Thermodynamic analysis of the solubility and preferential solvation of sulfamerazine in (acetonitrile + water) cosolvent mixtures at different temperatures

Solubility studies are valuable tools for the pharmaceutical industry and research centres and are currently becoming increasingly relevant in the environmental sciences field. This study presents the thermodynamic and preferential solvation analyses of solubility of sulfamerazine (SMR) in {acetonit...

Full description

Autores:
Delgado, Daniel Ricardo
Blanco Márquez, Joaquín H
Ortiz, Claudia P.
Cerquera, Néstor Enrique
Martínez, Fleming
Jouyban, Abolghasem
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/15428
Acceso en línea:
https://doi.org/10.1016/j.molliq.2019.111507
https://hdl.handle.net/20.500.12494/15428
Palabra clave:
Sulfamerazine
van't Hoff equation
Cosolvent mixtures {acetonitrile + water}
Preferential solvation
IKBI
Sulfamerazine
van't Hoff equation
Cosolvent mixtures {acetonitrile + water}
IKBI
Rights
closedAccess
License
Atribución
id COOPER2_64e77c037bf28bfc233ab4ef3e1bd740
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/15428
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Thermodynamic analysis of the solubility and preferential solvation of sulfamerazine in (acetonitrile + water) cosolvent mixtures at different temperatures
title Thermodynamic analysis of the solubility and preferential solvation of sulfamerazine in (acetonitrile + water) cosolvent mixtures at different temperatures
spellingShingle Thermodynamic analysis of the solubility and preferential solvation of sulfamerazine in (acetonitrile + water) cosolvent mixtures at different temperatures
Sulfamerazine
van't Hoff equation
Cosolvent mixtures {acetonitrile + water}
Preferential solvation
IKBI
Sulfamerazine
van't Hoff equation
Cosolvent mixtures {acetonitrile + water}
IKBI
title_short Thermodynamic analysis of the solubility and preferential solvation of sulfamerazine in (acetonitrile + water) cosolvent mixtures at different temperatures
title_full Thermodynamic analysis of the solubility and preferential solvation of sulfamerazine in (acetonitrile + water) cosolvent mixtures at different temperatures
title_fullStr Thermodynamic analysis of the solubility and preferential solvation of sulfamerazine in (acetonitrile + water) cosolvent mixtures at different temperatures
title_full_unstemmed Thermodynamic analysis of the solubility and preferential solvation of sulfamerazine in (acetonitrile + water) cosolvent mixtures at different temperatures
title_sort Thermodynamic analysis of the solubility and preferential solvation of sulfamerazine in (acetonitrile + water) cosolvent mixtures at different temperatures
dc.creator.fl_str_mv Delgado, Daniel Ricardo
Blanco Márquez, Joaquín H
Ortiz, Claudia P.
Cerquera, Néstor Enrique
Martínez, Fleming
Jouyban, Abolghasem
dc.contributor.author.none.fl_str_mv Delgado, Daniel Ricardo
Blanco Márquez, Joaquín H
Ortiz, Claudia P.
Cerquera, Néstor Enrique
Martínez, Fleming
Jouyban, Abolghasem
dc.subject.spa.fl_str_mv Sulfamerazine
van't Hoff equation
Cosolvent mixtures {acetonitrile + water}
Preferential solvation
IKBI
topic Sulfamerazine
van't Hoff equation
Cosolvent mixtures {acetonitrile + water}
Preferential solvation
IKBI
Sulfamerazine
van't Hoff equation
Cosolvent mixtures {acetonitrile + water}
IKBI
dc.subject.other.spa.fl_str_mv Sulfamerazine
van't Hoff equation
Cosolvent mixtures {acetonitrile + water}
IKBI
description Solubility studies are valuable tools for the pharmaceutical industry and research centres and are currently becoming increasingly relevant in the environmental sciences field. This study presents the thermodynamic and preferential solvation analyses of solubility of sulfamerazine (SMR) in {acetonitrile (1) + water (2)} cosolvent mixtures at different temperatures (278.15–318.15 K). The maximum solubility of SMR was obtained at 318.15 K when mass fraction is w1 = 0.90, whereas the minimum solubility of SMR was obtained in pure water at 278.15 K. Based on the solubility data, the Gibbs and van't Hoff equations were used for obtaining the apparent thermodynamic dissolution functions, while the IKBI model was used for obtaining the preferential solvation coefficients. Thus, the dissolution process is endothermic and is heavily dependent on the polarity of the medium, favoring the entropy of thermodynamic solution functions in every case. With respect to the preferential solvation coefficients, the results indicate that SMR is preferentially hydrated in water- and acetonitrile-rich mixtures and that it is preferentially solvated by acetonitrile in mixtures having intermediate compositions (0.25 < x1 < 0.85). The Jouyban-Acree-van't Hoff model is applied for modeling the generated solubility data with reasonable accuracy.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-12-05T18:32:04Z
dc.date.available.none.fl_str_mv 2019-12-05T18:32:04Z
2030-01-01
dc.date.issued.none.fl_str_mv 2019-11-01
dc.type.none.fl_str_mv Artículo
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 0167-7322
dc.identifier.uri.spa.fl_str_mv https://doi.org/10.1016/j.molliq.2019.111507
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/15428
dc.identifier.bibliographicCitation.spa.fl_str_mv Joaquín H. Blanco-Márquez, Claudia P. Ortiz, Nestor Enrique Cerquera, Fleming Martínez, Abolghasem Jouyban, Daniel Ricardo Delgado, Thermodynamic analysis of the solubility and preferential solvation of sulfamerazine in (acetonitrile + water) cosolvent mixtures at different temperatures, Journal of Molecular Liquids, Volume 293, 2019, 111507, ISSN 0167-7322, https://doi.org/10.1016/j.molliq.2019.111507.
identifier_str_mv 0167-7322
Joaquín H. Blanco-Márquez, Claudia P. Ortiz, Nestor Enrique Cerquera, Fleming Martínez, Abolghasem Jouyban, Daniel Ricardo Delgado, Thermodynamic analysis of the solubility and preferential solvation of sulfamerazine in (acetonitrile + water) cosolvent mixtures at different temperatures, Journal of Molecular Liquids, Volume 293, 2019, 111507, ISSN 0167-7322, https://doi.org/10.1016/j.molliq.2019.111507.
url https://doi.org/10.1016/j.molliq.2019.111507
https://hdl.handle.net/20.500.12494/15428
dc.relation.isversionof.spa.fl_str_mv https://www.sciencedirect.com/science/article/abs/pii/S0167732219334932
dc.relation.ispartofjournal.spa.fl_str_mv Journal of Molecular Liquids
dc.relation.references.spa.fl_str_mv G. Kılıç, B. Osman, N. Tüzmen Application of affinity microspheres for effective SPE cleanup before the determination of sulfamerazine by HPLC Mater. Sci. Eng. C., 91 (2018), pp. 55-63, 10.1016/J·MSEC.2018.04.058
V.F. Samanidou, E.P. Tolika, I.N. Papadoyannis Development and validation of an HPLC confirmatory method for the residue analysis of four sulphonamides in cow's milk according to the European Union Decision 2002/657/EC J. Liq. Chromatogr. Relat. Technol., 31 (2008), pp. 1358-1372, 10.1080/10826070802019947
S. Kim, D.S. Aga Potential ecological and human health impacts of antibiotics and antibiotic-resistant bacteria from wastewater treatment plants J. Toxicol. Environ. Heal. B Crit. Rev., 10 (2007), pp. 559-573, 10.1080/15287390600975137
C. Desbrow, E.J. Routledge, G.. Brighty, J.. Sumpter, M. Waldock Identification of estrogenic chemicals in STW effluent. 1. Chemical fractionation and in vitro biological screening Environ. Sci. Technol., 32 (1998), pp. 1549-1558, 10.1021/ES9707973
E.J. Routledge, D. Sheahan, C. Desbrow, G.C. Brighty, M. Waldock, J.P. Sumpter Identification of estrogenic chemicals in STW effluent. 2. In vivo responses in trout and roach Environ. Sci. Technol., 32 (1998), pp. 1559-1565, 10.1021/ES970796A
D. Cheng, Y. Feng, Y. Liu, J. Xue, Z. Li Dynamics of oxytetracycline, sulfamerazine, and ciprofloxacin and related antibiotic resistance genes during swine manure composting J. Environ. Manag., 230 (2019), pp. 102-109, 10.1016/J.JENVMAN.2018.09.074
A. Ramírez, R. Gutiérrez, G. Díaz, C. González, N. Pérez, S. Vega, M. Noa High-performance thin-layer chromatography–bioautography for multiple antibiotic residues in cow's milk J. Chromatogr. B, 784 (2003), pp. 315-322, 10.1016/S1570-0232(02)00819-X
D.R. Delgado, F. Martínez Solubility and solution thermodynamics of sulfamerazine and sulfamethazine in some ethanol + water mixtures Fluid Ph. Equilibria., 360 (2013), pp. 88-96, 10.1016/J.FLUID.2013.09.018
M. del Mar Muñoz, D.R. Delgado, M.Á. Peña, A. Jouyban, F. Martínez Solubility and preferential solvation of sulfadiazine, sulfamerazine and sulfamethazine in propylene glycol + water mixtures at 298.15 K J. Mol. Liq., 204 (2015), pp. 132-136, 10.1016/J·MOLLIQ.2015.01.047
D.R. Delgado, F. Martínez Preferential solvation of sulfadiazine, sulfamerazine and sulfamethazine in ethanol + water solvent mixtures according to the IKBI method J. Mol. Liq., 193 (2014), pp. 152-159, 10.1016/J·MOLLIQ.2013.12.021
D.R. Delgado, M.Á. Peña, F. Martínez Extended Hildebrand solubility approach applied to sulphadiazine, sulphamerazine and sulphamethazine in some {1-propanol (1) + water (2)} mixtures at 298.15 K Phys. Chem. Liq., 57 (2019), pp. 388-400, 10.1080/00319104.2018.1476976
D.R. Delgado, M.Á. Peña, F. Martínez Extended Hildebrand solubility approach applied to some sulphapyrimidines in some {methanol (1) + water (2)} mixtures Phys. Chem. Liq., 56 (2018), pp. 176-188, 10.1080/00319104.2017.1317779
D.R. Delgado, M.Á. Peña, F. Martínez Extended Hildebrand solubility approach applied to some structurally related sulfonamides in ethanol + water mixtures Rev.Colomb.Quim., 45 (2016), pp. 34-43, 10.15446/rev.colomb.quim.v45n1.57201
K.M. De Fina, T.L. Sharp, I. Chuca, M.A. Spurgin, W.E. Acree, C.E. Green, M.H. Abraham Solubility of the pesticide monuron in organic nonelectrolyte solvents. Comparison of observed versus predicted values based upon mobile order theory Phys. Chem. Liq., 40 (2002), pp. 255-268, 10.1080/0031910021000004847
S.H. Yalkowsky Solubility and Solubilization in Aqueous Media American Chemical Society, New York (1999)
S.H. Yalkowsky, Y. He, P. Jain Handbook of Aqueous Solubility Data CRC Press, Boca Raton (2010)
A. Jouyban Handbook of Solubility Data for Pharmaceuticals CRC Press, Boca Raton (2010)
A.N. Martin, P. Bustamante Physical Pharmacy: Physical Chemical Principles in the Pharmaceutical Sciences (4th ed.), Lea & Febiger, Philadelphia (1993)
A.T. Florence, D. Attwood Physicochemical Principles of Pharmacy: In Manufacture, Formulation and Clinical Use (6th ed.), Pharmaceutical Press, London (2016)
T.M. Letcher Thermodynamics, Solubility and Environmental Issues (1st ed.), Elsevier Science, Ámsterdam (2007)
D.R. Delgado, D.I. Caviedes-Rubio, C.P. Ortiz, Y.L. Parra-Pava, M.Á. Peña, A. Jouyban, S.N. Mirheydari, F. Martínez, W.E. Acree Solubility of sulphadiazine in (acetonitrile + water) mixtures: measurement, correlation, thermodynamics and preferential solvation Phys. Chem. Liq. (2019), pp. 1-16, 10.1080/00319104.2019.1594227
D.R. Delgado, G.A. Rodríguez, J.A. Martínez, J.H. Rojas, F. Martínez Validación de una metodología analítica empleando espectrofotometría ultravioleta para el estudio de la solubilidad de algunas sulfonamidas en mezclas cosolventes alcohol + agua Rev. Colomb. Quim., 42 (2013), pp. 31-40, 10.15446/rev.colomb.quim.v47n2.68213
D. Yue, W.E. Acree, M.H. Abraham Applications of Abraham solvation parameter model: estimation of the lethal median molar concentration of the antiepileptic drug levetiracetam towards aquatic organisms from measured solubility data Phys. Chem. Liq. (2019), 10.1080/00319104.2019.1584801
A.C. Gaviria-Castillo, J.D. Artunduaga-Tole, J.D. Rodríguez-Rubiano, J.A. Zuñiga-Andrade, D.R. Delgado, A. Jouyban, F. Martínez Solution thermodynamics and preferential solvation of triclocarban in {1,4-dioxane (1) + water (2)} mixtures at 298.15 K Phys. Chem. Liq., 57 (2019), pp. 55-66, 10.1080/00319104.2017.1416613
P. BustamanteE, R. Ochoa, A. Reillo, J.-B. Escalera Chameleonic effect of sulfanilamide and sulfamethazine in solvent mixtures. Solubility curves with two maxima Chem Pharm Bull, 42 (1994), pp. 1129-1133, 10.1248/cpb.42.1129
A. Martin, P.L. Wu, Z. Liron, S. Cohen Dependence of solute solubility parameters on solvent polarity J. Pharm. Sci., 74 (1985), pp. 638-642, 10.1002/jps.2600740611
dc.rights.license.none.fl_str_mv Atribución
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_14cb
rights_invalid_str_mv Atribución
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.extent.spa.fl_str_mv 111507
dc.coverage.temporal.spa.fl_str_mv Vol. 293
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, Neiva
dc.publisher.program.spa.fl_str_mv Ingeniería Industrial
dc.publisher.place.spa.fl_str_mv Neiva
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/720b5378-939d-4fed-b1a3-a067dcce1c3a/download
https://repository.ucc.edu.co/bitstreams/b1fe7c8f-63c8-466c-aa8b-e7f2db2a1c4f/download
https://repository.ucc.edu.co/bitstreams/fbdbafd4-1cca-49be-b4f7-192f25459d04/download
https://repository.ucc.edu.co/bitstreams/34c83e28-5b6b-47e7-895e-1ebb2495d784/download
bitstream.checksum.fl_str_mv 3bce4f7ab09dfc588f126e1e36e98a45
eb980ed10463f2b3b547f988d73efde3
f6f172d793145ec5e55df8fb8a43eb7b
17b2b376e18180531598382899b31d36
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808789093764562944
spelling Delgado, Daniel RicardoBlanco Márquez, Joaquín HOrtiz, Claudia P.Cerquera, Néstor Enrique Martínez, FlemingJouyban, AbolghasemVol. 2932019-12-05T18:32:04Z2019-12-05T18:32:04Z2030-01-012019-11-010167-7322https://doi.org/10.1016/j.molliq.2019.111507https://hdl.handle.net/20.500.12494/15428Joaquín H. Blanco-Márquez, Claudia P. Ortiz, Nestor Enrique Cerquera, Fleming Martínez, Abolghasem Jouyban, Daniel Ricardo Delgado, Thermodynamic analysis of the solubility and preferential solvation of sulfamerazine in (acetonitrile + water) cosolvent mixtures at different temperatures, Journal of Molecular Liquids, Volume 293, 2019, 111507, ISSN 0167-7322, https://doi.org/10.1016/j.molliq.2019.111507.Solubility studies are valuable tools for the pharmaceutical industry and research centres and are currently becoming increasingly relevant in the environmental sciences field. This study presents the thermodynamic and preferential solvation analyses of solubility of sulfamerazine (SMR) in {acetonitrile (1) + water (2)} cosolvent mixtures at different temperatures (278.15–318.15 K). The maximum solubility of SMR was obtained at 318.15 K when mass fraction is w1 = 0.90, whereas the minimum solubility of SMR was obtained in pure water at 278.15 K. Based on the solubility data, the Gibbs and van't Hoff equations were used for obtaining the apparent thermodynamic dissolution functions, while the IKBI model was used for obtaining the preferential solvation coefficients. Thus, the dissolution process is endothermic and is heavily dependent on the polarity of the medium, favoring the entropy of thermodynamic solution functions in every case. With respect to the preferential solvation coefficients, the results indicate that SMR is preferentially hydrated in water- and acetonitrile-rich mixtures and that it is preferentially solvated by acetonitrile in mixtures having intermediate compositions (0.25 < x1 < 0.85). The Jouyban-Acree-van't Hoff model is applied for modeling the generated solubility data with reasonable accuracy.Solubility studies are valuable tools for the pharmaceutical industry and research centres and are currently becoming increasingly relevant in the environmental sciences field. This study presents the thermodynamic and preferential solvation analyses of solubility of sulfamerazine (SMR) in {acetonitrile (1) + water (2)} cosolvent mixtures at different temperatures (278.15–318.15 K). The maximum solubility of SMR was obtained at 318.15 K when mass fraction is w1 = 0.90, whereas the minimum solubility of SMR was obtained in pure water at 278.15 K. Based on the solubility data, the Gibbs and van't Hoff equations were used for obtaining the apparent thermodynamic dissolution functions, while the IKBI model was used for obtaining the preferential solvation coefficients. Thus, the dissolution process is endothermic and is heavily dependent on the polarity of the medium, favoring the entropy of thermodynamic solution functions in every case. With respect to the preferential solvation coefficients, the results indicate that SMR is preferentially hydrated in water- and acetonitrile-rich mixtures and that it is preferentially solvated by acetonitrile in mixtures having intermediate compositions (0.25 < x1 < 0.85). The Jouyban-Acree-van't Hoff model is applied for modeling the generated solubility data with reasonable accuracy.http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001402116https://orcid.org/0000-0002-4835-9739https://scienti.colciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000004151danielr.delgado@campusucc.edu.cohttps://scholar.google.com/citations?hl=es&user=OW0mejcAAAAJ&view_op=list_works111507Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, NeivaIngeniería IndustrialNeivahttps://www.sciencedirect.com/science/article/abs/pii/S0167732219334932Journal of Molecular LiquidsG. Kılıç, B. Osman, N. Tüzmen Application of affinity microspheres for effective SPE cleanup before the determination of sulfamerazine by HPLC Mater. Sci. Eng. C., 91 (2018), pp. 55-63, 10.1016/J·MSEC.2018.04.058V.F. Samanidou, E.P. Tolika, I.N. Papadoyannis Development and validation of an HPLC confirmatory method for the residue analysis of four sulphonamides in cow's milk according to the European Union Decision 2002/657/EC J. Liq. Chromatogr. Relat. Technol., 31 (2008), pp. 1358-1372, 10.1080/10826070802019947S. Kim, D.S. Aga Potential ecological and human health impacts of antibiotics and antibiotic-resistant bacteria from wastewater treatment plants J. Toxicol. Environ. Heal. B Crit. Rev., 10 (2007), pp. 559-573, 10.1080/15287390600975137C. Desbrow, E.J. Routledge, G.. Brighty, J.. Sumpter, M. Waldock Identification of estrogenic chemicals in STW effluent. 1. Chemical fractionation and in vitro biological screening Environ. Sci. Technol., 32 (1998), pp. 1549-1558, 10.1021/ES9707973E.J. Routledge, D. Sheahan, C. Desbrow, G.C. Brighty, M. Waldock, J.P. Sumpter Identification of estrogenic chemicals in STW effluent. 2. In vivo responses in trout and roach Environ. Sci. Technol., 32 (1998), pp. 1559-1565, 10.1021/ES970796AD. Cheng, Y. Feng, Y. Liu, J. Xue, Z. Li Dynamics of oxytetracycline, sulfamerazine, and ciprofloxacin and related antibiotic resistance genes during swine manure composting J. Environ. Manag., 230 (2019), pp. 102-109, 10.1016/J.JENVMAN.2018.09.074A. Ramírez, R. Gutiérrez, G. Díaz, C. González, N. Pérez, S. Vega, M. Noa High-performance thin-layer chromatography–bioautography for multiple antibiotic residues in cow's milk J. Chromatogr. B, 784 (2003), pp. 315-322, 10.1016/S1570-0232(02)00819-XD.R. Delgado, F. Martínez Solubility and solution thermodynamics of sulfamerazine and sulfamethazine in some ethanol + water mixtures Fluid Ph. Equilibria., 360 (2013), pp. 88-96, 10.1016/J.FLUID.2013.09.018M. del Mar Muñoz, D.R. Delgado, M.Á. Peña, A. Jouyban, F. Martínez Solubility and preferential solvation of sulfadiazine, sulfamerazine and sulfamethazine in propylene glycol + water mixtures at 298.15 K J. Mol. Liq., 204 (2015), pp. 132-136, 10.1016/J·MOLLIQ.2015.01.047D.R. Delgado, F. Martínez Preferential solvation of sulfadiazine, sulfamerazine and sulfamethazine in ethanol + water solvent mixtures according to the IKBI method J. Mol. Liq., 193 (2014), pp. 152-159, 10.1016/J·MOLLIQ.2013.12.021D.R. Delgado, M.Á. Peña, F. Martínez Extended Hildebrand solubility approach applied to sulphadiazine, sulphamerazine and sulphamethazine in some {1-propanol (1) + water (2)} mixtures at 298.15 K Phys. Chem. Liq., 57 (2019), pp. 388-400, 10.1080/00319104.2018.1476976D.R. Delgado, M.Á. Peña, F. Martínez Extended Hildebrand solubility approach applied to some sulphapyrimidines in some {methanol (1) + water (2)} mixtures Phys. Chem. Liq., 56 (2018), pp. 176-188, 10.1080/00319104.2017.1317779D.R. Delgado, M.Á. Peña, F. Martínez Extended Hildebrand solubility approach applied to some structurally related sulfonamides in ethanol + water mixtures Rev.Colomb.Quim., 45 (2016), pp. 34-43, 10.15446/rev.colomb.quim.v45n1.57201K.M. De Fina, T.L. Sharp, I. Chuca, M.A. Spurgin, W.E. Acree, C.E. Green, M.H. Abraham Solubility of the pesticide monuron in organic nonelectrolyte solvents. Comparison of observed versus predicted values based upon mobile order theory Phys. Chem. Liq., 40 (2002), pp. 255-268, 10.1080/0031910021000004847S.H. Yalkowsky Solubility and Solubilization in Aqueous Media American Chemical Society, New York (1999)S.H. Yalkowsky, Y. He, P. Jain Handbook of Aqueous Solubility Data CRC Press, Boca Raton (2010)A. Jouyban Handbook of Solubility Data for Pharmaceuticals CRC Press, Boca Raton (2010)A.N. Martin, P. Bustamante Physical Pharmacy: Physical Chemical Principles in the Pharmaceutical Sciences (4th ed.), Lea & Febiger, Philadelphia (1993)A.T. Florence, D. Attwood Physicochemical Principles of Pharmacy: In Manufacture, Formulation and Clinical Use (6th ed.), Pharmaceutical Press, London (2016)T.M. Letcher Thermodynamics, Solubility and Environmental Issues (1st ed.), Elsevier Science, Ámsterdam (2007)D.R. Delgado, D.I. Caviedes-Rubio, C.P. Ortiz, Y.L. Parra-Pava, M.Á. Peña, A. Jouyban, S.N. Mirheydari, F. Martínez, W.E. Acree Solubility of sulphadiazine in (acetonitrile + water) mixtures: measurement, correlation, thermodynamics and preferential solvation Phys. Chem. Liq. (2019), pp. 1-16, 10.1080/00319104.2019.1594227D.R. Delgado, G.A. Rodríguez, J.A. Martínez, J.H. Rojas, F. Martínez Validación de una metodología analítica empleando espectrofotometría ultravioleta para el estudio de la solubilidad de algunas sulfonamidas en mezclas cosolventes alcohol + agua Rev. Colomb. Quim., 42 (2013), pp. 31-40, 10.15446/rev.colomb.quim.v47n2.68213D. Yue, W.E. Acree, M.H. Abraham Applications of Abraham solvation parameter model: estimation of the lethal median molar concentration of the antiepileptic drug levetiracetam towards aquatic organisms from measured solubility data Phys. Chem. Liq. (2019), 10.1080/00319104.2019.1584801A.C. Gaviria-Castillo, J.D. Artunduaga-Tole, J.D. Rodríguez-Rubiano, J.A. Zuñiga-Andrade, D.R. Delgado, A. Jouyban, F. Martínez Solution thermodynamics and preferential solvation of triclocarban in {1,4-dioxane (1) + water (2)} mixtures at 298.15 K Phys. Chem. Liq., 57 (2019), pp. 55-66, 10.1080/00319104.2017.1416613P. BustamanteE, R. Ochoa, A. Reillo, J.-B. Escalera Chameleonic effect of sulfanilamide and sulfamethazine in solvent mixtures. Solubility curves with two maxima Chem Pharm Bull, 42 (1994), pp. 1129-1133, 10.1248/cpb.42.1129A. Martin, P.L. Wu, Z. Liron, S. Cohen Dependence of solute solubility parameters on solvent polarity J. Pharm. Sci., 74 (1985), pp. 638-642, 10.1002/jps.2600740611Sulfamerazinevan't Hoff equationCosolvent mixtures {acetonitrile + water}Preferential solvationIKBISulfamerazinevan't Hoff equationCosolvent mixtures {acetonitrile + water}IKBIThermodynamic analysis of the solubility and preferential solvation of sulfamerazine in (acetonitrile + water) cosolvent mixtures at different temperaturesArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/720b5378-939d-4fed-b1a3-a067dcce1c3a/download3bce4f7ab09dfc588f126e1e36e98a45MD52ORIGINAL2019_Thermodynamic_analysis_sulfamerazine.pdf2019_Thermodynamic_analysis_sulfamerazine.pdfArtículo Científicoapplication/pdf866735https://repository.ucc.edu.co/bitstreams/b1fe7c8f-63c8-466c-aa8b-e7f2db2a1c4f/downloadeb980ed10463f2b3b547f988d73efde3MD51TEXT2019_Thermodynamic_analysis_sulfamerazine.pdf.txt2019_Thermodynamic_analysis_sulfamerazine.pdf.txtExtracted texttext/plain56756https://repository.ucc.edu.co/bitstreams/fbdbafd4-1cca-49be-b4f7-192f25459d04/downloadf6f172d793145ec5e55df8fb8a43eb7bMD53THUMBNAIL2019_Thermodynamic_analysis_sulfamerazine.pdf.jpg2019_Thermodynamic_analysis_sulfamerazine.pdf.jpgGenerated Thumbnailimage/jpeg5711https://repository.ucc.edu.co/bitstreams/34c83e28-5b6b-47e7-895e-1ebb2495d784/download17b2b376e18180531598382899b31d36MD5420.500.12494/15428oai:repository.ucc.edu.co:20.500.12494/154282024-08-10 20:59:18.621restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=