Systematic review of preclinical studies on the neutrophil-mediated immune response to air pollutants, 1980–2020

Preclinical evidence about the neutrophil-mediated response in exposure to air pollutants is scattered and heterogeneous. This has prevented the consolidation of this research field around relevant models that could advance towards clinical research. The purpose of this study was to systematic revie...

Full description

Autores:
Valderrama, Andrés
Zapata, María Isabel
Hernández López, Juan Carlos
Cardona-Arias, Jaiberth A
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/45953
Acceso en línea:
https://hdl.handle.net/20.500.12494/45953
Palabra clave:
Inflammation
Neutrophils
Air pollutants
Particulate matter
Murine model
Cell cultures
Cytokines
Systematic review
Environmental
Rights
openAccess
License
Atribución
id COOPER2_65c2f2dfcd070bfc16d8c51ea72e0a5f
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/45953
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Systematic review of preclinical studies on the neutrophil-mediated immune response to air pollutants, 1980–2020
title Systematic review of preclinical studies on the neutrophil-mediated immune response to air pollutants, 1980–2020
spellingShingle Systematic review of preclinical studies on the neutrophil-mediated immune response to air pollutants, 1980–2020
Inflammation
Neutrophils
Air pollutants
Particulate matter
Murine model
Cell cultures
Cytokines
Systematic review
Environmental
title_short Systematic review of preclinical studies on the neutrophil-mediated immune response to air pollutants, 1980–2020
title_full Systematic review of preclinical studies on the neutrophil-mediated immune response to air pollutants, 1980–2020
title_fullStr Systematic review of preclinical studies on the neutrophil-mediated immune response to air pollutants, 1980–2020
title_full_unstemmed Systematic review of preclinical studies on the neutrophil-mediated immune response to air pollutants, 1980–2020
title_sort Systematic review of preclinical studies on the neutrophil-mediated immune response to air pollutants, 1980–2020
dc.creator.fl_str_mv Valderrama, Andrés
Zapata, María Isabel
Hernández López, Juan Carlos
Cardona-Arias, Jaiberth A
dc.contributor.author.none.fl_str_mv Valderrama, Andrés
Zapata, María Isabel
Hernández López, Juan Carlos
Cardona-Arias, Jaiberth A
dc.subject.spa.fl_str_mv Inflammation
Neutrophils
Air pollutants
Particulate matter
Murine model
Cell cultures
Cytokines
Systematic review
Environmental
topic Inflammation
Neutrophils
Air pollutants
Particulate matter
Murine model
Cell cultures
Cytokines
Systematic review
Environmental
description Preclinical evidence about the neutrophil-mediated response in exposure to air pollutants is scattered and heterogeneous. This has prevented the consolidation of this research field around relevant models that could advance towards clinical research. The purpose of this study was to systematic review the studies of the neutrophils response to air pollutants, following the recommendations of the Cochrane Collaboration and the PRISMA guide, through 54 search strategies in nine databases. We include 234 studies (in vitro, and in vivo), being more frequent using primary neutrophils, Balb/C and C57BL6/J mice, and Sprague-Dawley and Wistar rats. The most frequent readouts were cell counts, cytokines and histopathology. The temporal analysis showed that in the last decade, the use of mice with histopathological and cytokine measurement have predominated. This systematic review has shown that study of the neutrophils response to air pollutants started 40 years ago, and composed of 100 different preclinical models, 10 pollutants, and 11 immunological outcomes. Mechanisms of neutrophils-mediated immunopathology include cellular activation, ROS production, and proinflammatory effects, leading to cell-death, oxidative stress, and inflammatory infiltrates in lungs. This research will allow consolidating the research efforts in this field, optimizing the study of causal processes, and facilitating the advance to clinical studies.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-07-28T20:01:16Z
dc.date.available.none.fl_str_mv 2022-07-28T20:01:16Z
dc.date.issued.none.fl_str_mv 2022-01-12
dc.type.none.fl_str_mv Artículos Científicos
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.uri.spa.fl_str_mv 10.1016/j.heliyon.2022.e08778
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/45953
dc.identifier.bibliographicCitation.spa.fl_str_mv Valderrama A, Zapata MI, Hernandez JC, Cardona-Arias JA. Systematic review of preclinical studies on the neutrophil-mediated immune response to air pollutants, 1980-2020. Heliyon. 2022 Jan 25;8(1):e08778. doi: 10.1016/j.heliyon.2022.e08778. PMID: 35128092; PMCID: PMC8810373.
identifier_str_mv 10.1016/j.heliyon.2022.e08778
Valderrama A, Zapata MI, Hernandez JC, Cardona-Arias JA. Systematic review of preclinical studies on the neutrophil-mediated immune response to air pollutants, 1980-2020. Heliyon. 2022 Jan 25;8(1):e08778. doi: 10.1016/j.heliyon.2022.e08778. PMID: 35128092; PMCID: PMC8810373.
url https://hdl.handle.net/20.500.12494/45953
dc.relation.isversionof.spa.fl_str_mv https://pubmed.ncbi.nlm.nih.gov/35128092/
dc.relation.ispartofjournal.spa.fl_str_mv Heliyon
dc.relation.references.spa.fl_str_mv [1] R.D. Arias-P erez, N.A. Taborda, D.M. Gomez, J.F. Narvaez, J. Porras, J.C. Hernandez, Inflammatory effects of particulate matter air pollution, Environ. Sci. Pollut. Res. (2020) 1–15. [3] M.C. Loaiza-Ceballos, D. Marin-Palma, W. Zapata, J.C. Hernandez, Viral respiratory infections and air pollutants, Air Qual. Atmos. Heal. (2021). [4] EPA, Particulate Matter (PM), Basics | particulate matter (PM) pollution | US EPA, Air Pollut. 2 (2016). https://www.epa.gov/pm-pollution/particulate-matter-pmbasics#PM. (Accessed 26 May 2020). [5] P. Mantecca, F. Farina, E. Moschini, D. Gallinotti, M. Gualtieri, A. Rohr, G. Sancini, P. Palestini, M. Camatini, Comparative acute lung inflammation induced by atmospheric PM and size-fractionated tire particles, Toxicol. Lett. 198 (2010) 244–254. [6] J.T. Zelikoff, L.C. Chen, M.D. Cohen, K. Fang, T. Gordon, Y. Li, C. Nadziejko, R.B. Schlesinger, Effects of inhaled ambient particulate matter on pulmonary antimicrobial immune defense, Inhal. Toxicol. 15 (2003) 131–150. [7] D.M.
[2] C.A. Pope, M.L. Hansen, R.W. Long, K.R. Nielsen, N.L. Eatough, W.E. Wilson, D.J. Eatough, Ambient particulate air pollution, heart rate variability, and blood markers of inflammation in a panel of elderly subjects, Environ. Health Perspect. 112 (2004) 339–345.
[3] M.C. Loaiza-Ceballos, D. Marin-Palma, W. Zapata, J.C. Hernandez, Viral respiratory infections and air pollutants, Air Qual. Atmos. Heal. (2021).
[4] EPA, Particulate Matter (PM), Basics | particulate matter (PM) pollution | US EPA, Air Pollut. 2 (2016). https://www.epa.gov/pm-pollution/particulate-matter-pmbasics#PM. (Accessed 26 May 2020).
[5] P. Mantecca, F. Farina, E. Moschini, D. Gallinotti, M. Gualtieri, A. Rohr, G. Sancini, P. Palestini, M. Camatini, Comparative acute lung inflammation induced by atmospheric PM and size-fractionated tire particles, Toxicol. Lett. 198 (2010) 244–254. [7] D.M. Gomez-Gallego, J.C. Hern andez, J.A.M. la Ossa, Efectos adversos de la exposicion prenatal al material particulado del aire sobre el feto y el reci en nacido, Iatreia 1 (2021). [8] O. Hahad, J. Lelieveld, F. Birklein, K. Lieb, A. Daiber, T. Münzel, Ambient air pollution increases the risk of cerebrovascular and neuropsychiatric disorders through induction of inflammation and oxidative stress, Int. J. Mol. Sci. 21 (2020) 1–24.
[6] J.T. Zelikoff, L.C. Chen, M.D. Cohen, K. Fang, T. Gordon, Y. Li, C. Nadziejko, R.B. Schlesinger, Effects of inhaled ambient particulate matter on pulmonary antimicrobial immune defense, Inhal. Toxicol. 15 (2003) 131–150.
[7] D.M. Gomez-Gallego, J.C. Hern andez, J.A.M. la Ossa, Efectos adversos de la exposicion prenatal al material particulado del aire sobre el feto y el reci en nacido, Iatreia 1 (2021). [8] O. Hahad, J. Lelieveld, F. Birklein, K. Lieb, A. Daiber, T. Münzel, Ambient air pollution increases the risk of cerebrovascular and neuropsychiatric disorders through induction of inflammation and oxidative stress, Int. J. Mol. Sci. 21 (2020) 1–24.
[8] O. Hahad, J. Lelieveld, F. Birklein, K. Lieb, A. Daiber, T. Münzel, Ambient air pollution increases the risk of cerebrovascular and neuropsychiatric disorders through induction of inflammation and oxidative stress, Int. J. Mol. Sci. 21 (2020) 1–24.
[9] A. Daiber, M. Kuntic, O. Hahad, L.G. Delogu, S. Rohrbach, F. Di Lisa, R. Schulz, T. Münzel, Effects of air pollution particles (ultrafine and fine particulate matter) on mitochondrial function and oxidative stress – implications for cardiovascular and neurodegenerative diseases, Arch. Biochem. Biophys. 696 (2020) 108662. [11] B. Leclercq, J. Kluza, S. Antherieu, J. Sotty, L.Y. Alleman, E. Perdrix, A. Loyens, P. Coddeville, J.M. Lo Guidice, P. Marchetti, G. Garçon, Air pollution-derived PM2.5 impairs mitochondrial function in healthy and chronic obstructive pulmonary diseased human bronchial epithelial cells, Environ. Pollut. 243 (2018) 1434–1449.
[10] M.M. Patel, J.W. Quinn, K.H. Jung, L. Hoepner, D. Diaz, M. Perzanowski, A. Rundle, P.L. Kinney, F.P. Perera, R.L. Miller, Traffic density and stationary sources of air pollution associated with wheeze, asthma, and immunoglobulin E from birth to age 5 years among New York City children, Environ. Res. 111 (2011) 1222–1229.
[11] B. Leclercq, J. Kluza, S. Antherieu, J. Sotty, L.Y. Alleman, E. Perdrix, A. Loyens, P. Coddeville, J.M. Lo Guidice, P. Marchetti, G. Garçon, Air pollution-derived PM2.5 impairs mitochondrial function in healthy and chronic obstructive pulmonary diseased human bronchial epithelial cells, Environ. Pollut. 243 (2018) 1434–1449.
[12] D.J. Wooding, M.H. Ryu, H. Li, N.E. Alexis, O. Pena, C. Carlsten, Acute air pollution exposure alters neutrophils in never-smokers and at-risk humans, Eur. Respir. J. 55 (2020).
[13] M.P. Sierra-Vargas, A.M. Guzman-Grenfell, S. Blanco-Jimenez, J.D. SepulvedaSanchez, R.M. Bernabe-Cabanillas, B. Cardenas-Gonzalez, G. Ceballos, J.J. Hicks, Airborne particulate matter PM2.5 from Mexico City affects the generation of reactive oxygen species by blood neutrophils from asthmatics: an in vitro approach, J. Occup. Med. Toxicol. 4 (2009) 17.
[14] B. Hu, B. Tong, Y. Xiang, S.R. Li, Z.X. Tan, H.X. Xiang, L. Fu, H. Wang, H. Zhao, D.X. Xu, Acute 1-NP exposure induces inflammatory responses through activating various inflammatory signaling pathways in mouse lungs and human A549 cells, Ecotoxicol. Environ. Saf. 189 (2020), 109977.
[15] S. Chen, R. Yin, K. Mutze, Y. Yu, S. Takenaka, M. Konigshoff, T. Stoeger, No € involvement of alveolar macrophages in the initiation of carbon nanoparticle induced acute lung inflammation in mice, Part, Fibre Toxicol. 13 (2016).
[16] L.S. Van Winkle, K. Bein, D. Anderson, K.E. Pinkerton, F. Tablin, D. Wilson, A.S. Wexler, Biological dose response to PM2.5: effect of particle extraction method on platelet and lung responses, Toxicol. Sci. 143 (2015) 349–359.
[17] K.C. Day, M.D. Reed, J.D. McDonald, S.K. Seilkop, E.G. Barrett, Effects of gasoline engine emissions on preexisting allergic airway responses in mice, Inhal. Toxicol. 20 (2008) 1145–1155
[18] F. Farina, G. Sancini, C. Battaglia, V. Tinaglia, P. Mantecca, M. Camatini, P. Palestini, Milano summer particulate matter (PM10) triggers lung inflammation and extra pulmonary adverse events in mice, PLoS One 8 (2013).
[19] T. Miyake, D. Wang, H. Matsuoka, K. Morita, H. Yasuda, K. Yatera, T. Kanazawa, Y. Yoshida, Endocytosis of particulate matter induces cytokine production by neutrophil via Toll-like receptor 4, Int. Immunopharm. 57 (2018) 190–199.
[20] M. van der Toorn, D.J. Slebos, H.G. de Bruin, R. Gras, D. Rezayat, L. Jorge, K. Sandra, A.J.M. van Oosterhout, Critical role of aldehydes in cigarette smokeinduced acute airway inflammation, Respir, Res. 14 (2013) 45
[21] K.R. Smith, J.M. Veranth, U.P. Kodavanti, A.E. Aust, K.E. Pinkerton, Acute pulmonary and systemic effects of inhaled coal fly ash in rats: comparison to ambient environmental particles, Toxicol. Sci. 93 (2006) 390–399.
[22] C.D. Mills, K. Kincaid, J.M. Alt, M.J. Heilman, A.M. Hill, M-1/M-2 macrophages and the Th1/Th2 paradigm, J. Immunol. 164 (2000) 6166–6173
[23] S.M. Jankovic, B. Kapo, A. Sukalo, I. Masic, Evaluation of published preclinical experimental studies in medicine: methodology issues, Med. Arch. 73 (2019) 298–302
[24] I. Masic, S.M. Jankovic, Meta-analysing methodological quality of published research: importance and effectiveness, Stud. Health Technol. Inf. 272 (2020) 229–232.
[25] D. O’Connor, S. Green, J.P. Higgins, 5 Defining the Review Question and Developing Inclusion Criteria (n.d.), https://handbook-5-1.cochrane.org/cha pter_5/5_defining_the_review_question_and_developing_criteria_for.htm. (Accessed 17 September 2020).
[26] K.M. Bendtsen, A. Brostrøm, A.J. Koivisto, I. Koponen, T. Berthing, N. Bertram, K.I. Kling, M. Dal Maso, O. Kangasniemi, M. Poikkim€aki, K. Loeschner, P.A. Clausen, H. Wolff, K.A. Jensen, A.T. Saber, U. Vogel, Airport emission particles: exposure characterization and toxicity following intratracheal instillation in mice, Part, Fibre Toxicol. 16 (2019) 23
[27] W. Li, T. Liu, Y. Xiong, J. Lv, X. Cui, R. He, Diesel exhaust particle promotes tumor lung metastasis via the induction of BLT1-mediated neutrophilic lung inflammation, Cytokine 111 (2018) 530–540
[28] C.S. Weldy, C.C. White, H.W. Wilkerson, T.V. Larson, J.A. Stewart, S.E. Gill, W.C. Parks, T.J. Kavanagh, Heterozygosity in the glutathione synthesis gene Gclm increases sensitivity to diesel exhaust particulate induced lung inflammation in mice, Inhal. Toxicol. 23 (2011) 724–735.
[29] L. Wang, J. Xu, H. Liu, J. Li, H. Hao, PM2.5 inhibits SOD1 expression by upregulating microRNA-206 and promotes ROS accumulation and disease progression in asthmatic mice, Int. Immunopharm. 76 (2019) 105871.
[30] T.C. Wegesser, J.A. Last, Lung response to coarse PM: bioassay in mice, Toxicol. Appl. Pharmacol. 230 (2008) 159–166.
[31] J. Zhang, C.C. Fulgar, T. Mar, D.E. Young, Q. Zhang, K.J. Bein, L. Cui, A. Castaneda, C.F.A. Vogel, X. Sun, W. Li, S. Smiley-Jewell, Z. Zhang, K.E. Pinkerton, TH17-induced neutrophils enhance the pulmonary allergic response following balb/c exposure to house dust mite allergen and fine particulate matter from California and China, Toxicol. Sci. 164 (2018) 627–643.
[32] K.L. Huang, S.Y. Liu, C.C.K. Chou, Y.H. Lee, T.J. Cheng, The effect of sizesegregated ambient particulate matter on Th1/Th2-like immune responses in mice, PLoS One 12 (2017).
[33] G.R. Zosky, C.E. Boylen, R.S. Wong, M.N. Smirk, L. Guti errez, R.C. Woodward, W.S. Siah, B. Devine, F. Maley, A. Cook, Variability and consistency in lung
[34] S. Jeong, S.A. Park, I. Park, P. Kim, N.H. Cho, J.W. Hyun, Y.M. Hyun, PM2.5 exposure in the respiratory system induces distinct inflammatory signaling in the lung and the liver of mice, J. Immunol. Res. 2019 (2019)
[35] G. John, K. Kohse, J. Orasche, A. Reda, J. Schnelle-Kreis, R. Zimmermann, O. Schmid, O. Eickelberg, A.O. Yildirim, The composition of cigarette smoke € determines inflammatory cell recruitment to the lung in COPD mouse models, Clin. Sci. 126 (2014) 207–221.
[36] Y. Zhao, H. Zhang, X. Yang, Y. Zhang, S. Feng, X. Yan, Fine particulate matter (PM 2.5) enhances airway hyperresponsiveness (AHR) by inducing necroptosis in BALB/c mice, Environ. Toxicol. Pharmacol. 68 (2019) 155–163
[37] C.M. Prado, R.F. Righetti, F. Lopes, E.A. Leick, F.M. Arantes-Costa, F.M. de Almeida, P.H.N. Saldiva, T. Mauad, I. Tib erio, M.A. Martins, iNOS inhibition reduces lung mechanical alterations and remodeling induced by particulate matter in mice, Pulm. Med. 2019 (2019) 4781528.
[38] N.K. Fukagawa, M. Li, M.E. Poynter, B.C. Palmer, E. Parker, J. Kasumba, B.A. Holm en, Soy biodiesel and petrodiesel emissions differ in size, chemical composition and stimulation of inflammatory responses in cells and animals, Environ. Sci. Technol. 47 (2013) 12496–12504.
[39] A. Nemmar, S. Al-Salam, P. Yuvaraju, S. Beegam, B.H. Ali, Emodin mitigates diesel exhaust particles-induced increase in airway resistance, inflammation and oxidative stress in mice, Respir. Physiol. Neurobiol. 215 (2015) 51–57.
[40] F. Farina, G. Sancini, C. Battaglia, V. Tinaglia, P. Mantecca, M. Camatini, P. Palestini, Milano summer particulate matter (PM10) triggers lung inflammation and extra pulmonary adverse events in mice, PLoS One 8 (2013).
[41] J. Emmerechts, E. Alfaro-Moreno, B.M. Vanaudenaerde, B. Nemery, M.F. Hoylaerts, Short-term exposure to particulate matter induces arterial but not venous thrombosis in healthy mice, J. Thromb. Haemostasis 8 (2010) 2651–2661
[42] L. Hardaker, P. Bahra, B.C. de Billy, M. Freeman, N. Kupfer, D. Wyss, A. Trifilieff, The ion channel transient receptor potential melastatin-2 does not play a role in inflammatory mouse models of chronic obstructive pulmonary diseases, Respir. Res. 13 (2012) 30.
[43] M.A. Erickson, J. Jude, H. Zhao, E.M. Rhea, T.S. Salameh, W. Jester, S. Pu, J. Harrowitz, N. Nguyen, W.A. Banks, R.A. Panettieri, K.L. Jordan-Sciutto, Serum amyloid A: an ozone-induced circulating factor with potentially important functions in the lung-brain axis, Faseb. J. 31 (2017) 3950–3965.
[44] K. Gowdy, Q.T. Krantz, M. Daniels, W.P. Linak, I. Jaspers, M.I. Gilmour, Modulation of pulmonary inflammatory responses and antimicrobial defenses in mice exposed to diesel exhaust, Toxicol. Appl. Pharmacol. 229 (2008) 310–319.
[45] M. He, T. Ichinose, S. Yoshida, T. Ito, C. He, Y. Yoshida, K. Arashidani, H. Takano, G. Sun, T. Shibamoto, PM2.5-induced lung inflammation in mice: differences of inflammatory response in macrophages and type II alveolar cells, J. Appl. Toxicol. 37 (2017) 1203–1218.
[46] A.J. Ghio, J.H. Richards, J.D. Carter, M.C. Madden, Accumulation of iron in the rat lung after tracheal instillation of diesel particles, Toxicol. Pathol. 28 (2000) 619–627.
[47] J.A. Dye, J.R. Lehmann, J.K. McGee, D.W. Winsett, A.D. Ledbetter, J.I. Everitt, A.J. Ghio, D.L. Costa, Acute pulmonary toxicity of particulate matter filter extracts in rats: coherence with epidemiologic studies in Utah valley residents, Environ. Health Perspect. 109 (2001) 395–403
[48] E.R. Wilfong, M. Lyles, R.L. Rietcheck, D.P. Arfsten, H.J. Boeckman, E.W. Johnson, T.L. Doyle, G.D. Chapman, The acute and long-term effects of Middle East sand particles on the rat airway following a single intratracheal instillation, J. Toxicol. Environ. Health Part A. 74 (2011) 1351–1365.
[49] U.P. Kodavanti, R.F. Thomas, A.D. Ledbetter, M.C. Schladweiler, V. Bass, Q.T. Krantz, C. King, A. Nyska, J.E. Richards, D. Andrews, M.I. Gilmour, Diesel exhaust induced pulmonary and cardiovascular impairment: the role of hypertension intervention, Toxicol. Appl. Pharmacol. 268 (2013) 232–240
[50] X.Y. Li, P.S. Gilmour, K. Donaldson, W. MacNee, Free radical activity and proinflammatory effect of particulate air pollution (PM10) in vivo and in vitro, Thorax 51 (1996) 1216–1222.
[51] X.Y. Li, P.S. Gilmour, K. Donaldson, W. MacNee, In vivo and in vitro proinflammatory effects of particulate air pollution (PM10), Environ. Health Perspect. 105 (Suppl) (1997) 1279–1283.
[52] W.O. Ward, A.D. Ledbetter, M.C. Schladweiler, U.P. Kodavanti, Lung transcriptional profiling: insights into the mechanisms of ozone-induced pulmonary injury in Wistar Kyoto rats, Inhal. Toxicol. 27 (2015) 80–92.
[53] Y.C. Lei, C.C. Chan, P.Y. Wang, C. Te Lee, T.J. Cheng, Effects of Asian dust event particles on inflammation markers in peripheral blood and bronchoalveolar lavage in pulmonary hypertensive rats, Environ. Res. 95 (2004) 71–76.
[54] U.P. Kodavanti, M.C. Jackson, A.D. Ledbetter, J.R. Richards, S.Y. Gardner, W.P. Watkinson, M.J. Campen, D.L. Costa, Lung injury from intratracheal and inhalation exposures to residual oil fly ash in a rat model of monocrotalineinduced pulmonary hypertension, J. Toxicol. Environ. Health Part A. 57 (1999) 543–563.
[55] A.R. Henriquez, S.J. Snow, M.C. Schladweiler, C.N. Miller, J.A. Dye, A.D. Ledbetter, M.M. Hargrove, J.E. Richards, U.P. Kodavanti, Exacerbation of ozone-induced pulmonary and systemic effects by β2-adrenergic and/or glucocorticoid receptor agonist/s, Sci. Rep. 9 (2019) 17925.
[56] F.R. Cassee, A.J.F. Boere, P.H.B. Fokkens, D.L.A.C. Leseman, C. Sioutas, I.M. Kooter, J.A.M.A. Dormans, Inhalation of concentrated particulate matter produces pulmonary inflammation and systemic biological effects in compromised rats, J. Toxicol. Environ. Health Part A. 68 (2005) 773–796
[57] S. Yokota, M. Furuya, T. Seki, H. Marumo, N. Ohara, A. Kato, Delayed exacerbation of acute myocardial ischemia/reperfusion-induced arrhythmia by tracheal instillation of diesel exhaust particles, Inhal. Toxicol. 16 (2004) 319–331.
[58] J. Liu, Y. Yang, X. Zeng, L. Bo, S. Jiang, X. Du, Y. Xie, R. Jiang, J. Zhao, W. Song, Investigation of selenium pretreatment in the attenuation of lung injury in rats induced by fine particulate matters, Environ. Sci. Pollut. Res. 24 (2017) 4008–4017
[59] T.D. da Silva, V. Barnab e, A.L. Ricci-Vitor, V. Papapostolou, M. Tagle, A. Henriquez, J. Lawrence, S. Ferguson, J.M. Wolfson, P. Koutrakis, P. Oyola, C. Ferreira, L.C. de Abreu, C.B.M. de Monteiro, J.J. Godleski, Secondary particles formed from the exhaust of vehicles using ethanol-gasoline blends increase the production of pulmonary and cardiac reactive oxygen species and induce pulmonary inflammation, Environ. Res. 177 (2019).
[60] J.D. Mcdonald, M. Doyle-Eisele, A. Gigliotti, R.A. Miller, S. Seilkop, J.L. Mauderly, J. Seagrave, J. Chow, B. Zielinska, Part 1. Biologic responses in rats and mice to subchronic inhalation of diesel exhaust from U.S. 2007-compliant engines: report on 1-, 3-, and 12-month exposures in the ACES bioassay, Res. Rep. Health. Eff. Inst. (2012) 9–120.
[61] J.E. Clougherty, C.A. Rossi, J. Lawrence, M.S. Long, E.A. Diaz, R.H. Lim, B. McEwen, P. Koutrakis, J.J. Godleski, Chronic social stress and susceptibility to concentrated ambient fine particles in rats, Environ. Health Perspect. 118 (2010) 769–775.
[62] D.H. Rodriguez Ferreira Rivero, S.R. Castro Soares, G. Lorenzi-Filho, M. Saiki, J.J. Godleski, L. Antonangelo, M. Dolhnikoff, P.H.N. Saldiva, Acute cardiopulmonary alterations induced by fine particulate matter of S~ao Paulo, Brazil, Toxicol. Sci. 85 (2005) 898–905.
[63] A. Nemmar, I.M. Inuwa, Diesel exhaust particles in blood trigger systemic and pulmonary morphological alterations, Toxicol. Lett. 176 (2008) 20–30.
[64] B. Hitzfeld, K.H. Friedrichs, J. Ring, H. Behrendt, Airborne particulate matter modulates the production of reactive oxygen species in human polymorphonuclear granulocytes, Toxicology 120 (1997) 185–195.
[65] Y. Zhang, S. Geng, G.L. Prasad, L. Li, Suppression of neutrophil antimicrobial functions by total particulate matter from cigarette smoke, Front. Immunol. 9 (2018) 2274.
[66] B.B. Aam, F. Fonnum, ROS scavenging effects of organic extract of diesel exhaust particles on human neutrophil granulocytes and rat alveolar macrophages, Toxicology 230 (2007) 207–218.
[67] B. Hitzfeld, K.H. Friedrichs, R. Tomingas, H. Behrendt, Organic atmospheric dust extracts and their effects on functional parameters of human polymorphonuclear leukocytes (PMN), J. Aerosol Sci. 23 (1992) 531–534.
[68] WHO, Ambient Air Pollution: A Global Assessment of Exposure and burden of Disease, WHO, 2016. http://www.who.int/phe/publications/air-pollution-global -assessment/en/. (Accessed 21 September 2020).
[69] W. Liu, Z. Xu, T. Yang, Health effects of air pollution in China, Int. J. Environ. Res. Publ. Health 15 (2018).
[70] A. Salvi, S. Salim, Neurobehavioral consequences of traffic-related air pollution, Front. Neurosci. 13 (2019).
[71] J. Moreno-Cruz, Understanding the industrial contribution to pollution offers opportunities to further improve air quality in the United States, Proc. Natl. Acad. Sci. U. S. A. 116 (2019) 19769–19770.
[72] A. Caplin, M. Ghandehari, C. Lim, P. Glimcher, G. Thurston, Advancing environmental exposure assessment science to benefit society, Nat. Commun. 10 (2019) 1236.
[73] B. Bowe, Y. Xie, Y. Yan, Z. Al-Aly, Burden of cause-specific mortality associated with PM2.5 air pollution in the United States, JAMA Netw. Open 2 (2019), e1915834 e1915834.
[74] Y. Ou, J.J. West, S.J. Smith, C.G. Nolte, D.H. Loughlin, Air pollution control strategies directly limiting national health damages in the US, Nat. Commun. 11 (2020).
[75] C.A. Pope, J.S. Lefler, M. Ezzati, J.D. Higbee, J.D. Marshall, S.Y. Kim, M. Bechle, K.S. Gilliat, S.E. Vernon, A.L. Robinson, R.T. Burnett, Mortality risk and fine particulate air pollution in a large, representative cohort of U.S. adults, Environ. Health Perspect. 127 (2019).
[76] L. Tian, S. Sun, Comparison of health impact of air pollution between China and other countries, Adv. Exp. Med. Biol. 1017 (2017) 215–232
[77] Y. Zhang, S. Tao, H. Shen, M. Jianmin, Inhalation exposure to ambient polycyclic aromatic hydrocarbons and lung cancer risk of Chinese population, Proc. Natl. Acad. Sci. U. S. A. 106 (2009) 21063–21067
[78] D. Yang, Y. Liu, C. Bai, X. Wang, C.A. Powell, Epidemiology of lung cancer and lung cancer screening programs in China and the United States, Cancer Lett. 468 (2020) 82–87
[79] K.J. Maji, M. Arora, A.K. Dikshit, Burden of disease attributed to ambient PM2.5 and PM10 exposure in 190 cities in China, Environ. Sci. Pollut. Res. 24 (2017) 11559–11572.
[80] K.L. Huang, S.Y. Liu, C.C.K. Chou, Y.H. Lee, T.J. Cheng, The effect of sizesegregated ambient particulate matter on Th1/Th2-like immune responses in mice, PLoS One 12 (2017).
[81] S.H. Cho, H. Tong, J.K. McGee, R.W. Baldauf, Q.T. Krantz, M.I. Gilmour, Comparative toxicity of size-fractionated airborne particulate matter collected at different distances from an urban highway, Environ. Health Perspect. 117 (2009) 1682–1689.
[82] M.S. Happo, R.O. Salonen, A.I. H€alinen, P.I. Jalava, A.S. Pennanen, V.M. Kosma, M. Sillanp€a€a, R. Hillamo, B. Brunekreef, K. Katsouyanni, J. Sunyer, M.R. Hirvonen, Dose and time dependency of inflammatory responses in the mouse lung to urban air coarse, fine, and ultrafine particles from six European cities, Inhal. Toxicol. 19 (2007) 227–246
[83] N. Li, M. Wang, L.A. Bramble, D.A. Schmitz, J.J. Schauer, C. Sioutas, J.R. Harkema, A.E. Nel, The adjuvant effect of ambient particulate matter is closely reflected by the particulate oxidant potential, Environ. Health Perspect. 117 (2009) 1116–1123
[84] S. Becker, L.A. Dailey, J.M. Soukup, S.C. Grambow, R.B. Devlin, Y.C.T. Huang, Seasonal variations in air pollution particle-induced inflammatory mediator release and oxidative stress, Environ. Health Perspect. 113 (2005) 1032–1038. .
[85] K.-L. Huang, S.-Y. Liu, C.C.K. Chou, Y.-H. Lee, T.-J. Cheng, The Effect of SizeSegregated Ambient Particulate Matter on Th1/Th2-like Immune Responses in Mice, 2017.18) 1331–1342
[86] P.S. Mahapatra, S. Jain, S. Shrestha, S. Senapati, S.P. Puppala, Ambient endotoxin in PM10 and association with inflammatory activity, air pollutants, and meteorology, in Chitwan, Nepal, Sci. Total Environ. 618 (20
[87] X. Jin, B. Xue, Q. Zhou, R. Su, Z. Li, Mitochondrial damage mediated by ROS incurs bronchial epithelial cell apoptosis upon ambient PM2.5 exposure, J. Toxicol. Sci. 43 (2018) 101–111
[88] J. Bosson, J. Pourazar, B. Forsberg, E. Adelroth, T. Sandstr € om, A. Blomberg, Ozone € enhances the airway inflammation initiated by diesel exhaust, Respir. Med. 101 (2007) 1140–1146.
[89] X.Y. Li, P.S. Gilmour, K. Donaldson, W. MacNee, In vivo and in vitro proinflammatory effects of particulate air pollution (PM10), Environ. Health Perspect. 105 (Suppl) (1997) 1279–1283.
[90] R. De Paula Vieira, A.C. Toledo, L.B. Silva, F.M. Almeida, N.R. DamacenoRodrigues, E.G. Caldini, A.B.G. Santos, D.H. Rivero, D.C. Hizume, F.D.T.Q.S. Lopes, C.R. Olivo, H.C. Castro-Faria-Neto, M.A. Martins, P.H.N. Saldiva, M. Dolhnikoff, Anti-inflammatory effects of aerobic exercise in mice exposed to air pollution, Med. Sci. Sports Exerc. 44 (2012) 1227–1234.
[91] Z. Hong, Z. Guo, R. Zhang, J. Xu, W. Dong, G. Zhuang, C. Deng, Airborne fine particulate matter induces oxidative stress and inflammation in human nasal epithelial cells, Tohoku J. Exp. Med. 239 (2016) 117–125.
[92] M. van der Toorn, D.J. Slebos, H.G. de Bruin, R. Gras, D. Rezayat, L. Jorge, K. Sandra, A.J.M. van Oosterhout, Critical role of aldehydes in cigarette smokeinduced acute airway inflammation, Respir, Res. 14 (2013) 45.
[93] W. Xu, J. Li, W. Zhang, Z. Wang, J. Wu, X. Ge, J. Wu, Y. Cao, Y. Xie, D. Ying, Y. Wang, L. Wang, Z. Qiao, J. Jia, Emission of sulfur dioxide from poly
[94] J. Rovira, J.L. Domingo, M. Schuhmacher, Air quality, health impacts and burden of disease due to air pollution (PM(10), PM(2.5), NO(2) and O(3)): application of AirQþ model to the Camp de Tarragona County (Catalonia, Spain), Sci. Total Environ. 703 (2020) 135538.
[95] K.E. Driscoll, T.A. Vollmuth, R.B. Schlesinger, Acute and subchronic ozone inhalation in the rabbit: response of alveolar macrophages, J. Toxicol. Environ. Health 21 (1987) 27–43.
[96] A. Bao, L. Liang, F. Li, M. Zhang, X. Zhou, Effects of acute ozone exposure on lung peak allergic inflammation of mice, Front. Biosci. 18 (2013) 838–851.
[97] M.J.G. Oyarzún, S.A.R. S anchez, N.D. Dussaubat, M.E.A. Miller, S.B. Gonz alez, Effect of copper sulphate on the lung damage induced by chronic intermittent exposure to ozone, Rev. Med. Chile 145 (2017) 9–16
[98] W.O. Ward, A.D. Ledbetter, M.C. Schladweiler, U.P. Kodavanti, Lung transcriptional profiling: insights into the mechanisms of ozone-induced pulmonary injury in Wistar Kyoto rats, Inhal. Toxicol. 27 (2015) 80–92.
[99] V. Loria, I. Dato, F. Graziani, L.M. Biasucci, Myeloperoxidase: A New Biomarker of Inflammation in Ischemic Heart Disease and Acute Coronary Syndromes, Mediators Inflamm, 2008, p. 2008
[100] M.S. Werley, D.J. Kirkpatrick, M.J. Oldham, A.M. Jerome, T.B. Langston, P.D. Lilly, D.C. Smith, W.J. Mckinney, Toxicological assessment of a prototype ecigaret device and three flavor formulations: a 90-day inhalation study in rats, Inhal. Toxicol. 28 (2016) 22–38.
[101] J.G. Wallenborn, P. Evansky, J.H. Shannahan, B. Vallanat, A.D. Ledbetter, M.C. Schladweiler, J.H. Richards, R.R. Gottipolu, A. Nyska, U.P. Kodavanti, Subchronic inhalation of zinc sulfate induces cardiac changes in healthy rats, Toxicol. Appl. Pharmacol. 232 (2008) 69–77. [102] U.P. Kodavanti, M.C. Schladweiler, A.D. Ledbetter, W.P. Watkinson, M.J. Campen, D.W. Winsett, J.R. Richards, K.M. Crissman, G.E. Hatch, D.L. Costa, The spontaneously hypertensive rat as a model of human cardiovascular disease: evidence of exacerbated cardiopulmonary injury and oxidative stress from inhaled emission particulate matter, Toxicol. Appl. Pharmacol. 164 (2000) 250–263. [103] F. Farina, G. Sancini, C. Battaglia, V. Tinaglia, P. Mantecca, M. Camatini, P. Palestini, Milano summer particulate matter (PM10) triggers lung inflammation and extra pulmonary adverse events in mice, PLoS One 8 (2013) 56636.
[102] U.P. Kodavanti, M.C. Schladweiler, A.D. Ledbetter, W.P. Watkinson, M.J. Campen, D.W. Winsett, J.R. Richards, K.M. Crissman, G.E. Hatch, D.L. Costa, The spontaneously hypertensive rat as a model of human cardiovascular disease: evidence of exacerbated cardiopulmonary injury and oxidative stress from inhaled emission particulate matter, Toxicol. Appl. Pharmacol. 164 (2000) 250–263.
[103] F. Farina, G. Sancini, C. Battaglia, V. Tinaglia, P. Mantecca, M. Camatini, P. Palestini, Milano summer particulate matter (PM10) triggers lung inflammation and extra pulmonary adverse events in mice, PLoS One 8 (2013) 56636.
[104] C.M. Wei, A. Lerman, R.J. Rodeheffer, C.G.A. McGregor, R.R. Brandt, S. Wright, D.M. Heublein, P.C. Kao, W.D. Edwards, J.C. Burnett, Endothelin in human congestive heart failure, Circulation 89 (1994) 1580–1586.
105] S. Karthikeyan, E.M. Thomson, P. Kumarathasan, J. Gu enette, D. Rosenblatt, T. Chan, G. Rideout, R. Vincent, Nitrogen dioxide and ultrafine particles dominate the biological effects of inhaled diesel exhaust treated by a catalyzed diesel particulate filter, Toxicol. Sci. 135 (2013) 437–450.
[106] P. Kumarathasan, E. Blais, A. Saravanamuthu, A. Bielecki, B. Mukherjee, S. Bjarnason, J. Gu enette, P. Goegan, R. Vincent, Nitrative stress, oxidative stress and plasma endothelin levels after inhalation of particulate matter and ozone, Part, Fibre Toxicol. 12 (2015).
[107] B. Kristal, R. Shurtz-Swirski, J. Chezar, J. Manaster, R. Levy, G. Shapiro, I. Weissman, S.M. Shasha, S. Sela, Participation of peripheral polymorphonuclear leukocytes in the oxidative stress and inflammation in patients with essential hypertension, Am. J. Hypertens. 11 (1998) 921–928.
[108] H. Suzuki, A. Swei, B.W. Zweifach, G.W. Schmid-Schonbein, In vivo evidence for € microvascular oxidative stress in spontaneously hypertensive rats: hydroethidine microfluorography, Hypertension 25 (1995) 1083–1089
[109] U.P. Kodavanti, M.C. Schladweiler, A.D. Ledbetter, R. Hauser, D.C. Christiani, J. McGee, J.R. Richards, D.L. Costa, Temporal association between pulmonary and systemic effects of particulate matter in healthy and cardiovascular compromised rats, 2011, pp. 1545–1569.
[110] K.A. Miller, D.S. Siscovick, L. Sheppard, K. Shepherd, J.H. Sullivan, G.L. Anderson, J.D. Kaufman, Long-term exposure to air pollution and incidence of cardiovascular events in women, N. Engl. J. Med. 356 (2007) 447–458.
[111] C.A. Pope, R.T. Burnett, G.D. Thurston, M.J. Thun, E.E. Calle, D. Krewski, J.J. Godleski, Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease, Circulation 109 (2004) 71–77. [112] K.H. Park, W.J. Park, Endothelial dysfunction: clinical implications in cardiovascular disease and therapeutic approaches, J. Kor. Med. Sci. 30 (2015) 1213–1225.
[112] K.H. Park, W.J. Park, Endothelial dysfunction: clinical implications in cardiovascular disease and therapeutic approaches, J. Kor. Med. Sci. 30 (2015) 1213–1225.
[113] Q. Sun, A. Wang, X. Jin, A. Natanzon, D. Duquaine, R.D. Brook, J.-G.S. Aguinaldo, Z.A. Fayad, V. Fuster, M. Lippmann, L.C. Chen, S. Rajagopalan, Long-term air pollution exposure and acceleration of atherosclerosis and vascular inflammation in an animal model, JAMA 294 (2005) 3003–3010.
[114] P. Haberzettl, T.E. O’Toole, A. Bhatnagar, D.J. Conklin, Exposure to fine particulate air pollution causes vascular insulin resistance by inducing pulmonary oxidative stress, Environ. Health Perspect. 124 (2016) 1830–1839.
[115] F. Kim, M. Pham, E. Maloney, N.O. Rizzo, G.J. Morton, B.E. Wisse, E.A. Kirk, A. Chait, M.W. Schwartz, Vascular inflammation, insulin resistance, and reduced nitric oxide production precede the onset of peripheral insulin resistance, Arterioscler. Thromb. Vasc. Biol. 28 (2008) 1982–1988. [116] T. Kubota, N. Kubota, H. Kumagai, S. Yamaguchi, H. Kozono, T. Takahashi, M. Inoue, S. Itoh, I. Takamoto, T. Sasako, K. Kumagai, T. Kawai, S. Hashimoto, T. Kobayashi, M. Sato, K. Tokuyama, S. Nishimura, M. Tsunoda, T. Ide, K. Murakami, T. Yamazaki, O. Ezaki, K. Kawamura, H. Masuda, M. Moroi, K. Sugi, Y. Oike, H. Shimokawa, N. Yanagihara, M. Tsutsui, Y. Terauchi, K. Tobe, R. Nagai, K. Kamata, K. Inoue, T. Kodama, K. Ueki, T. Kadowaki, Impaired insulin signaling in endothelial cells reduces insulin-induced glucose uptake by skeletal muscle, Cell Metabol. 13 (2011) 294–307.
[116] T. Kubota, N. Kubota, H. Kumagai, S. Yamaguchi, H. Kozono, T. Takahashi, M. Inoue, S. Itoh, I. Takamoto, T. Sasako, K. Kumagai, T. Kawai, S. Hashimoto, T. Kobayashi, M. Sato, K. Tokuyama, S. Nishimura, M. Tsunoda, T. Ide, K. Murakami, T. Yamazaki, O. Ezaki, K. Kawamura, H. Masuda, M. Moroi, K. Sugi, Y. Oike, H. Shimokawa, N. Yanagihara, M. Tsutsui, Y. Terauchi, K. Tobe, R. Nagai, K. Kamata, K. Inoue, T. Kodama, K. Ueki, T. Kadowaki, Impaired insulin signaling in endothelial cells reduces insulin-induced glucose uptake by skeletal muscle, Cell Metabol. 13 (2011) 294–307.
[117] U. Landmesser, B. Hornig, H. Drexler, Endothelial function: a critical determinant in atherosclerosis? Circulation 109 (2004). [118] J.A. Kim, M. Montagnani, K.K. Kwang, M.J. Quon, Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms, Circulation 113 (2006) 1888–1904.
[118] J.A. Kim, M. Montagnani, K.K. Kwang, M.J. Quon, Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms, Circulation 113 (2006) 1888–1904.
[119] G.M. Mutlu, D. Green, A. Bellmeyer, C.M. Baker, Z. Burgess, N. Rajamannan, J.W. Christman, N. Foiles, D.W. Kamp, A.J. Ghio, N.S. Chandel, D.A. Dean, J.I. Sznajder, G.R.S. Budinger, Ambientependent path particulate matter accelerates coagulation via an IL-6–dway, J. Clin. Invest. 117 (2007) 2952.
[120] F. Gorini, L. Sabatino, M. Gaggini, K. Chatzianagnostou, C. Vassalle, Oxidative Stress Biomarkers in the Relationship between Type 2 Diabetes and Air Pollution, Antioxidants 10 (2021).
[121] W.E. Cascio, E. Cozzi, S. Hazarika, R.B. Devlin, R.A. Henriksen, R.M. Lust, M.R. Van Scott, C.J. Wingard, Cardiac and vasular changes in mice after exposure to ultrafine particulate matter, Inhal. Toxicol. Inhal. Toxicol. (2007) 67–73. [122] J. Jaafari, K. Naddafi, M. Yunesian, R. Nabizadeh, M.S. Hassanvand, M. Shamsipour, M.G. Ghozikali, H.R. Shamsollahi, S. Nazmara, K. Yaghmaeian, The acute effects of short term exposure to particulate matter from natural and anthropogenic sources on inflammation and coagulation markers in healthy young adults, Sci. Total Environ. 735 (2020)
[122] J. Jaafari, K. Naddafi, M. Yunesian, R. Nabizadeh, M.S. Hassanvand, M. Shamsipour, M.G. Ghozikali, H.R. Shamsollahi, S. Nazmara, K. Yaghmaeian, The acute effects of short term exposure to particulate matter from natural and anthropogenic sources on inflammation and coagulation markers in healthy young adults, Sci. Total Environ. 735 (2020)
[123] A. Campbell, M. Oldham, A. Becaria, S.C. Bondy, D. Meacher, C. Sioutas, C. Misra, L.B. Mendez, M. Kleinman, Particulate matter in polluted air may increase biomarkers of inflammation in mouse brain, Neurotoxicology 26 (2005) 133–140. [124] C.R. Tyler, S. Noor, T.L. Young, V. Rivero, B. Sanchez, S. Lucas, K.K. Caldwell, E.D. Milligan, M.J. Campen, Aging exacerbates neuroinflammatory outcomes induced by acute ozone exposure, Toxicol. Sci. 163 (2018) 123–139.
[124] C.R. Tyler, S. Noor, T.L. Young, V. Rivero, B. Sanchez, S. Lucas, K.K. Caldwell, E.D. Milligan, M.J. Campen, Aging exacerbates neuroinflammatory outcomes induced by acute ozone exposure, Toxicol. Sci. 163 (2018) 123–139.
[125] J. Vitte, B.F. Michel, P. Bongrand, J.L. Gastaut, Oxidative stress level in circulating neutrophils is linked to neurodegenerative diseases, J. Clin. Immunol. 24 (2004) 683–692. [126] N. Rocks, C. Vanwinge, C. Radermecker, S. Blacher, C. Gilles, R. Mar ee, A. Gillard, B. Evrard, C. Pequeux, T. Marichal, A. Noel, D. Cataldo, Ozone-primed neutrophils promote early steps of tumour cell metastasis to lungs by enhancing their NET production, Thorax 74 (2019) 768–779.
[126] N. Rocks, C. Vanwinge, C. Radermecker, S. Blacher, C. Gilles, R. Mar ee, A. Gillard, B. Evrard, C. Pequeux, T. Marichal, A. Noel, D. Cataldo, Ozone-primed neutrophils promote early steps of tumour cell metastasis to lungs by enhancing their NET production, Thorax 74 (2019) 768–779.
[127] J. Stackowicz, F. Jonsson, L.L. Reber, Mouse models and tools for the in vivo study € of neutrophils, Front. Immunol. 10 (2019) 3130. [128] I.M. Richardson, C.J. Calo, L.E. Hind, Microphysiological systems for studying cellular crosstalk during the neutrophil response to infection, Front. Immunol. (2021) 1445, 0
[128] I.M. Richardson, C.J. Calo, L.E. Hind, Microphysiological systems for studying cellular crosstalk during the neutrophil response to infection, Front. Immunol. (2021) 1445, 0
[129] D. Masopust, C.P. Sivula, S.C. Jameson, Of mice, dirty mice, and men: using mice to understand human immunology, J. Immunol. 199 (2017) 383–388.
[130] X. Yang, J. Zhou, J. He, J. Liu, H. Wang, Y. Liu, T. Jiang, Q. Zhang, X. Fu, Y. Xu, An immune system-modified rat model for human stem cell transplantation research, Stem Cell Rep. 11 (2018) 514–521.
[131] A. Barnett-Vanes, A. Sharrock, M.A. Birrell, S. Rankin, A single 9-colour flow cytometric method to characterise major leukocyte populations in the rat: validation in a model of LPS-induced pulmonary inflammation, PLoS One 11 (2016).
[132] A.A. Abubakar, M.M. Noordin, T.I. Azmi, U. Kaka, M.Y. Loqman, The use of rats and mice as animal models in ex vivo bone growth and development studies, Bone Jt. Res. 5 (2016) 610–618.
[133] D.A. Glencross, T.R. Ho, N. Camina, C.M. Hawrylowicz, P.E. Pfeffer, Air pollution ~ and its effects on the immune system, Free Radic. Biol. Med. 151 (2020) 56–68.
[134] G. Kaur, J.M. Dufour, Cell lines: valuable tools or useless artifacts, Spermatogenesis 2 (2012) 1–5.
[135] S. Mitschik, R. Schierl, D. Nowak, R.A. Jorres, Effects of particulate matter on € cytokine production in vitro: a comparative analysis of published studies, Inhal. Toxicol. 20 (2008) 399–414.
dc.rights.license.none.fl_str_mv Atribución
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 1-13
dc.coverage.temporal.spa.fl_str_mv 8 (1)
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Programa de Medicina, Medellín y Envigado, Colombia, 00000
dc.publisher.program.spa.fl_str_mv Medicina
dc.publisher.place.spa.fl_str_mv Medellín
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/0d01393e-0253-47bb-9985-336bb0ab9900/download
https://repository.ucc.edu.co/bitstreams/3c871c8d-3aee-406c-a49a-864d47367e07/download
https://repository.ucc.edu.co/bitstreams/5f533f58-04d7-484d-8d41-43fe3d93d11a/download
https://repository.ucc.edu.co/bitstreams/362a7497-3b5a-4c07-a34c-f4ee5345b7b0/download
bitstream.checksum.fl_str_mv 2384ff8bc5b1b78677b195548f33e770
8a4605be74aa9ea9d79846c1fba20a33
49b6c36ba9517c63217362eac86b3e45
63ef0a17dc001ebcb79f44f9a92db16a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1811565203768213504
spelling Valderrama, AndrésZapata, María IsabelHernández López, Juan Carlos Cardona-Arias, Jaiberth A8 (1)2022-07-28T20:01:16Z2022-07-28T20:01:16Z2022-01-1210.1016/j.heliyon.2022.e08778https://hdl.handle.net/20.500.12494/45953Valderrama A, Zapata MI, Hernandez JC, Cardona-Arias JA. Systematic review of preclinical studies on the neutrophil-mediated immune response to air pollutants, 1980-2020. Heliyon. 2022 Jan 25;8(1):e08778. doi: 10.1016/j.heliyon.2022.e08778. PMID: 35128092; PMCID: PMC8810373.Preclinical evidence about the neutrophil-mediated response in exposure to air pollutants is scattered and heterogeneous. This has prevented the consolidation of this research field around relevant models that could advance towards clinical research. The purpose of this study was to systematic review the studies of the neutrophils response to air pollutants, following the recommendations of the Cochrane Collaboration and the PRISMA guide, through 54 search strategies in nine databases. We include 234 studies (in vitro, and in vivo), being more frequent using primary neutrophils, Balb/C and C57BL6/J mice, and Sprague-Dawley and Wistar rats. The most frequent readouts were cell counts, cytokines and histopathology. The temporal analysis showed that in the last decade, the use of mice with histopathological and cytokine measurement have predominated. This systematic review has shown that study of the neutrophils response to air pollutants started 40 years ago, and composed of 100 different preclinical models, 10 pollutants, and 11 immunological outcomes. Mechanisms of neutrophils-mediated immunopathology include cellular activation, ROS production, and proinflammatory effects, leading to cell-death, oxidative stress, and inflammatory infiltrates in lungs. This research will allow consolidating the research efforts in this field, optimizing the study of causal processes, and facilitating the advance to clinical studies.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000283088http://orcid.org/0000-0002-9200-5698https://scienti.colciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000011355juankhernandez@gmail.com1-13Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Programa de Medicina, Medellín y Envigado, Colombia, 00000MedicinaMedellínhttps://pubmed.ncbi.nlm.nih.gov/35128092/Heliyon[1] R.D. Arias-P erez, N.A. Taborda, D.M. Gomez, J.F. Narvaez, J. Porras, J.C. Hernandez, Inflammatory effects of particulate matter air pollution, Environ. Sci. Pollut. Res. (2020) 1–15. [3] M.C. Loaiza-Ceballos, D. Marin-Palma, W. Zapata, J.C. Hernandez, Viral respiratory infections and air pollutants, Air Qual. Atmos. Heal. (2021). [4] EPA, Particulate Matter (PM), Basics | particulate matter (PM) pollution | US EPA, Air Pollut. 2 (2016). https://www.epa.gov/pm-pollution/particulate-matter-pmbasics#PM. (Accessed 26 May 2020). [5] P. Mantecca, F. Farina, E. Moschini, D. Gallinotti, M. Gualtieri, A. Rohr, G. Sancini, P. Palestini, M. Camatini, Comparative acute lung inflammation induced by atmospheric PM and size-fractionated tire particles, Toxicol. Lett. 198 (2010) 244–254. [6] J.T. Zelikoff, L.C. Chen, M.D. Cohen, K. Fang, T. Gordon, Y. Li, C. Nadziejko, R.B. Schlesinger, Effects of inhaled ambient particulate matter on pulmonary antimicrobial immune defense, Inhal. Toxicol. 15 (2003) 131–150. [7] D.M.[2] C.A. Pope, M.L. Hansen, R.W. Long, K.R. Nielsen, N.L. Eatough, W.E. Wilson, D.J. Eatough, Ambient particulate air pollution, heart rate variability, and blood markers of inflammation in a panel of elderly subjects, Environ. Health Perspect. 112 (2004) 339–345.[3] M.C. Loaiza-Ceballos, D. Marin-Palma, W. Zapata, J.C. Hernandez, Viral respiratory infections and air pollutants, Air Qual. Atmos. Heal. (2021).[4] EPA, Particulate Matter (PM), Basics | particulate matter (PM) pollution | US EPA, Air Pollut. 2 (2016). https://www.epa.gov/pm-pollution/particulate-matter-pmbasics#PM. (Accessed 26 May 2020).[5] P. Mantecca, F. Farina, E. Moschini, D. Gallinotti, M. Gualtieri, A. Rohr, G. Sancini, P. Palestini, M. Camatini, Comparative acute lung inflammation induced by atmospheric PM and size-fractionated tire particles, Toxicol. Lett. 198 (2010) 244–254. [7] D.M. Gomez-Gallego, J.C. Hern andez, J.A.M. la Ossa, Efectos adversos de la exposicion prenatal al material particulado del aire sobre el feto y el reci en nacido, Iatreia 1 (2021). [8] O. Hahad, J. Lelieveld, F. Birklein, K. Lieb, A. Daiber, T. Münzel, Ambient air pollution increases the risk of cerebrovascular and neuropsychiatric disorders through induction of inflammation and oxidative stress, Int. J. Mol. Sci. 21 (2020) 1–24.[6] J.T. Zelikoff, L.C. Chen, M.D. Cohen, K. Fang, T. Gordon, Y. Li, C. Nadziejko, R.B. Schlesinger, Effects of inhaled ambient particulate matter on pulmonary antimicrobial immune defense, Inhal. Toxicol. 15 (2003) 131–150.[7] D.M. Gomez-Gallego, J.C. Hern andez, J.A.M. la Ossa, Efectos adversos de la exposicion prenatal al material particulado del aire sobre el feto y el reci en nacido, Iatreia 1 (2021). [8] O. Hahad, J. Lelieveld, F. Birklein, K. Lieb, A. Daiber, T. Münzel, Ambient air pollution increases the risk of cerebrovascular and neuropsychiatric disorders through induction of inflammation and oxidative stress, Int. J. Mol. Sci. 21 (2020) 1–24.[8] O. Hahad, J. Lelieveld, F. Birklein, K. Lieb, A. Daiber, T. Münzel, Ambient air pollution increases the risk of cerebrovascular and neuropsychiatric disorders through induction of inflammation and oxidative stress, Int. J. Mol. Sci. 21 (2020) 1–24.[9] A. Daiber, M. Kuntic, O. Hahad, L.G. Delogu, S. Rohrbach, F. Di Lisa, R. Schulz, T. Münzel, Effects of air pollution particles (ultrafine and fine particulate matter) on mitochondrial function and oxidative stress – implications for cardiovascular and neurodegenerative diseases, Arch. Biochem. Biophys. 696 (2020) 108662. [11] B. Leclercq, J. Kluza, S. Antherieu, J. Sotty, L.Y. Alleman, E. Perdrix, A. Loyens, P. Coddeville, J.M. Lo Guidice, P. Marchetti, G. Garçon, Air pollution-derived PM2.5 impairs mitochondrial function in healthy and chronic obstructive pulmonary diseased human bronchial epithelial cells, Environ. Pollut. 243 (2018) 1434–1449.[10] M.M. Patel, J.W. Quinn, K.H. Jung, L. Hoepner, D. Diaz, M. Perzanowski, A. Rundle, P.L. Kinney, F.P. Perera, R.L. Miller, Traffic density and stationary sources of air pollution associated with wheeze, asthma, and immunoglobulin E from birth to age 5 years among New York City children, Environ. Res. 111 (2011) 1222–1229.[11] B. Leclercq, J. Kluza, S. Antherieu, J. Sotty, L.Y. Alleman, E. Perdrix, A. Loyens, P. Coddeville, J.M. Lo Guidice, P. Marchetti, G. Garçon, Air pollution-derived PM2.5 impairs mitochondrial function in healthy and chronic obstructive pulmonary diseased human bronchial epithelial cells, Environ. Pollut. 243 (2018) 1434–1449.[12] D.J. Wooding, M.H. Ryu, H. Li, N.E. Alexis, O. Pena, C. Carlsten, Acute air pollution exposure alters neutrophils in never-smokers and at-risk humans, Eur. Respir. J. 55 (2020).[13] M.P. Sierra-Vargas, A.M. Guzman-Grenfell, S. Blanco-Jimenez, J.D. SepulvedaSanchez, R.M. Bernabe-Cabanillas, B. Cardenas-Gonzalez, G. Ceballos, J.J. Hicks, Airborne particulate matter PM2.5 from Mexico City affects the generation of reactive oxygen species by blood neutrophils from asthmatics: an in vitro approach, J. Occup. Med. Toxicol. 4 (2009) 17.[14] B. Hu, B. Tong, Y. Xiang, S.R. Li, Z.X. Tan, H.X. Xiang, L. Fu, H. Wang, H. Zhao, D.X. Xu, Acute 1-NP exposure induces inflammatory responses through activating various inflammatory signaling pathways in mouse lungs and human A549 cells, Ecotoxicol. Environ. Saf. 189 (2020), 109977.[15] S. Chen, R. Yin, K. Mutze, Y. Yu, S. Takenaka, M. Konigshoff, T. Stoeger, No € involvement of alveolar macrophages in the initiation of carbon nanoparticle induced acute lung inflammation in mice, Part, Fibre Toxicol. 13 (2016).[16] L.S. Van Winkle, K. Bein, D. Anderson, K.E. Pinkerton, F. Tablin, D. Wilson, A.S. Wexler, Biological dose response to PM2.5: effect of particle extraction method on platelet and lung responses, Toxicol. Sci. 143 (2015) 349–359.[17] K.C. Day, M.D. Reed, J.D. McDonald, S.K. Seilkop, E.G. Barrett, Effects of gasoline engine emissions on preexisting allergic airway responses in mice, Inhal. Toxicol. 20 (2008) 1145–1155[18] F. Farina, G. Sancini, C. Battaglia, V. Tinaglia, P. Mantecca, M. Camatini, P. Palestini, Milano summer particulate matter (PM10) triggers lung inflammation and extra pulmonary adverse events in mice, PLoS One 8 (2013).[19] T. Miyake, D. Wang, H. Matsuoka, K. Morita, H. Yasuda, K. Yatera, T. Kanazawa, Y. Yoshida, Endocytosis of particulate matter induces cytokine production by neutrophil via Toll-like receptor 4, Int. Immunopharm. 57 (2018) 190–199.[20] M. van der Toorn, D.J. Slebos, H.G. de Bruin, R. Gras, D. Rezayat, L. Jorge, K. Sandra, A.J.M. van Oosterhout, Critical role of aldehydes in cigarette smokeinduced acute airway inflammation, Respir, Res. 14 (2013) 45[21] K.R. Smith, J.M. Veranth, U.P. Kodavanti, A.E. Aust, K.E. Pinkerton, Acute pulmonary and systemic effects of inhaled coal fly ash in rats: comparison to ambient environmental particles, Toxicol. Sci. 93 (2006) 390–399.[22] C.D. Mills, K. Kincaid, J.M. Alt, M.J. Heilman, A.M. Hill, M-1/M-2 macrophages and the Th1/Th2 paradigm, J. Immunol. 164 (2000) 6166–6173[23] S.M. Jankovic, B. Kapo, A. Sukalo, I. Masic, Evaluation of published preclinical experimental studies in medicine: methodology issues, Med. Arch. 73 (2019) 298–302[24] I. Masic, S.M. Jankovic, Meta-analysing methodological quality of published research: importance and effectiveness, Stud. Health Technol. Inf. 272 (2020) 229–232.[25] D. O’Connor, S. Green, J.P. Higgins, 5 Defining the Review Question and Developing Inclusion Criteria (n.d.), https://handbook-5-1.cochrane.org/cha pter_5/5_defining_the_review_question_and_developing_criteria_for.htm. (Accessed 17 September 2020).[26] K.M. Bendtsen, A. Brostrøm, A.J. Koivisto, I. Koponen, T. Berthing, N. Bertram, K.I. Kling, M. Dal Maso, O. Kangasniemi, M. Poikkim€aki, K. Loeschner, P.A. Clausen, H. Wolff, K.A. Jensen, A.T. Saber, U. Vogel, Airport emission particles: exposure characterization and toxicity following intratracheal instillation in mice, Part, Fibre Toxicol. 16 (2019) 23[27] W. Li, T. Liu, Y. Xiong, J. Lv, X. Cui, R. He, Diesel exhaust particle promotes tumor lung metastasis via the induction of BLT1-mediated neutrophilic lung inflammation, Cytokine 111 (2018) 530–540[28] C.S. Weldy, C.C. White, H.W. Wilkerson, T.V. Larson, J.A. Stewart, S.E. Gill, W.C. Parks, T.J. Kavanagh, Heterozygosity in the glutathione synthesis gene Gclm increases sensitivity to diesel exhaust particulate induced lung inflammation in mice, Inhal. Toxicol. 23 (2011) 724–735.[29] L. Wang, J. Xu, H. Liu, J. Li, H. Hao, PM2.5 inhibits SOD1 expression by upregulating microRNA-206 and promotes ROS accumulation and disease progression in asthmatic mice, Int. Immunopharm. 76 (2019) 105871.[30] T.C. Wegesser, J.A. Last, Lung response to coarse PM: bioassay in mice, Toxicol. Appl. Pharmacol. 230 (2008) 159–166.[31] J. Zhang, C.C. Fulgar, T. Mar, D.E. Young, Q. Zhang, K.J. Bein, L. Cui, A. Castaneda, C.F.A. Vogel, X. Sun, W. Li, S. Smiley-Jewell, Z. Zhang, K.E. Pinkerton, TH17-induced neutrophils enhance the pulmonary allergic response following balb/c exposure to house dust mite allergen and fine particulate matter from California and China, Toxicol. Sci. 164 (2018) 627–643.[32] K.L. Huang, S.Y. Liu, C.C.K. Chou, Y.H. Lee, T.J. Cheng, The effect of sizesegregated ambient particulate matter on Th1/Th2-like immune responses in mice, PLoS One 12 (2017).[33] G.R. Zosky, C.E. Boylen, R.S. Wong, M.N. Smirk, L. Guti errez, R.C. Woodward, W.S. Siah, B. Devine, F. Maley, A. Cook, Variability and consistency in lung[34] S. Jeong, S.A. Park, I. Park, P. Kim, N.H. Cho, J.W. Hyun, Y.M. Hyun, PM2.5 exposure in the respiratory system induces distinct inflammatory signaling in the lung and the liver of mice, J. Immunol. Res. 2019 (2019)[35] G. John, K. Kohse, J. Orasche, A. Reda, J. Schnelle-Kreis, R. Zimmermann, O. Schmid, O. Eickelberg, A.O. Yildirim, The composition of cigarette smoke € determines inflammatory cell recruitment to the lung in COPD mouse models, Clin. Sci. 126 (2014) 207–221.[36] Y. Zhao, H. Zhang, X. Yang, Y. Zhang, S. Feng, X. Yan, Fine particulate matter (PM 2.5) enhances airway hyperresponsiveness (AHR) by inducing necroptosis in BALB/c mice, Environ. Toxicol. Pharmacol. 68 (2019) 155–163[37] C.M. Prado, R.F. Righetti, F. Lopes, E.A. Leick, F.M. Arantes-Costa, F.M. de Almeida, P.H.N. Saldiva, T. Mauad, I. Tib erio, M.A. Martins, iNOS inhibition reduces lung mechanical alterations and remodeling induced by particulate matter in mice, Pulm. Med. 2019 (2019) 4781528.[38] N.K. Fukagawa, M. Li, M.E. Poynter, B.C. Palmer, E. Parker, J. Kasumba, B.A. Holm en, Soy biodiesel and petrodiesel emissions differ in size, chemical composition and stimulation of inflammatory responses in cells and animals, Environ. Sci. Technol. 47 (2013) 12496–12504.[39] A. Nemmar, S. Al-Salam, P. Yuvaraju, S. Beegam, B.H. Ali, Emodin mitigates diesel exhaust particles-induced increase in airway resistance, inflammation and oxidative stress in mice, Respir. Physiol. Neurobiol. 215 (2015) 51–57.[40] F. Farina, G. Sancini, C. Battaglia, V. Tinaglia, P. Mantecca, M. Camatini, P. Palestini, Milano summer particulate matter (PM10) triggers lung inflammation and extra pulmonary adverse events in mice, PLoS One 8 (2013).[41] J. Emmerechts, E. Alfaro-Moreno, B.M. Vanaudenaerde, B. Nemery, M.F. Hoylaerts, Short-term exposure to particulate matter induces arterial but not venous thrombosis in healthy mice, J. Thromb. Haemostasis 8 (2010) 2651–2661[42] L. Hardaker, P. Bahra, B.C. de Billy, M. Freeman, N. Kupfer, D. Wyss, A. Trifilieff, The ion channel transient receptor potential melastatin-2 does not play a role in inflammatory mouse models of chronic obstructive pulmonary diseases, Respir. Res. 13 (2012) 30.[43] M.A. Erickson, J. Jude, H. Zhao, E.M. Rhea, T.S. Salameh, W. Jester, S. Pu, J. Harrowitz, N. Nguyen, W.A. Banks, R.A. Panettieri, K.L. Jordan-Sciutto, Serum amyloid A: an ozone-induced circulating factor with potentially important functions in the lung-brain axis, Faseb. J. 31 (2017) 3950–3965.[44] K. Gowdy, Q.T. Krantz, M. Daniels, W.P. Linak, I. Jaspers, M.I. Gilmour, Modulation of pulmonary inflammatory responses and antimicrobial defenses in mice exposed to diesel exhaust, Toxicol. Appl. Pharmacol. 229 (2008) 310–319.[45] M. He, T. Ichinose, S. Yoshida, T. Ito, C. He, Y. Yoshida, K. Arashidani, H. Takano, G. Sun, T. Shibamoto, PM2.5-induced lung inflammation in mice: differences of inflammatory response in macrophages and type II alveolar cells, J. Appl. Toxicol. 37 (2017) 1203–1218.[46] A.J. Ghio, J.H. Richards, J.D. Carter, M.C. Madden, Accumulation of iron in the rat lung after tracheal instillation of diesel particles, Toxicol. Pathol. 28 (2000) 619–627.[47] J.A. Dye, J.R. Lehmann, J.K. McGee, D.W. Winsett, A.D. Ledbetter, J.I. Everitt, A.J. Ghio, D.L. Costa, Acute pulmonary toxicity of particulate matter filter extracts in rats: coherence with epidemiologic studies in Utah valley residents, Environ. Health Perspect. 109 (2001) 395–403[48] E.R. Wilfong, M. Lyles, R.L. Rietcheck, D.P. Arfsten, H.J. Boeckman, E.W. Johnson, T.L. Doyle, G.D. Chapman, The acute and long-term effects of Middle East sand particles on the rat airway following a single intratracheal instillation, J. Toxicol. Environ. Health Part A. 74 (2011) 1351–1365.[49] U.P. Kodavanti, R.F. Thomas, A.D. Ledbetter, M.C. Schladweiler, V. Bass, Q.T. Krantz, C. King, A. Nyska, J.E. Richards, D. Andrews, M.I. Gilmour, Diesel exhaust induced pulmonary and cardiovascular impairment: the role of hypertension intervention, Toxicol. Appl. Pharmacol. 268 (2013) 232–240[50] X.Y. Li, P.S. Gilmour, K. Donaldson, W. MacNee, Free radical activity and proinflammatory effect of particulate air pollution (PM10) in vivo and in vitro, Thorax 51 (1996) 1216–1222.[51] X.Y. Li, P.S. Gilmour, K. Donaldson, W. MacNee, In vivo and in vitro proinflammatory effects of particulate air pollution (PM10), Environ. Health Perspect. 105 (Suppl) (1997) 1279–1283.[52] W.O. Ward, A.D. Ledbetter, M.C. Schladweiler, U.P. Kodavanti, Lung transcriptional profiling: insights into the mechanisms of ozone-induced pulmonary injury in Wistar Kyoto rats, Inhal. Toxicol. 27 (2015) 80–92.[53] Y.C. Lei, C.C. Chan, P.Y. Wang, C. Te Lee, T.J. Cheng, Effects of Asian dust event particles on inflammation markers in peripheral blood and bronchoalveolar lavage in pulmonary hypertensive rats, Environ. Res. 95 (2004) 71–76.[54] U.P. Kodavanti, M.C. Jackson, A.D. Ledbetter, J.R. Richards, S.Y. Gardner, W.P. Watkinson, M.J. Campen, D.L. Costa, Lung injury from intratracheal and inhalation exposures to residual oil fly ash in a rat model of monocrotalineinduced pulmonary hypertension, J. Toxicol. Environ. Health Part A. 57 (1999) 543–563.[55] A.R. Henriquez, S.J. Snow, M.C. Schladweiler, C.N. Miller, J.A. Dye, A.D. Ledbetter, M.M. Hargrove, J.E. Richards, U.P. Kodavanti, Exacerbation of ozone-induced pulmonary and systemic effects by β2-adrenergic and/or glucocorticoid receptor agonist/s, Sci. Rep. 9 (2019) 17925.[56] F.R. Cassee, A.J.F. Boere, P.H.B. Fokkens, D.L.A.C. Leseman, C. Sioutas, I.M. Kooter, J.A.M.A. Dormans, Inhalation of concentrated particulate matter produces pulmonary inflammation and systemic biological effects in compromised rats, J. Toxicol. Environ. Health Part A. 68 (2005) 773–796[57] S. Yokota, M. Furuya, T. Seki, H. Marumo, N. Ohara, A. Kato, Delayed exacerbation of acute myocardial ischemia/reperfusion-induced arrhythmia by tracheal instillation of diesel exhaust particles, Inhal. Toxicol. 16 (2004) 319–331.[58] J. Liu, Y. Yang, X. Zeng, L. Bo, S. Jiang, X. Du, Y. Xie, R. Jiang, J. Zhao, W. Song, Investigation of selenium pretreatment in the attenuation of lung injury in rats induced by fine particulate matters, Environ. Sci. Pollut. Res. 24 (2017) 4008–4017[59] T.D. da Silva, V. Barnab e, A.L. Ricci-Vitor, V. Papapostolou, M. Tagle, A. Henriquez, J. Lawrence, S. Ferguson, J.M. Wolfson, P. Koutrakis, P. Oyola, C. Ferreira, L.C. de Abreu, C.B.M. de Monteiro, J.J. Godleski, Secondary particles formed from the exhaust of vehicles using ethanol-gasoline blends increase the production of pulmonary and cardiac reactive oxygen species and induce pulmonary inflammation, Environ. Res. 177 (2019).[60] J.D. Mcdonald, M. Doyle-Eisele, A. Gigliotti, R.A. Miller, S. Seilkop, J.L. Mauderly, J. Seagrave, J. Chow, B. Zielinska, Part 1. Biologic responses in rats and mice to subchronic inhalation of diesel exhaust from U.S. 2007-compliant engines: report on 1-, 3-, and 12-month exposures in the ACES bioassay, Res. Rep. Health. Eff. Inst. (2012) 9–120.[61] J.E. Clougherty, C.A. Rossi, J. Lawrence, M.S. Long, E.A. Diaz, R.H. Lim, B. McEwen, P. Koutrakis, J.J. Godleski, Chronic social stress and susceptibility to concentrated ambient fine particles in rats, Environ. Health Perspect. 118 (2010) 769–775.[62] D.H. Rodriguez Ferreira Rivero, S.R. Castro Soares, G. Lorenzi-Filho, M. Saiki, J.J. Godleski, L. Antonangelo, M. Dolhnikoff, P.H.N. Saldiva, Acute cardiopulmonary alterations induced by fine particulate matter of S~ao Paulo, Brazil, Toxicol. Sci. 85 (2005) 898–905.[63] A. Nemmar, I.M. Inuwa, Diesel exhaust particles in blood trigger systemic and pulmonary morphological alterations, Toxicol. Lett. 176 (2008) 20–30.[64] B. Hitzfeld, K.H. Friedrichs, J. Ring, H. Behrendt, Airborne particulate matter modulates the production of reactive oxygen species in human polymorphonuclear granulocytes, Toxicology 120 (1997) 185–195.[65] Y. Zhang, S. Geng, G.L. Prasad, L. Li, Suppression of neutrophil antimicrobial functions by total particulate matter from cigarette smoke, Front. Immunol. 9 (2018) 2274.[66] B.B. Aam, F. Fonnum, ROS scavenging effects of organic extract of diesel exhaust particles on human neutrophil granulocytes and rat alveolar macrophages, Toxicology 230 (2007) 207–218.[67] B. Hitzfeld, K.H. Friedrichs, R. Tomingas, H. Behrendt, Organic atmospheric dust extracts and their effects on functional parameters of human polymorphonuclear leukocytes (PMN), J. Aerosol Sci. 23 (1992) 531–534.[68] WHO, Ambient Air Pollution: A Global Assessment of Exposure and burden of Disease, WHO, 2016. http://www.who.int/phe/publications/air-pollution-global -assessment/en/. (Accessed 21 September 2020).[69] W. Liu, Z. Xu, T. Yang, Health effects of air pollution in China, Int. J. Environ. Res. Publ. Health 15 (2018).[70] A. Salvi, S. Salim, Neurobehavioral consequences of traffic-related air pollution, Front. Neurosci. 13 (2019).[71] J. Moreno-Cruz, Understanding the industrial contribution to pollution offers opportunities to further improve air quality in the United States, Proc. Natl. Acad. Sci. U. S. A. 116 (2019) 19769–19770.[72] A. Caplin, M. Ghandehari, C. Lim, P. Glimcher, G. Thurston, Advancing environmental exposure assessment science to benefit society, Nat. Commun. 10 (2019) 1236.[73] B. Bowe, Y. Xie, Y. Yan, Z. Al-Aly, Burden of cause-specific mortality associated with PM2.5 air pollution in the United States, JAMA Netw. Open 2 (2019), e1915834 e1915834.[74] Y. Ou, J.J. West, S.J. Smith, C.G. Nolte, D.H. Loughlin, Air pollution control strategies directly limiting national health damages in the US, Nat. Commun. 11 (2020).[75] C.A. Pope, J.S. Lefler, M. Ezzati, J.D. Higbee, J.D. Marshall, S.Y. Kim, M. Bechle, K.S. Gilliat, S.E. Vernon, A.L. Robinson, R.T. Burnett, Mortality risk and fine particulate air pollution in a large, representative cohort of U.S. adults, Environ. Health Perspect. 127 (2019).[76] L. Tian, S. Sun, Comparison of health impact of air pollution between China and other countries, Adv. Exp. Med. Biol. 1017 (2017) 215–232[77] Y. Zhang, S. Tao, H. Shen, M. Jianmin, Inhalation exposure to ambient polycyclic aromatic hydrocarbons and lung cancer risk of Chinese population, Proc. Natl. Acad. Sci. U. S. A. 106 (2009) 21063–21067[78] D. Yang, Y. Liu, C. Bai, X. Wang, C.A. Powell, Epidemiology of lung cancer and lung cancer screening programs in China and the United States, Cancer Lett. 468 (2020) 82–87[79] K.J. Maji, M. Arora, A.K. Dikshit, Burden of disease attributed to ambient PM2.5 and PM10 exposure in 190 cities in China, Environ. Sci. Pollut. Res. 24 (2017) 11559–11572.[80] K.L. Huang, S.Y. Liu, C.C.K. Chou, Y.H. Lee, T.J. Cheng, The effect of sizesegregated ambient particulate matter on Th1/Th2-like immune responses in mice, PLoS One 12 (2017).[81] S.H. Cho, H. Tong, J.K. McGee, R.W. Baldauf, Q.T. Krantz, M.I. Gilmour, Comparative toxicity of size-fractionated airborne particulate matter collected at different distances from an urban highway, Environ. Health Perspect. 117 (2009) 1682–1689.[82] M.S. Happo, R.O. Salonen, A.I. H€alinen, P.I. Jalava, A.S. Pennanen, V.M. Kosma, M. Sillanp€a€a, R. Hillamo, B. Brunekreef, K. Katsouyanni, J. Sunyer, M.R. Hirvonen, Dose and time dependency of inflammatory responses in the mouse lung to urban air coarse, fine, and ultrafine particles from six European cities, Inhal. Toxicol. 19 (2007) 227–246[83] N. Li, M. Wang, L.A. Bramble, D.A. Schmitz, J.J. Schauer, C. Sioutas, J.R. Harkema, A.E. Nel, The adjuvant effect of ambient particulate matter is closely reflected by the particulate oxidant potential, Environ. Health Perspect. 117 (2009) 1116–1123[84] S. Becker, L.A. Dailey, J.M. Soukup, S.C. Grambow, R.B. Devlin, Y.C.T. Huang, Seasonal variations in air pollution particle-induced inflammatory mediator release and oxidative stress, Environ. Health Perspect. 113 (2005) 1032–1038. .[85] K.-L. Huang, S.-Y. Liu, C.C.K. Chou, Y.-H. Lee, T.-J. Cheng, The Effect of SizeSegregated Ambient Particulate Matter on Th1/Th2-like Immune Responses in Mice, 2017.18) 1331–1342[86] P.S. Mahapatra, S. Jain, S. Shrestha, S. Senapati, S.P. Puppala, Ambient endotoxin in PM10 and association with inflammatory activity, air pollutants, and meteorology, in Chitwan, Nepal, Sci. Total Environ. 618 (20[87] X. Jin, B. Xue, Q. Zhou, R. Su, Z. Li, Mitochondrial damage mediated by ROS incurs bronchial epithelial cell apoptosis upon ambient PM2.5 exposure, J. Toxicol. Sci. 43 (2018) 101–111[88] J. Bosson, J. Pourazar, B. Forsberg, E. Adelroth, T. Sandstr € om, A. Blomberg, Ozone € enhances the airway inflammation initiated by diesel exhaust, Respir. Med. 101 (2007) 1140–1146.[89] X.Y. Li, P.S. Gilmour, K. Donaldson, W. MacNee, In vivo and in vitro proinflammatory effects of particulate air pollution (PM10), Environ. Health Perspect. 105 (Suppl) (1997) 1279–1283.[90] R. De Paula Vieira, A.C. Toledo, L.B. Silva, F.M. Almeida, N.R. DamacenoRodrigues, E.G. Caldini, A.B.G. Santos, D.H. Rivero, D.C. Hizume, F.D.T.Q.S. Lopes, C.R. Olivo, H.C. Castro-Faria-Neto, M.A. Martins, P.H.N. Saldiva, M. Dolhnikoff, Anti-inflammatory effects of aerobic exercise in mice exposed to air pollution, Med. Sci. Sports Exerc. 44 (2012) 1227–1234.[91] Z. Hong, Z. Guo, R. Zhang, J. Xu, W. Dong, G. Zhuang, C. Deng, Airborne fine particulate matter induces oxidative stress and inflammation in human nasal epithelial cells, Tohoku J. Exp. Med. 239 (2016) 117–125.[92] M. van der Toorn, D.J. Slebos, H.G. de Bruin, R. Gras, D. Rezayat, L. Jorge, K. Sandra, A.J.M. van Oosterhout, Critical role of aldehydes in cigarette smokeinduced acute airway inflammation, Respir, Res. 14 (2013) 45.[93] W. Xu, J. Li, W. Zhang, Z. Wang, J. Wu, X. Ge, J. Wu, Y. Cao, Y. Xie, D. Ying, Y. Wang, L. Wang, Z. Qiao, J. Jia, Emission of sulfur dioxide from poly[94] J. Rovira, J.L. Domingo, M. Schuhmacher, Air quality, health impacts and burden of disease due to air pollution (PM(10), PM(2.5), NO(2) and O(3)): application of AirQþ model to the Camp de Tarragona County (Catalonia, Spain), Sci. Total Environ. 703 (2020) 135538.[95] K.E. Driscoll, T.A. Vollmuth, R.B. Schlesinger, Acute and subchronic ozone inhalation in the rabbit: response of alveolar macrophages, J. Toxicol. Environ. Health 21 (1987) 27–43.[96] A. Bao, L. Liang, F. Li, M. Zhang, X. Zhou, Effects of acute ozone exposure on lung peak allergic inflammation of mice, Front. Biosci. 18 (2013) 838–851.[97] M.J.G. Oyarzún, S.A.R. S anchez, N.D. Dussaubat, M.E.A. Miller, S.B. Gonz alez, Effect of copper sulphate on the lung damage induced by chronic intermittent exposure to ozone, Rev. Med. Chile 145 (2017) 9–16[98] W.O. Ward, A.D. Ledbetter, M.C. Schladweiler, U.P. Kodavanti, Lung transcriptional profiling: insights into the mechanisms of ozone-induced pulmonary injury in Wistar Kyoto rats, Inhal. Toxicol. 27 (2015) 80–92.[99] V. Loria, I. Dato, F. Graziani, L.M. Biasucci, Myeloperoxidase: A New Biomarker of Inflammation in Ischemic Heart Disease and Acute Coronary Syndromes, Mediators Inflamm, 2008, p. 2008[100] M.S. Werley, D.J. Kirkpatrick, M.J. Oldham, A.M. Jerome, T.B. Langston, P.D. Lilly, D.C. Smith, W.J. Mckinney, Toxicological assessment of a prototype ecigaret device and three flavor formulations: a 90-day inhalation study in rats, Inhal. Toxicol. 28 (2016) 22–38.[101] J.G. Wallenborn, P. Evansky, J.H. Shannahan, B. Vallanat, A.D. Ledbetter, M.C. Schladweiler, J.H. Richards, R.R. Gottipolu, A. Nyska, U.P. Kodavanti, Subchronic inhalation of zinc sulfate induces cardiac changes in healthy rats, Toxicol. Appl. Pharmacol. 232 (2008) 69–77. [102] U.P. Kodavanti, M.C. Schladweiler, A.D. Ledbetter, W.P. Watkinson, M.J. Campen, D.W. Winsett, J.R. Richards, K.M. Crissman, G.E. Hatch, D.L. Costa, The spontaneously hypertensive rat as a model of human cardiovascular disease: evidence of exacerbated cardiopulmonary injury and oxidative stress from inhaled emission particulate matter, Toxicol. Appl. Pharmacol. 164 (2000) 250–263. [103] F. Farina, G. Sancini, C. Battaglia, V. Tinaglia, P. Mantecca, M. Camatini, P. Palestini, Milano summer particulate matter (PM10) triggers lung inflammation and extra pulmonary adverse events in mice, PLoS One 8 (2013) 56636.[102] U.P. Kodavanti, M.C. Schladweiler, A.D. Ledbetter, W.P. Watkinson, M.J. Campen, D.W. Winsett, J.R. Richards, K.M. Crissman, G.E. Hatch, D.L. Costa, The spontaneously hypertensive rat as a model of human cardiovascular disease: evidence of exacerbated cardiopulmonary injury and oxidative stress from inhaled emission particulate matter, Toxicol. Appl. Pharmacol. 164 (2000) 250–263.[103] F. Farina, G. Sancini, C. Battaglia, V. Tinaglia, P. Mantecca, M. Camatini, P. Palestini, Milano summer particulate matter (PM10) triggers lung inflammation and extra pulmonary adverse events in mice, PLoS One 8 (2013) 56636.[104] C.M. Wei, A. Lerman, R.J. Rodeheffer, C.G.A. McGregor, R.R. Brandt, S. Wright, D.M. Heublein, P.C. Kao, W.D. Edwards, J.C. Burnett, Endothelin in human congestive heart failure, Circulation 89 (1994) 1580–1586.105] S. Karthikeyan, E.M. Thomson, P. Kumarathasan, J. Gu enette, D. Rosenblatt, T. Chan, G. Rideout, R. Vincent, Nitrogen dioxide and ultrafine particles dominate the biological effects of inhaled diesel exhaust treated by a catalyzed diesel particulate filter, Toxicol. Sci. 135 (2013) 437–450.[106] P. Kumarathasan, E. Blais, A. Saravanamuthu, A. Bielecki, B. Mukherjee, S. Bjarnason, J. Gu enette, P. Goegan, R. Vincent, Nitrative stress, oxidative stress and plasma endothelin levels after inhalation of particulate matter and ozone, Part, Fibre Toxicol. 12 (2015).[107] B. Kristal, R. Shurtz-Swirski, J. Chezar, J. Manaster, R. Levy, G. Shapiro, I. Weissman, S.M. Shasha, S. Sela, Participation of peripheral polymorphonuclear leukocytes in the oxidative stress and inflammation in patients with essential hypertension, Am. J. Hypertens. 11 (1998) 921–928.[108] H. Suzuki, A. Swei, B.W. Zweifach, G.W. Schmid-Schonbein, In vivo evidence for € microvascular oxidative stress in spontaneously hypertensive rats: hydroethidine microfluorography, Hypertension 25 (1995) 1083–1089[109] U.P. Kodavanti, M.C. Schladweiler, A.D. Ledbetter, R. Hauser, D.C. Christiani, J. McGee, J.R. Richards, D.L. Costa, Temporal association between pulmonary and systemic effects of particulate matter in healthy and cardiovascular compromised rats, 2011, pp. 1545–1569.[110] K.A. Miller, D.S. Siscovick, L. Sheppard, K. Shepherd, J.H. Sullivan, G.L. Anderson, J.D. Kaufman, Long-term exposure to air pollution and incidence of cardiovascular events in women, N. Engl. J. Med. 356 (2007) 447–458.[111] C.A. Pope, R.T. Burnett, G.D. Thurston, M.J. Thun, E.E. Calle, D. Krewski, J.J. Godleski, Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease, Circulation 109 (2004) 71–77. [112] K.H. Park, W.J. Park, Endothelial dysfunction: clinical implications in cardiovascular disease and therapeutic approaches, J. Kor. Med. Sci. 30 (2015) 1213–1225.[112] K.H. Park, W.J. Park, Endothelial dysfunction: clinical implications in cardiovascular disease and therapeutic approaches, J. Kor. Med. Sci. 30 (2015) 1213–1225.[113] Q. Sun, A. Wang, X. Jin, A. Natanzon, D. Duquaine, R.D. Brook, J.-G.S. Aguinaldo, Z.A. Fayad, V. Fuster, M. Lippmann, L.C. Chen, S. Rajagopalan, Long-term air pollution exposure and acceleration of atherosclerosis and vascular inflammation in an animal model, JAMA 294 (2005) 3003–3010.[114] P. Haberzettl, T.E. O’Toole, A. Bhatnagar, D.J. Conklin, Exposure to fine particulate air pollution causes vascular insulin resistance by inducing pulmonary oxidative stress, Environ. Health Perspect. 124 (2016) 1830–1839.[115] F. Kim, M. Pham, E. Maloney, N.O. Rizzo, G.J. Morton, B.E. Wisse, E.A. Kirk, A. Chait, M.W. Schwartz, Vascular inflammation, insulin resistance, and reduced nitric oxide production precede the onset of peripheral insulin resistance, Arterioscler. Thromb. Vasc. Biol. 28 (2008) 1982–1988. [116] T. Kubota, N. Kubota, H. Kumagai, S. Yamaguchi, H. Kozono, T. Takahashi, M. Inoue, S. Itoh, I. Takamoto, T. Sasako, K. Kumagai, T. Kawai, S. Hashimoto, T. Kobayashi, M. Sato, K. Tokuyama, S. Nishimura, M. Tsunoda, T. Ide, K. Murakami, T. Yamazaki, O. Ezaki, K. Kawamura, H. Masuda, M. Moroi, K. Sugi, Y. Oike, H. Shimokawa, N. Yanagihara, M. Tsutsui, Y. Terauchi, K. Tobe, R. Nagai, K. Kamata, K. Inoue, T. Kodama, K. Ueki, T. Kadowaki, Impaired insulin signaling in endothelial cells reduces insulin-induced glucose uptake by skeletal muscle, Cell Metabol. 13 (2011) 294–307.[116] T. Kubota, N. Kubota, H. Kumagai, S. Yamaguchi, H. Kozono, T. Takahashi, M. Inoue, S. Itoh, I. Takamoto, T. Sasako, K. Kumagai, T. Kawai, S. Hashimoto, T. Kobayashi, M. Sato, K. Tokuyama, S. Nishimura, M. Tsunoda, T. Ide, K. Murakami, T. Yamazaki, O. Ezaki, K. Kawamura, H. Masuda, M. Moroi, K. Sugi, Y. Oike, H. Shimokawa, N. Yanagihara, M. Tsutsui, Y. Terauchi, K. Tobe, R. Nagai, K. Kamata, K. Inoue, T. Kodama, K. Ueki, T. Kadowaki, Impaired insulin signaling in endothelial cells reduces insulin-induced glucose uptake by skeletal muscle, Cell Metabol. 13 (2011) 294–307.[117] U. Landmesser, B. Hornig, H. Drexler, Endothelial function: a critical determinant in atherosclerosis? Circulation 109 (2004). [118] J.A. Kim, M. Montagnani, K.K. Kwang, M.J. Quon, Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms, Circulation 113 (2006) 1888–1904.[118] J.A. Kim, M. Montagnani, K.K. Kwang, M.J. Quon, Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms, Circulation 113 (2006) 1888–1904.[119] G.M. Mutlu, D. Green, A. Bellmeyer, C.M. Baker, Z. Burgess, N. Rajamannan, J.W. Christman, N. Foiles, D.W. Kamp, A.J. Ghio, N.S. Chandel, D.A. Dean, J.I. Sznajder, G.R.S. Budinger, Ambientependent path particulate matter accelerates coagulation via an IL-6–dway, J. Clin. Invest. 117 (2007) 2952.[120] F. Gorini, L. Sabatino, M. Gaggini, K. Chatzianagnostou, C. Vassalle, Oxidative Stress Biomarkers in the Relationship between Type 2 Diabetes and Air Pollution, Antioxidants 10 (2021).[121] W.E. Cascio, E. Cozzi, S. Hazarika, R.B. Devlin, R.A. Henriksen, R.M. Lust, M.R. Van Scott, C.J. Wingard, Cardiac and vasular changes in mice after exposure to ultrafine particulate matter, Inhal. Toxicol. Inhal. Toxicol. (2007) 67–73. [122] J. Jaafari, K. Naddafi, M. Yunesian, R. Nabizadeh, M.S. Hassanvand, M. Shamsipour, M.G. Ghozikali, H.R. Shamsollahi, S. Nazmara, K. Yaghmaeian, The acute effects of short term exposure to particulate matter from natural and anthropogenic sources on inflammation and coagulation markers in healthy young adults, Sci. Total Environ. 735 (2020)[122] J. Jaafari, K. Naddafi, M. Yunesian, R. Nabizadeh, M.S. Hassanvand, M. Shamsipour, M.G. Ghozikali, H.R. Shamsollahi, S. Nazmara, K. Yaghmaeian, The acute effects of short term exposure to particulate matter from natural and anthropogenic sources on inflammation and coagulation markers in healthy young adults, Sci. Total Environ. 735 (2020)[123] A. Campbell, M. Oldham, A. Becaria, S.C. Bondy, D. Meacher, C. Sioutas, C. Misra, L.B. Mendez, M. Kleinman, Particulate matter in polluted air may increase biomarkers of inflammation in mouse brain, Neurotoxicology 26 (2005) 133–140. [124] C.R. Tyler, S. Noor, T.L. Young, V. Rivero, B. Sanchez, S. Lucas, K.K. Caldwell, E.D. Milligan, M.J. Campen, Aging exacerbates neuroinflammatory outcomes induced by acute ozone exposure, Toxicol. Sci. 163 (2018) 123–139.[124] C.R. Tyler, S. Noor, T.L. Young, V. Rivero, B. Sanchez, S. Lucas, K.K. Caldwell, E.D. Milligan, M.J. Campen, Aging exacerbates neuroinflammatory outcomes induced by acute ozone exposure, Toxicol. Sci. 163 (2018) 123–139.[125] J. Vitte, B.F. Michel, P. Bongrand, J.L. Gastaut, Oxidative stress level in circulating neutrophils is linked to neurodegenerative diseases, J. Clin. Immunol. 24 (2004) 683–692. [126] N. Rocks, C. Vanwinge, C. Radermecker, S. Blacher, C. Gilles, R. Mar ee, A. Gillard, B. Evrard, C. Pequeux, T. Marichal, A. Noel, D. Cataldo, Ozone-primed neutrophils promote early steps of tumour cell metastasis to lungs by enhancing their NET production, Thorax 74 (2019) 768–779.[126] N. Rocks, C. Vanwinge, C. Radermecker, S. Blacher, C. Gilles, R. Mar ee, A. Gillard, B. Evrard, C. Pequeux, T. Marichal, A. Noel, D. Cataldo, Ozone-primed neutrophils promote early steps of tumour cell metastasis to lungs by enhancing their NET production, Thorax 74 (2019) 768–779.[127] J. Stackowicz, F. Jonsson, L.L. Reber, Mouse models and tools for the in vivo study € of neutrophils, Front. Immunol. 10 (2019) 3130. [128] I.M. Richardson, C.J. Calo, L.E. Hind, Microphysiological systems for studying cellular crosstalk during the neutrophil response to infection, Front. Immunol. (2021) 1445, 0[128] I.M. Richardson, C.J. Calo, L.E. Hind, Microphysiological systems for studying cellular crosstalk during the neutrophil response to infection, Front. Immunol. (2021) 1445, 0[129] D. Masopust, C.P. Sivula, S.C. Jameson, Of mice, dirty mice, and men: using mice to understand human immunology, J. Immunol. 199 (2017) 383–388.[130] X. Yang, J. Zhou, J. He, J. Liu, H. Wang, Y. Liu, T. Jiang, Q. Zhang, X. Fu, Y. Xu, An immune system-modified rat model for human stem cell transplantation research, Stem Cell Rep. 11 (2018) 514–521.[131] A. Barnett-Vanes, A. Sharrock, M.A. Birrell, S. Rankin, A single 9-colour flow cytometric method to characterise major leukocyte populations in the rat: validation in a model of LPS-induced pulmonary inflammation, PLoS One 11 (2016).[132] A.A. Abubakar, M.M. Noordin, T.I. Azmi, U. Kaka, M.Y. Loqman, The use of rats and mice as animal models in ex vivo bone growth and development studies, Bone Jt. Res. 5 (2016) 610–618.[133] D.A. Glencross, T.R. Ho, N. Camina, C.M. Hawrylowicz, P.E. Pfeffer, Air pollution ~ and its effects on the immune system, Free Radic. Biol. Med. 151 (2020) 56–68.[134] G. Kaur, J.M. Dufour, Cell lines: valuable tools or useless artifacts, Spermatogenesis 2 (2012) 1–5.[135] S. Mitschik, R. Schierl, D. Nowak, R.A. Jorres, Effects of particulate matter on € cytokine production in vitro: a comparative analysis of published studies, Inhal. Toxicol. 20 (2008) 399–414.InflammationNeutrophilsAir pollutantsParticulate matterMurine modelCell culturesCytokinesSystematic reviewEnvironmentalSystematic review of preclinical studies on the neutrophil-mediated immune response to air pollutants, 1980–2020Artículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINALSystematic Review Neutrophils PM 2022.pdfSystematic Review Neutrophils PM 2022.pdfapplication/pdf1366682https://repository.ucc.edu.co/bitstreams/0d01393e-0253-47bb-9985-336bb0ab9900/download2384ff8bc5b1b78677b195548f33e770MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.ucc.edu.co/bitstreams/3c871c8d-3aee-406c-a49a-864d47367e07/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILSystematic Review Neutrophils PM 2022.pdf.jpgSystematic Review Neutrophils PM 2022.pdf.jpgGenerated Thumbnailimage/jpeg5634https://repository.ucc.edu.co/bitstreams/5f533f58-04d7-484d-8d41-43fe3d93d11a/download49b6c36ba9517c63217362eac86b3e45MD53TEXTSystematic Review Neutrophils PM 2022.pdf.txtSystematic Review Neutrophils PM 2022.pdf.txtExtracted texttext/plain100373https://repository.ucc.edu.co/bitstreams/362a7497-3b5a-4c07-a34c-f4ee5345b7b0/download63ef0a17dc001ebcb79f44f9a92db16aMD5420.500.12494/45953oai:repository.ucc.edu.co:20.500.12494/459532024-08-20 16:23:47.646open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=