Materials, 30, 69–79. https://doi.org/10.1016/j.stmat.2018.11.003 Naran, J. M., Gonzalez, R. E. G., del Rey Castillo, E., Toma, C. L., Almesfer, N., van Vreden, P., & Saggi, O. (2022). Incorporating waste to develop environmentally-friendly concrete mixes. Construction and Building Materials, 314(PA), 125599. https://doi.org/10.1016/j.conbuildmat.2021.125599 Nikbin, I. M., & Golshekan, M. (2018). The effect of expanded polystyrene synthetic particles on the fracture parameters, brittleness and mechanical properties of concrete. Theoretical and Applied Fracture Mechanics, 94, 160–172. https://doi.org/10.1016/j.tafmec.2018.02.002 Nodehi, M., & Mohamad Taghvaee, V. (2022). Sustainable concrete for circular economy: a review on use of waste glass. Glass Structures and Engineering, 7(1), 3–22. https://doi.org/10.1007/s40940-021-00155-9 Ohemeng, E. A., & Ekolu, S. O. (2019). Strength prediction model for cement mortar made with waste LDPE plastic as fine aggregate. Journal of Sustainable Cement-Based Materials, 8(4), 228–243. https://doi.org/10.1080/21650373.2019.1625826 Ojeda, J. P., Mercante, I. T., & Fajardo, N. H. (2020). Mechanical tests on mortars with recycled plastic aggregates dosed under a model of thermal conductivity. Revista Internacional de Contaminacion Ambiental, 36(2), 465–474. https://doi.org/10.20937/RICA.53452 Olofinnade, O., Chandra, S., & Chakraborty, P. (2020). Recycling of high impact polystyrene and low-density polyethylene plastic wastes in lightweight based concrete for sustainable construction. Materials Today: Proceedings, 38, 2151–2156. https://doi.org/10.1016/j.matpr.2020.05.176 Ojeda, J. P. (2021). A meta-analysis on the use of plastic waste as fibers and aggregates in concrete composites. Construction and Building Materials, 295, 123420. https://doi.org/10.1016/j.conbuildmat.2021.123420 Pecce, M., Ceroni, F., Bibbò, F. A., & Acierno, S. (2015). Steel–concrete bond behaviour of lightweight concrete with expanded polystyrene (EPS). Materials and Structures/Materiaux et Constructions, 48(1–2), 139–152. https://doi.org/10.1617/s11527-013-0173-7 Rosca, B. (2021). Comparative aspects regarding a novel lightweight concrete of structural grade containing brick aggregate as coarse particles and expanded polystyrene beads. Materials Today: Proceedings, 45(6), 4979-4986. https://doi.org/10.1016/j.matpr.2021.01.415 Rosca, B., & Corobceanu, V. (2020). Structural grade concrete containing expanded polystyrene beads with different particle distributions of normal weight aggregate. Materials Today: Proceedings, 42(2), 548-554. https://doi.org/10.1016/j.matpr.2020.10.517 Shiva Srikanth, K., & Lalitha, G. (2022). Durability properties of self compacting concrete partial replacement of fine aggregate with waste crushed glass. Materials Today: Proceedings, 51(8), 2411–2416. https://doi.org/10.1016/j.matpr.2021.11.594 Su, H., Yang, J., Ling, T., Ghataora, G. S., & Dirar, S. (2015). Properties of concrete prepared with waste tyre rubber particles of uniform and varying sizes. Journal of Cleaner Production, 91, 288–296. https://doi.org/10.1016/j.jclepro.2014.12.022 Sun, L., Zhu, X., Kim, M., & Zi, G. (2021). Alkali-silica reaction and strength of concrete with pretreated glass particles as fine aggregates. Construction and Building Materials, 271, 121809. https://doi.org/10.1016/j.conbuildmat.2020.121809 Tamanna, N., Tuladhar, R., & Sivakugan, N. (2020a). Performance of recycled waste glass sand as partial replacement of sand in concrete. Construction and Building Materials, 239, 117804. https://doi.org/10.1016/j.conbuildmat.2019.117804 Tamanna, N., Tuladhar, R., & Sivakugan, N. (2020b). Performance of recycled waste glass sand as partial replacement of sand in concrete. Construction and Building Materials, 239, 117804. https://doi.org/10.1016/j.conbuildmat.2019.117804 Thorneycroft, J., Orr, J., Savoikar, P., & Ball, R. J. (2018). Performance of structural concrete with recycled plastic waste as a partial replacement for sand. Construction and Building Materials, 161, 63–69. https://doi.org/10.1016/j.conbuildmat.2017.11.127 Uttaravalli, A. N., Dinda, S., & Gidla, B. R. (2020). Scientific and engineering aspects of potential applications of post-consumer (waste) expanded polystyrene: A review. Process Safety and Environmental Protection, 137, 140–148. https://doi.org/10.1016/j.psep.2020.02.023 Wu, J. D., Guo, L. P., Cao, Y. Z., & Lyu, B. C. (2022). Mechanical and fiber/matrix interfacial behavior of ultra-high-strength and high-ductility cementitious composites incorporating waste glass powder. Cement and Concrete Composites, 126, 104371. https://doi.org/10.1016/j.cemconcomp.2021.104371 Xu, Y., Xu, J., Jiang, L., Chu, H., & Li, Y. (2015). Prediction of compressive strength and elastic modulus of expanded polystyrene lightweight concrete. Magazine of Concrete Research, 67(17), 954–962. https://doi.org/10.1680/macr.14.00375Hormigón modificadoResistencia a CompresiónResiduos de vidrioPropiedades MecánicasPropiedades MecánicasModified ConcreteCompressive StrengthGlass wasteMechanical PropertiesExpanded PolystyreneEfecto de la incorporación de residuos de vidrio en las propiedades del hormigón con poliestirenoArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribución – Sin Derivarinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/1e91ac72-fb55-4492-aa2f-0afaccce57e2/download3bce4f7ab09dfc588f126e1e36e98a45MD51ORIGINAL2023-Efecto_Incorporacion_Residuos.pdfapplication/pdf344607https://repository.ucc.edu.co/bitstreams/bc0682a1-ecc8-4100-b8de-37fcf1ca8533/download5cab7fd7cb5b62245b361fefa79b8732MD52TEXT2023-Efecto_Incorporacion_Residuos.pdf.txt2023-Efecto_Incorporacion_Residuos.pdf.txtExtracted texttext/plain38596https://repository.ucc.edu.co/bitstreams/de3209d2-e07a-4be1-b224-cfbbe4302da9/downloada757f2de8f88e02afe11a00dd5c6f7d5MD53THUMBNAIL2023-Efecto_Incorporacion_Residuos.pdf.jpg2023-Efecto_Incorporacion_Residuos.pdf.jpgGenerated Thumbnailimage/jpeg14060https://repository.ucc.edu.co/bitstreams/1fced79a-18d5-4f64-8ef4-c855a58d257b/downloadca6521252b81f3e7e0deb08229d4d6daMD5420.500.12494/52513oai:repository.ucc.edu.co:20.500.12494/525132024-08-10 21:02:31.463restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=