On the generation of homogeneous, inhomogeneous and Goodier-Bishop elastic waves from the geometrical ray theory
In this paper, a new group of exact and asymptotic analytical solutions of the displacement equation in a homogeneous elastic media, considering the most general solution of the Helmholtz equation, which have not been shown in papers and standard texts, are presented. Moreover, the authors show from...
- Autores:
-
Aristizábal Tique, Víctor Hugo
Jaramillo, Juan D.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2015
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/1108
- Acceso en línea:
- https://hdl.handle.net/20.500.12494/1108
- Palabra clave:
- Elastic waves
Displacement equation
Analytical solutions
Goodier-Bishop waves
Helmholtz equation
seismic wave
- Rights
- openAccess
- License
- Licencia CC
id |
COOPER2_65fad8b9a6ac05dbb89305fdaebd3503 |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/1108 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
On the generation of homogeneous, inhomogeneous and Goodier-Bishop elastic waves from the geometrical ray theory |
title |
On the generation of homogeneous, inhomogeneous and Goodier-Bishop elastic waves from the geometrical ray theory |
spellingShingle |
On the generation of homogeneous, inhomogeneous and Goodier-Bishop elastic waves from the geometrical ray theory Elastic waves Displacement equation Analytical solutions Goodier-Bishop waves Helmholtz equation seismic wave |
title_short |
On the generation of homogeneous, inhomogeneous and Goodier-Bishop elastic waves from the geometrical ray theory |
title_full |
On the generation of homogeneous, inhomogeneous and Goodier-Bishop elastic waves from the geometrical ray theory |
title_fullStr |
On the generation of homogeneous, inhomogeneous and Goodier-Bishop elastic waves from the geometrical ray theory |
title_full_unstemmed |
On the generation of homogeneous, inhomogeneous and Goodier-Bishop elastic waves from the geometrical ray theory |
title_sort |
On the generation of homogeneous, inhomogeneous and Goodier-Bishop elastic waves from the geometrical ray theory |
dc.creator.fl_str_mv |
Aristizábal Tique, Víctor Hugo Jaramillo, Juan D. |
dc.contributor.advisor.none.fl_str_mv |
ARPN Journal of Engineering and Applied Sciences |
dc.contributor.author.none.fl_str_mv |
Aristizábal Tique, Víctor Hugo Jaramillo, Juan D. |
dc.subject.spa.fl_str_mv |
Elastic waves Displacement equation Analytical solutions Goodier-Bishop waves Helmholtz equation seismic wave |
topic |
Elastic waves Displacement equation Analytical solutions Goodier-Bishop waves Helmholtz equation seismic wave |
description |
In this paper, a new group of exact and asymptotic analytical solutions of the displacement equation in a homogeneous elastic media, considering the most general solution of the Helmholtz equation, which have not been shown in papers and standard texts, are presented. Moreover, the authors show from the ray theory point of view the meaning of such solutions. These solutions could be helpful in future conceptual works about generation and emerging phenomena in elastic waves such as scattering and diffraction, among others, specifically in the analysis of the boundary conditions. Here, new kinds of P-S body waves that oscillate elliptically and propagate outward from sources in a full-space are found where, as special cases, the grazing longitudinal (Py) and transversal (SVy) waves of the Goodier-Bishop type, the analytic expressions for the Rayleigh wave and surface P waves, for which the amplitude decays from sources, are obtained. Also, the standard expressions for the homogeneous plane wavefronts, surface P waves, and Rayleigh surface waves, are achieved. |
publishDate |
2015 |
dc.date.issued.none.fl_str_mv |
2015-05-01 |
dc.date.accessioned.none.fl_str_mv |
2017-08-15T15:46:31Z |
dc.date.available.none.fl_str_mv |
2017-08-15T15:46:31Z |
dc.type.none.fl_str_mv |
Artículo |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/1108 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Aristizabal Tique, V. H., & Jaramillo, J. D. (2015). On the generation of homogeneous, inhomogeneous and Goodier-Bishop elastic waves from the geometrical ray theory. ARPN Journal of Engineering and Applied Sciences, 10(8), 3436-3450. Recuperado de Asian Research Publishing Network (ARPN). All rights reserved. |
url |
https://hdl.handle.net/20.500.12494/1108 |
identifier_str_mv |
Aristizabal Tique, V. H., & Jaramillo, J. D. (2015). On the generation of homogeneous, inhomogeneous and Goodier-Bishop elastic waves from the geometrical ray theory. ARPN Journal of Engineering and Applied Sciences, 10(8), 3436-3450. Recuperado de Asian Research Publishing Network (ARPN). All rights reserved. |
dc.relation.isversionof.spa.fl_str_mv |
http://www.arpnjournals.com/jeas/research_papers/rp_2015/jeas_0515_1943.pdf |
dc.rights.cc.none.fl_str_mv |
Licencia CC |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Licencia CC http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Universidad Cooperativa de Colombia, Facultad de Ingenierías, Programa de Inteniería Civil, Medellín y Envigado, Colombia, 00000 |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Civil |
dc.publisher.place.spa.fl_str_mv |
Medellín |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/3fe79aac-6e86-4916-95ba-f4e00c9a3a3c/download https://repository.ucc.edu.co/bitstreams/3fa4f534-e9d3-4574-8a2f-fbcdd931cab3/download https://repository.ucc.edu.co/bitstreams/f6a2d1ab-16cc-4418-9d50-28cd7a774555/download https://repository.ucc.edu.co/bitstreams/c1d87fee-4a8d-45e6-9a80-68cb1c269dc8/download |
bitstream.checksum.fl_str_mv |
eec823a27981130915a8a3c8f9be98e2 de761e1f2d941a1706625b603088b857 00fa812dac8f5afa3d1a8617a85aebf2 11476d999a604b384efc4df18c263623 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814246577240276992 |
spelling |
ARPN Journal of Engineering and Applied SciencesAristizábal Tique, Víctor HugoJaramillo, Juan D.2017-08-15T15:46:31Z2017-08-15T15:46:31Z2015-05-01https://hdl.handle.net/20.500.12494/1108Aristizabal Tique, V. H., & Jaramillo, J. D. (2015). On the generation of homogeneous, inhomogeneous and Goodier-Bishop elastic waves from the geometrical ray theory. ARPN Journal of Engineering and Applied Sciences, 10(8), 3436-3450. Recuperado de Asian Research Publishing Network (ARPN). All rights reserved.In this paper, a new group of exact and asymptotic analytical solutions of the displacement equation in a homogeneous elastic media, considering the most general solution of the Helmholtz equation, which have not been shown in papers and standard texts, are presented. Moreover, the authors show from the ray theory point of view the meaning of such solutions. These solutions could be helpful in future conceptual works about generation and emerging phenomena in elastic waves such as scattering and diffraction, among others, specifically in the analysis of the boundary conditions. Here, new kinds of P-S body waves that oscillate elliptically and propagate outward from sources in a full-space are found where, as special cases, the grazing longitudinal (Py) and transversal (SVy) waves of the Goodier-Bishop type, the analytic expressions for the Rayleigh wave and surface P waves, for which the amplitude decays from sources, are obtained. Also, the standard expressions for the homogeneous plane wavefronts, surface P waves, and Rayleigh surface waves, are achieved.victor.aristizabalt@campuss.ucc.edu.coUniversidad Cooperativa de Colombia, Facultad de Ingenierías, Programa de Inteniería Civil, Medellín y Envigado, Colombia, 00000Ingeniería CivilMedellínhttp://www.arpnjournals.com/jeas/research_papers/rp_2015/jeas_0515_1943.pdfElastic wavesDisplacement equationAnalytical solutionsGoodier-Bishop wavesHelmholtz equationseismic waveOn the generation of homogeneous, inhomogeneous and Goodier-Bishop elastic waves from the geometrical ray theoryArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionLicencia CCinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINAL2015-OnGenerationHomogeneousGoodierBishopWaves.pdf2015-OnGenerationHomogeneousGoodierBishopWaves.pdfapplication/pdf1482638https://repository.ucc.edu.co/bitstreams/3fe79aac-6e86-4916-95ba-f4e00c9a3a3c/downloadeec823a27981130915a8a3c8f9be98e2MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84587https://repository.ucc.edu.co/bitstreams/3fa4f534-e9d3-4574-8a2f-fbcdd931cab3/downloadde761e1f2d941a1706625b603088b857MD52TEXT2015-OnGenerationHomogeneousGoodierBishopWaves.pdf.txt2015-OnGenerationHomogeneousGoodierBishopWaves.pdf.txtExtracted texttext/plain54476https://repository.ucc.edu.co/bitstreams/f6a2d1ab-16cc-4418-9d50-28cd7a774555/download00fa812dac8f5afa3d1a8617a85aebf2MD53THUMBNAIL2015-OnGenerationHomogeneousGoodierBishopWaves.pdf.jpg2015-OnGenerationHomogeneousGoodierBishopWaves.pdf.jpgIM Thumbnailimage/jpeg5952https://repository.ucc.edu.co/bitstreams/c1d87fee-4a8d-45e6-9a80-68cb1c269dc8/download11476d999a604b384efc4df18c263623MD5420.500.12494/1108oai:repository.ucc.edu.co:20.500.12494/11082024-08-10 21:01:04.302open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUENClJFUE9TSVRPUklPUyBJTlNUSVRVQ0lPTkFMRVMNCkxJQ0VOQ0lBIERFIFVTTw0KDQpQb3IgbWVkaW8gZGVsIHByZXNlbnRlIGRvY3VtZW50bywgZWwgQXV0b3IoZXMpLCBtYXlvciAoZXMpIGRlIGVkYWQsIHF1aWVuIGVuIGFkZWxhbnRlIHNlIGRlbm9taW5hcsOhIGVsIEFVVE9SLCBjb25maWVyZSBhIGxhIFVOSVZFUlNJREFEIENPT1BFUkFUSVZBIERFIENPTE9NQklBLCBjb24gTklULiA4NjAtMDI5OTI0LTcsIHVuYSBMSUNFTkNJQSBERSBVU08gZGUgb2JyYSwgYmFqbyBsYXMgc2lndWllbnRlcyBjb25kaWNpb25lcy4NCg0KQ0zDgVVTVUxBUw0KDQpQUklNRVJBLiBPYmpldG8uIEVMIEFVVE9SIHBvciBlc3RlIGFjdG8gYXV0b3JpemEgbGEgdXRpbGl6YWNpw7NuIGRlIGxhIG9icmEsIGRlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RpcHVsYWRvIGEgY29udGludWFjacOzbjogDQoNCihhKSBQYXJhIGVmZWN0b3MgZGUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgbGEgcmVwcm9kdWNjacOzbiBkZSBsYSBvYnJhIGFudGVyaW9ybWVudGUgY2l0YWRhLCBsYSBjdWFsIHNlIGFsb2phcsOhIGVuIGZvcm1hdG8gZGlnaXRhbCBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQgbyBlbiBvdHJvIHRpcG8gZGUgcmVwb3NpdG9yaW9zIGV4dGVybm9zIG8gcMOhZ2luYXMgd2ViIGVzY29naWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQsIHBhcmEgZmluZXMgZGUgZGlmdXNpw7NuIHkgZGl2dWxnYWNpw7NuLiBBZGljaW9uYWxtZW50ZSwgc2UgYXV0b3JpemEgYSBxdWUgbG9zIHVzdWFyaW9zIGludGVybm9zIHkgZXh0ZXJub3MgZGUgZGljaGFzIHBsYXRhZm9ybWFzIG8gcmVwb3NpdG9yaW9zIHJlcHJvZHV6Y2FuIG8gZGVzY2FyZ3VlbiBsYSBvYnJhLCBzaW4gw6FuaW1vIGRlIGx1Y3JvLCBwYXJhIGZpbmVzIHByaXZhZG9zLCBlZHVjYXRpdm9zIG8gYWNhZMOpbWljb3M7IHNpZW1wcmUgeSBjdWFuZG8gbm8gc2UgdmlvbGVuIGFjdWVyZG9zIGNvbiBlZGl0b3JlcywgcGVyaW9kb3MgZGUgZW1iYXJnbyBvIGFjdWVyZG9zIGRlIGNvbmZpZGVuY2lhbGlkYWQgcXVlIGFwbGlxdWVuLg0KDQooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuDQoNCihjKSBMbyBhbnRlcmlvciBlc3RhcsOhIHN1amV0byBhIGxhcyBkZWZpbmljaW9uZXMgY29udGVuaWRhcyBlbiBsYSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIHkgbGEgTGV5IDIzIGRlIDE5ODIuDQoNCg0KU0VHVU5EQS4gT3JpZ2luYWxpZGFkIHkgcmVjbGFtYWNpb25lcy4gRWwgQVVUT1IgZGVjbGFyYSBxdWUgbGEgT0JSQSBlcyBvcmlnaW5hbCB5IHF1ZSBlcyBkZSBzdSBjcmVhY2nDs24gZXhjbHVzaXZhLCBubyBleGlzdGllbmRvIGltcGVkaW1lbnRvIGRlIGN1YWxxdWllciBuYXR1cmFsZXphIChlbWJhcmdvcywgdXNvIGRlIG1hdGVyaWFsIHByb3RlZ2lkbyBwb3IgZGVyZWNob3MgZGUgYXV0b3IpIHBhcmEgbGEgY29uY2VzacOzbiBkZSBsb3MgZGVyZWNob3MgcHJldmlzdG9zIGVuIGVzdGUgY29udHJhdG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuDQoNClRFUkNFUkEuIENvbnRyYXByZXN0YWNpw7NuLiBFbCBBVVRPUiBhdXRvcml6YSBhIHF1ZSBzdSBvYnJhIHNlYSB1dGlsaXphZGEgZGUgY29uZm9ybWlkYWQgY29uIGxhIGNsw6F1c3VsYSBQUklNRVJBIGRlIGZvcm1hIGdyYXR1aXRhLCBlcyBkZWNpciwgcXVlIGxhIHV0aWxpemFjacOzbiBkZSBsYSBtaXNtYSBubyBnZW5lcmEgbmluZ8O6biBwYWdvIG8gcmVnYWzDrWFzIGVuIGZhdm9yIGRlIGVzdGUuDQoNCkNVQVJUQS4gVGl0dWxhcmlkYWQgZGUgZGVyZWNob3MuIEVsIHByZXNlbnRlIGNvbnRyYXRvIG5vIHRyYW5zZmllcmUgbGEgdGl0dWxhcmlkYWQgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgc29icmUgbGFzIG9icmFzIGFudGVyaW9ybWVudGUgbWVuY2lvbmFkYXMgYSBsYSBVTklWRVJTSURBRC4gw5puaWNhbWVudGUgaGFjZSByZWxhY2nDs24gYSB1bmEgbGljZW5jaWEgbm8gZXhjbHVzaXZhIGVuIGxvcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBhbnRlcmlvcm1lbnRlIHBhY3RhZG9zLg0KDQpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELg0KIA0KU0VYVEEuIER1cmFjacOzbiB5IHRlcnJpdG9yaW8uIExhIHByZXNlbnRlIGxpY2VuY2lhIGRlIHVzbyBxdWUgc2Ugb3RvcmdhIGEgZmF2b3IgZGUgbGEgVU5JVkVSU0lEQUQgdGVuZHLDoSB1bmEgZHVyYWNpw7NuIGVxdWl2YWxlbnRlIGFsIHTDqXJtaW5vIGRlIHByb3RlY2Npw7NuIGxlZ2FsIGRlIGxhIG9icmEgeSBwYXJhIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kby4NCg0KU8OJUFRJTUEuIFVzbyBkZSBDcmVhdGl2ZSBDb21tb25zLiBFbCBBVVRPUiBhdXRvcml6YXLDoSBsYSBkaWZ1c2nDs24gZGUgc3Ugb2JyYSBiYWpvIHVuYSBsaWNlbmNpYSBkZSBDcmVhdGl2ZSBDb21tb25zIEJZIE5DIE5EIChBdHJpYnVjacOzbiAtIE5vIGNvbWVyY2lhbCDigJMgTm8gRGVyaXZhZGEpLCBsbyBjdWFsIHNlIHBvZHLDoSBpbmNsdWlyIGVuIGxhIE9CUkEsIHNpIGxhIFVOSVZFUlNJREFEIGNvbnNpZGVyYSBuZWNlc2FyaW8gaGFjZXJsbyBleHBsw61jaXRvLCBhbCBtb21lbnRvIGRlIGxhIHB1YmxpY2FjacOzbiwgYXJjaGl2byBvIHJlZ2lzdHJvIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcywgcG9yIHNlciB1bmEgY29udmVuY2nDs24gbWF5b3JpdGFyaWFtZW50ZSByZWNvbm9jaWRhLiANCg0KT0NUQVZBLiBEZXJlY2hvIGRlIGV4Y2x1c2nDs24uIENhZGEgYXV0b3IgcHVlZGUgaW5kaWNhciBlbiBlbCBtb21lbnRvIGRlIGRlcMOzc2l0byBkZWwgY29udGVuaWRvIHF1ZSBlbCB0ZXh0byBjb21wbGV0byBkZSBsYSBwcm9kdWNjacOzbiBhY2Fkw6ltaWNhIG8gY2llbnTDrWZpY2Egbm8gZXN0ZSBjb24gYWNjZXNvIGFiaWVydG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBwb3IgbW90aXZvcyBkZSBjb25maWRlbmNpYWxpZGFkLCBwb3JxdWUgc2UgZW5jdWVudHJlIGVuIHbDrWFzIGRlIG9idGVuZXIgdW4gZGVyZWNobyBkZSBwcm9waWVkYWQgaW5kdXN0cmlhbCBvIGV4aXN0aXIgYWN1ZXJkb3MgcHJldmlvcyBjb24gdGVyY2Vyb3MgKGVkaXRvcmlhbGVzLCByZXZpc3RhcyBjaWVudMOtZmljYXMsIG90cmFzIGluc3RpdHVjaW9uZXMpLiBFbCBhdXRvciBzZSBjb21wcm9tZXRlIGEgZGVwb3NpdGFyIGxvcyBtZXRhZGF0b3MgZSBpbmZvcm1hciBlbCB0aWVtcG8gZGUgZW1iYXJnbyBkdXJhbnRlIGVsIGN1YWwgZWwgdGV4dG8gY29tcGxldG8gdGVuZHLDoSBhY2Nlc28gcmVzdHJpbmdpZG8uIA0KDQpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuDQoNCkTDiUNJTUEuIE5vcm1hcyBhcGxpY2FibGVzLiBQYXJhIGxhIGludGVycHJldGFjacOzbiB5IGN1bXBsaW1pZW50byBkZWwgcHJlc2VudGUgY29udHJhdG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLg0KDQpMYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBlbiBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24gZW4gbG9zIHJlcG9zaXRvcmlvcyBpbnN0aXR1Y2lvbmFsZXMu |