On the generation of homogeneous, inhomogeneous and Goodier-Bishop elastic waves from the geometrical ray theory

In this paper, a new group of exact and asymptotic analytical solutions of the displacement equation in a homogeneous elastic media, considering the most general solution of the Helmholtz equation, which have not been shown in papers and standard texts, are presented. Moreover, the authors show from...

Full description

Autores:
Aristizábal Tique, Víctor Hugo
Jaramillo, Juan D.
Tipo de recurso:
Article of journal
Fecha de publicación:
2015
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/1108
Acceso en línea:
https://hdl.handle.net/20.500.12494/1108
Palabra clave:
Elastic waves
Displacement equation
Analytical solutions
Goodier-Bishop waves
Helmholtz equation
seismic wave
Rights
openAccess
License
Licencia CC
id COOPER2_65fad8b9a6ac05dbb89305fdaebd3503
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/1108
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv On the generation of homogeneous, inhomogeneous and Goodier-Bishop elastic waves from the geometrical ray theory
title On the generation of homogeneous, inhomogeneous and Goodier-Bishop elastic waves from the geometrical ray theory
spellingShingle On the generation of homogeneous, inhomogeneous and Goodier-Bishop elastic waves from the geometrical ray theory
Elastic waves
Displacement equation
Analytical solutions
Goodier-Bishop waves
Helmholtz equation
seismic wave
title_short On the generation of homogeneous, inhomogeneous and Goodier-Bishop elastic waves from the geometrical ray theory
title_full On the generation of homogeneous, inhomogeneous and Goodier-Bishop elastic waves from the geometrical ray theory
title_fullStr On the generation of homogeneous, inhomogeneous and Goodier-Bishop elastic waves from the geometrical ray theory
title_full_unstemmed On the generation of homogeneous, inhomogeneous and Goodier-Bishop elastic waves from the geometrical ray theory
title_sort On the generation of homogeneous, inhomogeneous and Goodier-Bishop elastic waves from the geometrical ray theory
dc.creator.fl_str_mv Aristizábal Tique, Víctor Hugo
Jaramillo, Juan D.
dc.contributor.advisor.none.fl_str_mv ARPN Journal of Engineering and Applied Sciences
dc.contributor.author.none.fl_str_mv Aristizábal Tique, Víctor Hugo
Jaramillo, Juan D.
dc.subject.spa.fl_str_mv Elastic waves
Displacement equation
Analytical solutions
Goodier-Bishop waves
Helmholtz equation
seismic wave
topic Elastic waves
Displacement equation
Analytical solutions
Goodier-Bishop waves
Helmholtz equation
seismic wave
description In this paper, a new group of exact and asymptotic analytical solutions of the displacement equation in a homogeneous elastic media, considering the most general solution of the Helmholtz equation, which have not been shown in papers and standard texts, are presented. Moreover, the authors show from the ray theory point of view the meaning of such solutions. These solutions could be helpful in future conceptual works about generation and emerging phenomena in elastic waves such as scattering and diffraction, among others, specifically in the analysis of the boundary conditions. Here, new kinds of P-S body waves that oscillate elliptically and propagate outward from sources in a full-space are found where, as special cases, the grazing longitudinal (Py) and transversal (SVy) waves of the Goodier-Bishop type, the analytic expressions for the Rayleigh wave and surface P waves, for which the amplitude decays from sources, are obtained. Also, the standard expressions for the homogeneous plane wavefronts, surface P waves, and Rayleigh surface waves, are achieved.
publishDate 2015
dc.date.issued.none.fl_str_mv 2015-05-01
dc.date.accessioned.none.fl_str_mv 2017-08-15T15:46:31Z
dc.date.available.none.fl_str_mv 2017-08-15T15:46:31Z
dc.type.none.fl_str_mv Artículo
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/1108
dc.identifier.bibliographicCitation.spa.fl_str_mv Aristizabal Tique, V. H., & Jaramillo, J. D. (2015). On the generation of homogeneous, inhomogeneous and Goodier-Bishop elastic waves from the geometrical ray theory. ARPN Journal of Engineering and Applied Sciences, 10(8), 3436-3450. Recuperado de Asian Research Publishing Network (ARPN). All rights reserved.
url https://hdl.handle.net/20.500.12494/1108
identifier_str_mv Aristizabal Tique, V. H., & Jaramillo, J. D. (2015). On the generation of homogeneous, inhomogeneous and Goodier-Bishop elastic waves from the geometrical ray theory. ARPN Journal of Engineering and Applied Sciences, 10(8), 3436-3450. Recuperado de Asian Research Publishing Network (ARPN). All rights reserved.
dc.relation.isversionof.spa.fl_str_mv http://www.arpnjournals.com/jeas/research_papers/rp_2015/jeas_0515_1943.pdf
dc.rights.cc.none.fl_str_mv Licencia CC
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Licencia CC
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ingenierías, Programa de Inteniería Civil, Medellín y Envigado, Colombia, 00000
dc.publisher.program.spa.fl_str_mv Ingeniería Civil
dc.publisher.place.spa.fl_str_mv Medellín
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/3fe79aac-6e86-4916-95ba-f4e00c9a3a3c/download
https://repository.ucc.edu.co/bitstreams/3fa4f534-e9d3-4574-8a2f-fbcdd931cab3/download
https://repository.ucc.edu.co/bitstreams/f6a2d1ab-16cc-4418-9d50-28cd7a774555/download
https://repository.ucc.edu.co/bitstreams/c1d87fee-4a8d-45e6-9a80-68cb1c269dc8/download
bitstream.checksum.fl_str_mv eec823a27981130915a8a3c8f9be98e2
de761e1f2d941a1706625b603088b857
00fa812dac8f5afa3d1a8617a85aebf2
11476d999a604b384efc4df18c263623
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814246577240276992
spelling ARPN Journal of Engineering and Applied SciencesAristizábal Tique, Víctor HugoJaramillo, Juan D.2017-08-15T15:46:31Z2017-08-15T15:46:31Z2015-05-01https://hdl.handle.net/20.500.12494/1108Aristizabal Tique, V. H., & Jaramillo, J. D. (2015). On the generation of homogeneous, inhomogeneous and Goodier-Bishop elastic waves from the geometrical ray theory. ARPN Journal of Engineering and Applied Sciences, 10(8), 3436-3450. Recuperado de Asian Research Publishing Network (ARPN). All rights reserved.In this paper, a new group of exact and asymptotic analytical solutions of the displacement equation in a homogeneous elastic media, considering the most general solution of the Helmholtz equation, which have not been shown in papers and standard texts, are presented. Moreover, the authors show from the ray theory point of view the meaning of such solutions. These solutions could be helpful in future conceptual works about generation and emerging phenomena in elastic waves such as scattering and diffraction, among others, specifically in the analysis of the boundary conditions. Here, new kinds of P-S body waves that oscillate elliptically and propagate outward from sources in a full-space are found where, as special cases, the grazing longitudinal (Py) and transversal (SVy) waves of the Goodier-Bishop type, the analytic expressions for the Rayleigh wave and surface P waves, for which the amplitude decays from sources, are obtained. Also, the standard expressions for the homogeneous plane wavefronts, surface P waves, and Rayleigh surface waves, are achieved.victor.aristizabalt@campuss.ucc.edu.coUniversidad Cooperativa de Colombia, Facultad de Ingenierías, Programa de Inteniería Civil, Medellín y Envigado, Colombia, 00000Ingeniería CivilMedellínhttp://www.arpnjournals.com/jeas/research_papers/rp_2015/jeas_0515_1943.pdfElastic wavesDisplacement equationAnalytical solutionsGoodier-Bishop wavesHelmholtz equationseismic waveOn the generation of homogeneous, inhomogeneous and Goodier-Bishop elastic waves from the geometrical ray theoryArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionLicencia CCinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINAL2015-OnGenerationHomogeneousGoodierBishopWaves.pdf2015-OnGenerationHomogeneousGoodierBishopWaves.pdfapplication/pdf1482638https://repository.ucc.edu.co/bitstreams/3fe79aac-6e86-4916-95ba-f4e00c9a3a3c/downloadeec823a27981130915a8a3c8f9be98e2MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84587https://repository.ucc.edu.co/bitstreams/3fa4f534-e9d3-4574-8a2f-fbcdd931cab3/downloadde761e1f2d941a1706625b603088b857MD52TEXT2015-OnGenerationHomogeneousGoodierBishopWaves.pdf.txt2015-OnGenerationHomogeneousGoodierBishopWaves.pdf.txtExtracted texttext/plain54476https://repository.ucc.edu.co/bitstreams/f6a2d1ab-16cc-4418-9d50-28cd7a774555/download00fa812dac8f5afa3d1a8617a85aebf2MD53THUMBNAIL2015-OnGenerationHomogeneousGoodierBishopWaves.pdf.jpg2015-OnGenerationHomogeneousGoodierBishopWaves.pdf.jpgIM Thumbnailimage/jpeg5952https://repository.ucc.edu.co/bitstreams/c1d87fee-4a8d-45e6-9a80-68cb1c269dc8/download11476d999a604b384efc4df18c263623MD5420.500.12494/1108oai:repository.ucc.edu.co:20.500.12494/11082024-08-10 21:01:04.302open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUENClJFUE9TSVRPUklPUyBJTlNUSVRVQ0lPTkFMRVMNCkxJQ0VOQ0lBIERFIFVTTw0KDQpQb3IgbWVkaW8gZGVsIHByZXNlbnRlIGRvY3VtZW50bywgZWwgQXV0b3IoZXMpLCBtYXlvciAoZXMpIGRlIGVkYWQsIHF1aWVuIGVuIGFkZWxhbnRlIHNlIGRlbm9taW5hcsOhIGVsIEFVVE9SLCBjb25maWVyZSBhIGxhIFVOSVZFUlNJREFEIENPT1BFUkFUSVZBIERFIENPTE9NQklBLCBjb24gTklULiA4NjAtMDI5OTI0LTcsIHVuYSBMSUNFTkNJQSBERSBVU08gZGUgb2JyYSwgYmFqbyBsYXMgc2lndWllbnRlcyBjb25kaWNpb25lcy4NCg0KQ0zDgVVTVUxBUw0KDQpQUklNRVJBLiBPYmpldG8uIEVMIEFVVE9SIHBvciBlc3RlIGFjdG8gYXV0b3JpemEgbGEgdXRpbGl6YWNpw7NuIGRlIGxhIG9icmEsIGRlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RpcHVsYWRvIGEgY29udGludWFjacOzbjogDQoNCihhKSBQYXJhIGVmZWN0b3MgZGUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgbGEgcmVwcm9kdWNjacOzbiBkZSBsYSBvYnJhIGFudGVyaW9ybWVudGUgY2l0YWRhLCBsYSBjdWFsIHNlIGFsb2phcsOhIGVuIGZvcm1hdG8gZGlnaXRhbCBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQgbyBlbiBvdHJvIHRpcG8gZGUgcmVwb3NpdG9yaW9zIGV4dGVybm9zIG8gcMOhZ2luYXMgd2ViIGVzY29naWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQsIHBhcmEgZmluZXMgZGUgZGlmdXNpw7NuIHkgZGl2dWxnYWNpw7NuLiBBZGljaW9uYWxtZW50ZSwgc2UgYXV0b3JpemEgYSBxdWUgbG9zIHVzdWFyaW9zIGludGVybm9zIHkgZXh0ZXJub3MgZGUgZGljaGFzIHBsYXRhZm9ybWFzIG8gcmVwb3NpdG9yaW9zIHJlcHJvZHV6Y2FuIG8gZGVzY2FyZ3VlbiBsYSBvYnJhLCBzaW4gw6FuaW1vIGRlIGx1Y3JvLCBwYXJhIGZpbmVzIHByaXZhZG9zLCBlZHVjYXRpdm9zIG8gYWNhZMOpbWljb3M7IHNpZW1wcmUgeSBjdWFuZG8gbm8gc2UgdmlvbGVuIGFjdWVyZG9zIGNvbiBlZGl0b3JlcywgcGVyaW9kb3MgZGUgZW1iYXJnbyBvIGFjdWVyZG9zIGRlIGNvbmZpZGVuY2lhbGlkYWQgcXVlIGFwbGlxdWVuLg0KDQooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuDQoNCihjKSBMbyBhbnRlcmlvciBlc3RhcsOhIHN1amV0byBhIGxhcyBkZWZpbmljaW9uZXMgY29udGVuaWRhcyBlbiBsYSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIHkgbGEgTGV5IDIzIGRlIDE5ODIuDQoNCg0KU0VHVU5EQS4gT3JpZ2luYWxpZGFkIHkgcmVjbGFtYWNpb25lcy4gRWwgQVVUT1IgZGVjbGFyYSBxdWUgbGEgT0JSQSBlcyBvcmlnaW5hbCB5IHF1ZSBlcyBkZSBzdSBjcmVhY2nDs24gZXhjbHVzaXZhLCBubyBleGlzdGllbmRvIGltcGVkaW1lbnRvIGRlIGN1YWxxdWllciBuYXR1cmFsZXphIChlbWJhcmdvcywgdXNvIGRlIG1hdGVyaWFsIHByb3RlZ2lkbyBwb3IgZGVyZWNob3MgZGUgYXV0b3IpIHBhcmEgbGEgY29uY2VzacOzbiBkZSBsb3MgZGVyZWNob3MgcHJldmlzdG9zIGVuIGVzdGUgY29udHJhdG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuDQoNClRFUkNFUkEuIENvbnRyYXByZXN0YWNpw7NuLiBFbCBBVVRPUiBhdXRvcml6YSBhIHF1ZSBzdSBvYnJhIHNlYSB1dGlsaXphZGEgZGUgY29uZm9ybWlkYWQgY29uIGxhIGNsw6F1c3VsYSBQUklNRVJBIGRlIGZvcm1hIGdyYXR1aXRhLCBlcyBkZWNpciwgcXVlIGxhIHV0aWxpemFjacOzbiBkZSBsYSBtaXNtYSBubyBnZW5lcmEgbmluZ8O6biBwYWdvIG8gcmVnYWzDrWFzIGVuIGZhdm9yIGRlIGVzdGUuDQoNCkNVQVJUQS4gVGl0dWxhcmlkYWQgZGUgZGVyZWNob3MuIEVsIHByZXNlbnRlIGNvbnRyYXRvIG5vIHRyYW5zZmllcmUgbGEgdGl0dWxhcmlkYWQgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgc29icmUgbGFzIG9icmFzIGFudGVyaW9ybWVudGUgbWVuY2lvbmFkYXMgYSBsYSBVTklWRVJTSURBRC4gw5puaWNhbWVudGUgaGFjZSByZWxhY2nDs24gYSB1bmEgbGljZW5jaWEgbm8gZXhjbHVzaXZhIGVuIGxvcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBhbnRlcmlvcm1lbnRlIHBhY3RhZG9zLg0KDQpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELg0KIA0KU0VYVEEuIER1cmFjacOzbiB5IHRlcnJpdG9yaW8uIExhIHByZXNlbnRlIGxpY2VuY2lhIGRlIHVzbyBxdWUgc2Ugb3RvcmdhIGEgZmF2b3IgZGUgbGEgVU5JVkVSU0lEQUQgdGVuZHLDoSB1bmEgZHVyYWNpw7NuIGVxdWl2YWxlbnRlIGFsIHTDqXJtaW5vIGRlIHByb3RlY2Npw7NuIGxlZ2FsIGRlIGxhIG9icmEgeSBwYXJhIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kby4NCg0KU8OJUFRJTUEuIFVzbyBkZSBDcmVhdGl2ZSBDb21tb25zLiBFbCBBVVRPUiBhdXRvcml6YXLDoSBsYSBkaWZ1c2nDs24gZGUgc3Ugb2JyYSBiYWpvIHVuYSBsaWNlbmNpYSBkZSBDcmVhdGl2ZSBDb21tb25zIEJZIE5DIE5EIChBdHJpYnVjacOzbiAtIE5vIGNvbWVyY2lhbCDigJMgTm8gRGVyaXZhZGEpLCBsbyBjdWFsIHNlIHBvZHLDoSBpbmNsdWlyIGVuIGxhIE9CUkEsIHNpIGxhIFVOSVZFUlNJREFEIGNvbnNpZGVyYSBuZWNlc2FyaW8gaGFjZXJsbyBleHBsw61jaXRvLCBhbCBtb21lbnRvIGRlIGxhIHB1YmxpY2FjacOzbiwgYXJjaGl2byBvIHJlZ2lzdHJvIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcywgcG9yIHNlciB1bmEgY29udmVuY2nDs24gbWF5b3JpdGFyaWFtZW50ZSByZWNvbm9jaWRhLiANCg0KT0NUQVZBLiBEZXJlY2hvIGRlIGV4Y2x1c2nDs24uIENhZGEgYXV0b3IgcHVlZGUgaW5kaWNhciBlbiBlbCBtb21lbnRvIGRlIGRlcMOzc2l0byBkZWwgY29udGVuaWRvIHF1ZSBlbCB0ZXh0byBjb21wbGV0byBkZSBsYSBwcm9kdWNjacOzbiBhY2Fkw6ltaWNhIG8gY2llbnTDrWZpY2Egbm8gZXN0ZSBjb24gYWNjZXNvIGFiaWVydG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBwb3IgbW90aXZvcyBkZSBjb25maWRlbmNpYWxpZGFkLCBwb3JxdWUgc2UgZW5jdWVudHJlIGVuIHbDrWFzIGRlIG9idGVuZXIgdW4gZGVyZWNobyBkZSBwcm9waWVkYWQgaW5kdXN0cmlhbCBvIGV4aXN0aXIgYWN1ZXJkb3MgcHJldmlvcyBjb24gdGVyY2Vyb3MgKGVkaXRvcmlhbGVzLCByZXZpc3RhcyBjaWVudMOtZmljYXMsIG90cmFzIGluc3RpdHVjaW9uZXMpLiBFbCBhdXRvciBzZSBjb21wcm9tZXRlIGEgZGVwb3NpdGFyIGxvcyBtZXRhZGF0b3MgZSBpbmZvcm1hciBlbCB0aWVtcG8gZGUgZW1iYXJnbyBkdXJhbnRlIGVsIGN1YWwgZWwgdGV4dG8gY29tcGxldG8gdGVuZHLDoSBhY2Nlc28gcmVzdHJpbmdpZG8uIA0KDQpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuDQoNCkTDiUNJTUEuIE5vcm1hcyBhcGxpY2FibGVzLiBQYXJhIGxhIGludGVycHJldGFjacOzbiB5IGN1bXBsaW1pZW50byBkZWwgcHJlc2VudGUgY29udHJhdG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLg0KDQpMYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBlbiBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24gZW4gbG9zIHJlcG9zaXRvcmlvcyBpbnN0aXR1Y2lvbmFsZXMu