A novel approach to create an antibacterial surface using titanium dioxide and a combination of dip-pen nanolithography and soft lithography
Soft lithography and Dip-Pen Nanolithography (DPN) are techniques that have been used to modify the surface of biomaterials. Modified surfaces play a role in reducing bacterial adhesion and biofilm formation. Also, titanium dioxide has been reported as an antibacterial substance due to its photocata...
- Autores:
-
Arango Santander, Santiago
Pelaez Vargas, Alejandro
Da Cunha Freitas, Sidonio Ricardo
García González, Claudia Patricia
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2018
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/41668
- Acceso en línea:
- https://doi.org/10.1371/journal.pone.0131139
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047801014&doi=10.17843%2frpmesp.2018.351.3568&partnerID=40&md5=61166e074cf91df0e8870ace5c72294c
https://hdl.handle.net/20.500.12494/41668
- Palabra clave:
- antiinfective agent
baysilon
biocompatible coated material
dimeticone
titanium
titanium dioxide
water
atomic force microscopy
bacterium adherence
chemistry
drug effect
microbial viability
nanotechnology
printing
procedures
spectroscopy
Streptococcus mutans
surface property
ultrastructure
Anti-Bacterial Agents
Bacterial Adhesion
Coated Materials
Biocompatible
Dimethylpolysiloxanes
Microbial Viability
Microscopy
Atomic Force
Nanotechnology
Printing
Spectrometry
X-Ray Emission
Streptococcus mutans
Surface Properties
Titanium
Water
- Rights
- closedAccess
- License
- http://purl.org/coar/access_right/c_14cb
id |
COOPER2_6572950e95900e62a970cbb8a5d357b0 |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/41668 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
spelling |
Arango Santander, SantiagoPelaez Vargas, AlejandroDa Cunha Freitas, Sidonio RicardoGarcía González, Claudia Patricia2021-12-16T22:15:41Z2021-12-16T22:15:41Z2018https://doi.org/10.1371/journal.pone.0131139https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047801014&doi=10.17843%2frpmesp.2018.351.3568&partnerID=40&md5=61166e074cf91df0e8870ace5c72294c20452322https://hdl.handle.net/20.500.12494/41668Arango S,Pelaez A,Freitas SC,García C. A novel approach to create an antibacterial surface using titanium dioxide and a combination of dip-pen nanolithography and soft lithography. Sci Rep. 2018. 8. (1):p. 15818-15818. .Soft lithography and Dip-Pen Nanolithography (DPN) are techniques that have been used to modify the surface of biomaterials. Modified surfaces play a role in reducing bacterial adhesion and biofilm formation. Also, titanium dioxide has been reported as an antibacterial substance due to its photocatalytic effect. This work aimed at creating patterns on model surfaces using DPN and soft lithography combined with titanium dioxide to create functional antibacterial micropatterned surfaces, which were tested against Streptococcus mutans. DPN was used to create a master pattern onto a model surface and microstamping was performed to duplicate and transfer such patterns to medical-grade stainless steel 316L using a suspension of TiO2. Modified SS316L plates were subjected to UVA black light as photocatalytic activator. Patterns were characterized by atomic force microscopy and biologically evaluated using S. mutans. A significant reduction of up to 60% in bacterial adhesion to TiO2 -coated and -micropatterned surfaces was observed. Moreover, both TiO2 surfaces reduced the viability of adhered bacteria after UV exposure. TiO2 micropatterned demonstrated a synergic effect between physical and chemical modification against S. mutans. This dual effect was enhanced by increasing TiO2 concentration. This novel approach may be a promising alternative to reduce bacterial adhesion to surfaces. © 2018, The Author(s).0000-0001-7582-2760alejandro.pelaezv@campusucc.edu.co15818-15818Nature Publishing Groupantiinfective agentbaysilonbiocompatible coated materialdimeticonetitaniumtitanium dioxidewateratomic force microscopybacterium adherencechemistrydrug effectmicrobial viabilitynanotechnologyprintingproceduresspectroscopyStreptococcus mutanssurface propertyultrastructureAnti-Bacterial AgentsBacterial AdhesionCoated MaterialsBiocompatibleDimethylpolysiloxanesMicrobial ViabilityMicroscopyAtomic ForceNanotechnologyPrintingSpectrometryX-Ray EmissionStreptococcus mutansSurface PropertiesTitaniumWaterA novel approach to create an antibacterial surface using titanium dioxide and a combination of dip-pen nanolithography and soft lithographyArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionSCI REP-UKinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbPublication20.500.12494/41668oai:repository.ucc.edu.co:20.500.12494/416682024-08-20 16:18:26.444metadata.onlyhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.com |
dc.title.spa.fl_str_mv |
A novel approach to create an antibacterial surface using titanium dioxide and a combination of dip-pen nanolithography and soft lithography |
title |
A novel approach to create an antibacterial surface using titanium dioxide and a combination of dip-pen nanolithography and soft lithography |
spellingShingle |
A novel approach to create an antibacterial surface using titanium dioxide and a combination of dip-pen nanolithography and soft lithography antiinfective agent baysilon biocompatible coated material dimeticone titanium titanium dioxide water atomic force microscopy bacterium adherence chemistry drug effect microbial viability nanotechnology printing procedures spectroscopy Streptococcus mutans surface property ultrastructure Anti-Bacterial Agents Bacterial Adhesion Coated Materials Biocompatible Dimethylpolysiloxanes Microbial Viability Microscopy Atomic Force Nanotechnology Printing Spectrometry X-Ray Emission Streptococcus mutans Surface Properties Titanium Water |
title_short |
A novel approach to create an antibacterial surface using titanium dioxide and a combination of dip-pen nanolithography and soft lithography |
title_full |
A novel approach to create an antibacterial surface using titanium dioxide and a combination of dip-pen nanolithography and soft lithography |
title_fullStr |
A novel approach to create an antibacterial surface using titanium dioxide and a combination of dip-pen nanolithography and soft lithography |
title_full_unstemmed |
A novel approach to create an antibacterial surface using titanium dioxide and a combination of dip-pen nanolithography and soft lithography |
title_sort |
A novel approach to create an antibacterial surface using titanium dioxide and a combination of dip-pen nanolithography and soft lithography |
dc.creator.fl_str_mv |
Arango Santander, Santiago Pelaez Vargas, Alejandro Da Cunha Freitas, Sidonio Ricardo García González, Claudia Patricia |
dc.contributor.author.none.fl_str_mv |
Arango Santander, Santiago Pelaez Vargas, Alejandro Da Cunha Freitas, Sidonio Ricardo García González, Claudia Patricia |
dc.subject.spa.fl_str_mv |
antiinfective agent baysilon biocompatible coated material dimeticone titanium titanium dioxide water atomic force microscopy bacterium adherence chemistry drug effect microbial viability nanotechnology printing procedures spectroscopy Streptococcus mutans surface property ultrastructure Anti-Bacterial Agents Bacterial Adhesion Coated Materials Biocompatible Dimethylpolysiloxanes Microbial Viability Microscopy Atomic Force Nanotechnology Printing Spectrometry X-Ray Emission Streptococcus mutans Surface Properties Titanium Water |
topic |
antiinfective agent baysilon biocompatible coated material dimeticone titanium titanium dioxide water atomic force microscopy bacterium adherence chemistry drug effect microbial viability nanotechnology printing procedures spectroscopy Streptococcus mutans surface property ultrastructure Anti-Bacterial Agents Bacterial Adhesion Coated Materials Biocompatible Dimethylpolysiloxanes Microbial Viability Microscopy Atomic Force Nanotechnology Printing Spectrometry X-Ray Emission Streptococcus mutans Surface Properties Titanium Water |
description |
Soft lithography and Dip-Pen Nanolithography (DPN) are techniques that have been used to modify the surface of biomaterials. Modified surfaces play a role in reducing bacterial adhesion and biofilm formation. Also, titanium dioxide has been reported as an antibacterial substance due to its photocatalytic effect. This work aimed at creating patterns on model surfaces using DPN and soft lithography combined with titanium dioxide to create functional antibacterial micropatterned surfaces, which were tested against Streptococcus mutans. DPN was used to create a master pattern onto a model surface and microstamping was performed to duplicate and transfer such patterns to medical-grade stainless steel 316L using a suspension of TiO2. Modified SS316L plates were subjected to UVA black light as photocatalytic activator. Patterns were characterized by atomic force microscopy and biologically evaluated using S. mutans. A significant reduction of up to 60% in bacterial adhesion to TiO2 -coated and -micropatterned surfaces was observed. Moreover, both TiO2 surfaces reduced the viability of adhered bacteria after UV exposure. TiO2 micropatterned demonstrated a synergic effect between physical and chemical modification against S. mutans. This dual effect was enhanced by increasing TiO2 concentration. This novel approach may be a promising alternative to reduce bacterial adhesion to surfaces. © 2018, The Author(s). |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2021-12-16T22:15:41Z |
dc.date.available.none.fl_str_mv |
2021-12-16T22:15:41Z |
dc.type.none.fl_str_mv |
Artículo |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://doi.org/10.1371/journal.pone.0131139 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047801014&doi=10.17843%2frpmesp.2018.351.3568&partnerID=40&md5=61166e074cf91df0e8870ace5c72294c |
dc.identifier.issn.spa.fl_str_mv |
20452322 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/41668 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Arango S,Pelaez A,Freitas SC,García C. A novel approach to create an antibacterial surface using titanium dioxide and a combination of dip-pen nanolithography and soft lithography. Sci Rep. 2018. 8. (1):p. 15818-15818. . |
url |
https://doi.org/10.1371/journal.pone.0131139 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047801014&doi=10.17843%2frpmesp.2018.351.3568&partnerID=40&md5=61166e074cf91df0e8870ace5c72294c https://hdl.handle.net/20.500.12494/41668 |
identifier_str_mv |
20452322 Arango S,Pelaez A,Freitas SC,García C. A novel approach to create an antibacterial surface using titanium dioxide and a combination of dip-pen nanolithography and soft lithography. Sci Rep. 2018. 8. (1):p. 15818-15818. . |
dc.relation.ispartofjournal.spa.fl_str_mv |
SCI REP-UK |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/closedAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
eu_rights_str_mv |
closedAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.format.extent.spa.fl_str_mv |
15818-15818 |
dc.publisher.spa.fl_str_mv |
Nature Publishing Group |
institution |
Universidad Cooperativa de Colombia |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814246863733260288 |