Synthetic dataset of speckle images for fiber optic temperature sensor

Los datos publicados corresponden a imágenes de specklegrams simulados, que resultan del cálculo de la interferencia modal que se produce en una fibra óptica multimodo. Estos tienen un patrón característico debido a la interferencia constructiva o destructiva entre los modos de luz dependiendo de su...

Full description

Autores:
velez hoyos, francisco javier
UCC, Univercidad Cooperativa de Colombia
aristizabal tique, victor hugo
ITM, Instituto Tecnológico Metropolitano
Politecnico JIC, Politécnico Jaime IsazaCadavid
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/49306
Acceso en línea:
https://doi.org/10.1016/j.dib.2023.109134
https://hdl.handle.net/20.500.12494/49306
Palabra clave:
Sensor óptico Interferencia modal Specklegram Fibra moteada
Optical sensor Modal interference Specklegram Fiber speckle
Rights
openAccess
License
Atribución – No comercial
id COOPER2_6379169e9fc2d73ec99e5f434a0146ff
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/49306
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.none.fl_str_mv Synthetic dataset of speckle images for fiber optic temperature sensor
title Synthetic dataset of speckle images for fiber optic temperature sensor
spellingShingle Synthetic dataset of speckle images for fiber optic temperature sensor
Sensor óptico Interferencia modal Specklegram Fibra moteada
Optical sensor Modal interference Specklegram Fiber speckle
title_short Synthetic dataset of speckle images for fiber optic temperature sensor
title_full Synthetic dataset of speckle images for fiber optic temperature sensor
title_fullStr Synthetic dataset of speckle images for fiber optic temperature sensor
title_full_unstemmed Synthetic dataset of speckle images for fiber optic temperature sensor
title_sort Synthetic dataset of speckle images for fiber optic temperature sensor
dc.creator.fl_str_mv velez hoyos, francisco javier
UCC, Univercidad Cooperativa de Colombia
aristizabal tique, victor hugo
ITM, Instituto Tecnológico Metropolitano
Politecnico JIC, Politécnico Jaime IsazaCadavid
dc.contributor.author.none.fl_str_mv velez hoyos, francisco javier
UCC, Univercidad Cooperativa de Colombia
aristizabal tique, victor hugo
ITM, Instituto Tecnológico Metropolitano
Politecnico JIC, Politécnico Jaime IsazaCadavid
dc.subject.none.fl_str_mv Sensor óptico Interferencia modal Specklegram Fibra moteada
topic Sensor óptico Interferencia modal Specklegram Fibra moteada
Optical sensor Modal interference Specklegram Fiber speckle
dc.subject.other.none.fl_str_mv Optical sensor Modal interference Specklegram Fiber speckle
description Los datos publicados corresponden a imágenes de specklegrams simulados, que resultan del cálculo de la interferencia modal que se produce en una fibra óptica multimodo. Estos tienen un patrón característico debido a la interferencia constructiva o destructiva entre los modos de luz dependiendo de sus diferencias de fase. El specklegram contiene información valiosa ya que la propagación de los modos varía según la influencia de algunas perturbaciones externas y, por lo tanto, el patrón de speckle cambia. Este conjunto de datos contiene moteados que varían según la temperatura. Estos datos se han obtenido mediante simulación mediante el método de elementos finitos (FEM) a través de la plataforma multifísica COMSOL, en la simulación se resuelve la ecuación de onda vectorial y se recalcula el índice de refracción de la fibra debido al cambio de temperatura. Simulamos una longitud de onda de 1490 nm
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-05-10T16:48:30Z
dc.date.available.none.fl_str_mv 2023-05-10T16:48:30Z
dc.date.issued.none.fl_str_mv 2023-04-07
dc.type.none.fl_str_mv Artículos Científicos
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2352-3409
dc.identifier.uri.none.fl_str_mv https://doi.org/10.1016/j.dib.2023.109134
https://hdl.handle.net/20.500.12494/49306
dc.identifier.bibliographicCitation.none.fl_str_mv Juan Arango, Victor Aristizabal, Francisco Vélez, Juan Carrasquilla, Jorge Gomez, Jairo Quijano, Jorge Herrera-Ramirez, Synthetic dataset of speckle images for fiber optic temperature sensor,Data in Brief,Volume 48,2023,109134,ISSN 2352-3409, https://doi.org/10.1016/j.dib.2023.109134. (https://www.sciencedirect.com/science/article/pii/S2352340923002536) Abstract: The published data correspond to images of simulated specklegrams, which result from the calculation of the modal interference that occurs in a multimode optical fiber. These have a characteristic pattern due to the constructive or destructive interference between the light modes depending on their phase differences. The specklegram contains valuable information since the propagation of the modes varies according to the influence of some external disturbances, and therefore, the speckle pattern changes. This dataset contains specklegrams that vary according to the temperature. These data have been obtained by simulation using the finite element method (FEM) through the COMSOL multiphysics platform. In the simulation, the vector wave equation is solved, and the refractive index of the fiber is recalculated due to the temperature change. We simulated a 1490 nm wavelength laser, an optical fiber with a core diameter of 50 µm and cladding diameter of 125 µm. The dataset contains specklegrams covering the range of temperatures from 0°C to 120°C in 0.2°C steps. Keywords: Optical sensor; Modal interference; Specklegram; Fiber speckle
identifier_str_mv 2352-3409
Juan Arango, Victor Aristizabal, Francisco Vélez, Juan Carrasquilla, Jorge Gomez, Jairo Quijano, Jorge Herrera-Ramirez, Synthetic dataset of speckle images for fiber optic temperature sensor,Data in Brief,Volume 48,2023,109134,ISSN 2352-3409, https://doi.org/10.1016/j.dib.2023.109134. (https://www.sciencedirect.com/science/article/pii/S2352340923002536) Abstract: The published data correspond to images of simulated specklegrams, which result from the calculation of the modal interference that occurs in a multimode optical fiber. These have a characteristic pattern due to the constructive or destructive interference between the light modes depending on their phase differences. The specklegram contains valuable information since the propagation of the modes varies according to the influence of some external disturbances, and therefore, the speckle pattern changes. This dataset contains specklegrams that vary according to the temperature. These data have been obtained by simulation using the finite element method (FEM) through the COMSOL multiphysics platform. In the simulation, the vector wave equation is solved, and the refractive index of the fiber is recalculated due to the temperature change. We simulated a 1490 nm wavelength laser, an optical fiber with a core diameter of 50 µm and cladding diameter of 125 µm. The dataset contains specklegrams covering the range of temperatures from 0°C to 120°C in 0.2°C steps. Keywords: Optical sensor; Modal interference; Specklegram; Fiber speckle
url https://doi.org/10.1016/j.dib.2023.109134
https://hdl.handle.net/20.500.12494/49306
dc.relation.isversionof.none.fl_str_mv https://www.sciencedirect.com/science/article/pii/S2352340923002536?via%3Dihub
dc.relation.ispartofjournal.none.fl_str_mv Data in Brief
dc.relation.references.none.fl_str_mv [1] J.D. Arango, et al., Synthetic dataset of fiber specklegram sensor with changes of temperature, OSF Registries (2022), doi: 10.17605/OSF.IO/ZFMP5 .
[2] A. Hoyos, N. D. Gómez, and J. A. Gómez, Fiber specklegram sensors (FSS) for measuring high frequency mechanical perturbations 2013, 8785BH, doi: 10.1117/12.2026075 .
[3] Y. Liu, G. Li, Q. Qin, Z. Tan, M. Wang, F. Yan, Bending recognition based on the analysis of fiber specklegrams using deep learning, Opt. Laser Technol. 131 (2020), doi: 10.1016/j.optlastec.2020.106424 .
[4] J.D. Arango, et al., Numerical study using finite element method for the thermal response of fiber specklegram sensors with changes in the length of the sensing zone, Comput. Opt. 45 (4) (2021) 534–540, doi: 10.18287/ 2412- 6179- CO- 852 .
[5] V.H. Arístizabal, F.J. Vélez, E. Rueda, N.D. Gómez, J.A. Gómez, Numerical modeling of fiber specklegram sensors by using finite element method (FEM), Opt. Express 24 (24) (2016) 27225, doi: 10.1364/oe.24.027225 .
[6] P. Dragic, M. Cavillon, J. Ballato, On the thermo-optic coefficient of P_2O_5 in SiO_2, Opt. Mater. Express 7 (10) (2017) 3654, doi: 10.1364/OME.7.003654 .
[7] V.H. Aristizabal, F.J. Vélez, P. Torres, Analysis of photonic crystal fibers: Scalar solution and polarization correction, Opt. Express 14 (24) (2006), doi: 10.1364/OE.14.011848 .
[8] P. Torres, V.H. Aristizábal, M.V. Andrés, Modeling of photonic crystal fibers from the scalar wave equation with a purely transverse linearly polarized vector potential, J. Opt. Soc. Am. B 28 (4) (2011) 787–791, doi: 10.1364/JOSAB.28. 0 0 0787 .
dc.rights.license.none.fl_str_mv Atribución – No comercial
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 1-8
dc.coverage.temporal.none.fl_str_mv 48
dc.publisher.none.fl_str_mv Universidad Cooperativa de Colombia
elsevier
dc.publisher.program.none.fl_str_mv Ingeniería Civil
dc.publisher.place.none.fl_str_mv Medellín
publisher.none.fl_str_mv Universidad Cooperativa de Colombia
elsevier
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/caab17bd-6406-4955-bc7e-e1a57c012270/download
https://repository.ucc.edu.co/bitstreams/750db6ac-7881-479b-876c-09a7534e9ac8/download
https://repository.ucc.edu.co/bitstreams/352a5b0c-3727-4b23-8090-d3202b854710/download
https://repository.ucc.edu.co/bitstreams/f865a5e2-cf3c-4308-9e09-5ebb12c67422/download
bitstream.checksum.fl_str_mv d05ea2c5474d5bebf61cff3cf56e4fb7
3bce4f7ab09dfc588f126e1e36e98a45
f6f8e4ce4771dc8f88ce7424abe2a17a
a6b0c90442c1c0d1759f7a06268ea28b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1811565143132209152
spelling velez hoyos, francisco javierUCC, Univercidad Cooperativa de Colombiaaristizabal tique, victor hugoITM, Instituto Tecnológico MetropolitanoPolitecnico JIC, Politécnico Jaime IsazaCadavid482023-05-10T16:48:30Z2023-05-10T16:48:30Z2023-04-072352-3409https://doi.org/10.1016/j.dib.2023.109134https://hdl.handle.net/20.500.12494/49306Juan Arango, Victor Aristizabal, Francisco Vélez, Juan Carrasquilla, Jorge Gomez, Jairo Quijano, Jorge Herrera-Ramirez, Synthetic dataset of speckle images for fiber optic temperature sensor,Data in Brief,Volume 48,2023,109134,ISSN 2352-3409, https://doi.org/10.1016/j.dib.2023.109134. (https://www.sciencedirect.com/science/article/pii/S2352340923002536) Abstract: The published data correspond to images of simulated specklegrams, which result from the calculation of the modal interference that occurs in a multimode optical fiber. These have a characteristic pattern due to the constructive or destructive interference between the light modes depending on their phase differences. The specklegram contains valuable information since the propagation of the modes varies according to the influence of some external disturbances, and therefore, the speckle pattern changes. This dataset contains specklegrams that vary according to the temperature. These data have been obtained by simulation using the finite element method (FEM) through the COMSOL multiphysics platform. In the simulation, the vector wave equation is solved, and the refractive index of the fiber is recalculated due to the temperature change. We simulated a 1490 nm wavelength laser, an optical fiber with a core diameter of 50 µm and cladding diameter of 125 µm. The dataset contains specklegrams covering the range of temperatures from 0°C to 120°C in 0.2°C steps. Keywords: Optical sensor; Modal interference; Specklegram; Fiber speckleLos datos publicados corresponden a imágenes de specklegrams simulados, que resultan del cálculo de la interferencia modal que se produce en una fibra óptica multimodo. Estos tienen un patrón característico debido a la interferencia constructiva o destructiva entre los modos de luz dependiendo de sus diferencias de fase. El specklegram contiene información valiosa ya que la propagación de los modos varía según la influencia de algunas perturbaciones externas y, por lo tanto, el patrón de speckle cambia. Este conjunto de datos contiene moteados que varían según la temperatura. Estos datos se han obtenido mediante simulación mediante el método de elementos finitos (FEM) a través de la plataforma multifísica COMSOL, en la simulación se resuelve la ecuación de onda vectorial y se recalcula el índice de refracción de la fibra debido al cambio de temperatura. Simulamos una longitud de onda de 1490 nmThe published data correspond to images of simulated speck- legrams, which result from the calculation of the modal in- terference that occurs in a multimode optical fiber. These have a characteristic pattern due to the constructive or de- structive interference between the light modes depending on their phase differences. The specklegram contains valuable information since the propagation of the modes varies ac- cording to the influence of some external disturbances, and therefore, the speckle pattern changes. This dataset contains specklegrams that vary according to the temperature. These data have been obtained by simulation using the finite ele- ment method (FEM) through the COMSOL multiphysics plat- form. In the simulation, the vector wave equation is solved, and the refractive index of the fiber is recalculated due to the temperature change. We simulated a 1490 nm wavelengthAbstract Keywords Value of the Data 1. Objective 2. Data Description 3. Experimental Design, Materials and Methods 4. Use of Dataset in a Deep Learning Interrogation Scheme Ethics Statements CRediT authorship contribution statement Declaration of Competing Interest Acknowledgments Data Availability Referenceshttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000448222https://orcid.org/0000-0002-4267-042Xhttps://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000005961fjvelezh@gmail.comhttps://scholar.google.com/citations?user=CLkAM5AAAAAJ&hl=es1-8Universidad Cooperativa de ColombiaelsevierIngeniería CivilMedellínhttps://www.sciencedirect.com/science/article/pii/S2352340923002536?via%3DihubData in Brief[1] J.D. Arango, et al., Synthetic dataset of fiber specklegram sensor with changes of temperature, OSF Registries (2022), doi: 10.17605/OSF.IO/ZFMP5 .[2] A. Hoyos, N. D. Gómez, and J. A. Gómez, Fiber specklegram sensors (FSS) for measuring high frequency mechanical perturbations 2013, 8785BH, doi: 10.1117/12.2026075 .[3] Y. Liu, G. Li, Q. Qin, Z. Tan, M. Wang, F. Yan, Bending recognition based on the analysis of fiber specklegrams using deep learning, Opt. Laser Technol. 131 (2020), doi: 10.1016/j.optlastec.2020.106424 .[4] J.D. Arango, et al., Numerical study using finite element method for the thermal response of fiber specklegram sensors with changes in the length of the sensing zone, Comput. Opt. 45 (4) (2021) 534–540, doi: 10.18287/ 2412- 6179- CO- 852 .[5] V.H. Arístizabal, F.J. Vélez, E. Rueda, N.D. Gómez, J.A. Gómez, Numerical modeling of fiber specklegram sensors by using finite element method (FEM), Opt. Express 24 (24) (2016) 27225, doi: 10.1364/oe.24.027225 .[6] P. Dragic, M. Cavillon, J. Ballato, On the thermo-optic coefficient of P_2O_5 in SiO_2, Opt. Mater. Express 7 (10) (2017) 3654, doi: 10.1364/OME.7.003654 .[7] V.H. Aristizabal, F.J. Vélez, P. Torres, Analysis of photonic crystal fibers: Scalar solution and polarization correction, Opt. Express 14 (24) (2006), doi: 10.1364/OE.14.011848 .[8] P. Torres, V.H. Aristizábal, M.V. Andrés, Modeling of photonic crystal fibers from the scalar wave equation with a purely transverse linearly polarized vector potential, J. Opt. Soc. Am. B 28 (4) (2011) 787–791, doi: 10.1364/JOSAB.28. 0 0 0787 .Sensor óptico Interferencia modal Specklegram Fibra moteadaOptical sensor Modal interference Specklegram Fiber speckleSynthetic dataset of speckle images for fiber optic temperature sensorArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionAtribución – No comercialinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINAL2023-Synthetic dataset of Speckle images_Data in Brief.pdf2023-Synthetic dataset of Speckle images_Data in Brief.pdfapplication/pdf851826https://repository.ucc.edu.co/bitstreams/caab17bd-6406-4955-bc7e-e1a57c012270/downloadd05ea2c5474d5bebf61cff3cf56e4fb7MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/750db6ac-7881-479b-876c-09a7534e9ac8/download3bce4f7ab09dfc588f126e1e36e98a45MD52TEXT2023-Synthetic dataset of Speckle images_Data in Brief.pdf.txt2023-Synthetic dataset of Speckle images_Data in Brief.pdf.txtExtracted texttext/plain20959https://repository.ucc.edu.co/bitstreams/352a5b0c-3727-4b23-8090-d3202b854710/downloadf6f8e4ce4771dc8f88ce7424abe2a17aMD53THUMBNAIL2023-Synthetic dataset of Speckle images_Data in Brief.pdf.jpg2023-Synthetic dataset of Speckle images_Data in Brief.pdf.jpgGenerated Thumbnailimage/jpeg11182https://repository.ucc.edu.co/bitstreams/f865a5e2-cf3c-4308-9e09-5ebb12c67422/downloada6b0c90442c1c0d1759f7a06268ea28bMD5420.500.12494/49306oai:repository.ucc.edu.co:20.500.12494/493062024-08-20 16:23:45.62open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=