Diversity and interactions among triatomine bugs, their blood feeding sources, gut microbiota and Trypanosoma cruzi in the Sierra Nevada de Santa Marta in Colombia

Chagas disease remains a major neglected disease in Colombia. We aimed to characterize Trypanosoma cruzi transmission networks in the Sierra Nevada de Santa Marta (SNSM) region, to shed light on disease ecology and help optimize control strategies. Triatomines were collected in rural communities and...

Full description

Autores:
Murillo Solano, Claribel
López Domínguez, Jaime
Gongora, Rafael
Rojas Gulloso, Andrés Camilo
Usme Ciro, José Aldemar
Perdomo Balaguera, Erick
Herrera, Claudia
Parra Henao, Gabriel
Dumonteil, Eric
Tipo de recurso:
Article of investigation
Fecha de publicación:
2021
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/45596
Acceso en línea:
https://hdl.handle.net/20.500.12494/45596
Palabra clave:
Trypanosoma
Microbioma
Triatoma
Colombia
Trypanosoma
Microbioma
Triatoma
Colombia
Rights
openAccess
License
Atribución
id COOPER2_63372e7222cf516ce6ff0c63d2b2ab9a
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/45596
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Diversity and interactions among triatomine bugs, their blood feeding sources, gut microbiota and Trypanosoma cruzi in the Sierra Nevada de Santa Marta in Colombia
title Diversity and interactions among triatomine bugs, their blood feeding sources, gut microbiota and Trypanosoma cruzi in the Sierra Nevada de Santa Marta in Colombia
spellingShingle Diversity and interactions among triatomine bugs, their blood feeding sources, gut microbiota and Trypanosoma cruzi in the Sierra Nevada de Santa Marta in Colombia
Trypanosoma
Microbioma
Triatoma
Colombia
Trypanosoma
Microbioma
Triatoma
Colombia
title_short Diversity and interactions among triatomine bugs, their blood feeding sources, gut microbiota and Trypanosoma cruzi in the Sierra Nevada de Santa Marta in Colombia
title_full Diversity and interactions among triatomine bugs, their blood feeding sources, gut microbiota and Trypanosoma cruzi in the Sierra Nevada de Santa Marta in Colombia
title_fullStr Diversity and interactions among triatomine bugs, their blood feeding sources, gut microbiota and Trypanosoma cruzi in the Sierra Nevada de Santa Marta in Colombia
title_full_unstemmed Diversity and interactions among triatomine bugs, their blood feeding sources, gut microbiota and Trypanosoma cruzi in the Sierra Nevada de Santa Marta in Colombia
title_sort Diversity and interactions among triatomine bugs, their blood feeding sources, gut microbiota and Trypanosoma cruzi in the Sierra Nevada de Santa Marta in Colombia
dc.creator.fl_str_mv Murillo Solano, Claribel
López Domínguez, Jaime
Gongora, Rafael
Rojas Gulloso, Andrés Camilo
Usme Ciro, José Aldemar
Perdomo Balaguera, Erick
Herrera, Claudia
Parra Henao, Gabriel
Dumonteil, Eric
dc.contributor.author.none.fl_str_mv Murillo Solano, Claribel
López Domínguez, Jaime
Gongora, Rafael
Rojas Gulloso, Andrés Camilo
Usme Ciro, José Aldemar
Perdomo Balaguera, Erick
Herrera, Claudia
Parra Henao, Gabriel
Dumonteil, Eric
dc.subject.spa.fl_str_mv Trypanosoma
Microbioma
Triatoma
Colombia
topic Trypanosoma
Microbioma
Triatoma
Colombia
Trypanosoma
Microbioma
Triatoma
Colombia
dc.subject.other.spa.fl_str_mv Trypanosoma
Microbioma
Triatoma
Colombia
description Chagas disease remains a major neglected disease in Colombia. We aimed to characterize Trypanosoma cruzi transmission networks in the Sierra Nevada de Santa Marta (SNSM) region, to shed light on disease ecology and help optimize control strategies. Triatomines were collected in rural communities and analyzed for blood feeding sources, parasite diversity and gut microbiota composition through a metagenomic and deep sequencing approach. Triatoma dimidiata predominated, followed by Rhodnius prolixus, Triatoma maculata, Rhodnius pallescens, Panstrongylus geniculatus and Eratyrus cuspidatus. Twenty-two species were identified as blood sources, resulting in an integrated transmission network with extensive connectivity among sylvatic and domestic host species. Only TcI parasites were detected, predominantly from TcIb but TcIa was also reported. The close relatedness of T. cruzi strains further supported the lack of separate transmission cycles according to habitats or triatomine species. Triatomine microbiota varied according to species, developmental stage and T. cruzi infection. Bacterial families correlated with the presence/absence of T. cruzi were identified. In conclusion, we identified a domestic transmission cycle encompassing multiple vector species and tightly connected with sylvatic hosts in the SNSM region, rather than an isolated domestic transmission cycle. Therefore, integrated interventions targeting all vector species and their contact with humans should be considered.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-06-10
dc.date.accessioned.none.fl_str_mv 2022-07-07T14:01:56Z
dc.date.available.none.fl_str_mv 2022-07-07T14:01:56Z
dc.type.none.fl_str_mv Artículos Científicos
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 2045-2322
dc.identifier.uri.spa.fl_str_mv 10.1038/s41598-021-91783-2
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/45596
dc.identifier.bibliographicCitation.spa.fl_str_mv Murillo-Solano C, López-Domínguez J, Gongora R, Rojas-Gulloso A, Usme-Ciro J, et al. Diversity and interactions among triatomine bugs, their blood feeding sources, gut microbiota and Trypanosoma cruzi in the Sierra Nevada de Santa Marta in Colombia. Sci Rep. 2021 Jun 10;11(1):12306. doi: 10.1038/s41598-021-91783-2.https://repository.ucc.edu.co/handle/20.500.12494/45596
identifier_str_mv 2045-2322
10.1038/s41598-021-91783-2
Murillo-Solano C, López-Domínguez J, Gongora R, Rojas-Gulloso A, Usme-Ciro J, et al. Diversity and interactions among triatomine bugs, their blood feeding sources, gut microbiota and Trypanosoma cruzi in the Sierra Nevada de Santa Marta in Colombia. Sci Rep. 2021 Jun 10;11(1):12306. doi: 10.1038/s41598-021-91783-2.https://repository.ucc.edu.co/handle/20.500.12494/45596
url https://hdl.handle.net/20.500.12494/45596
dc.relation.isversionof.spa.fl_str_mv https://www.nature.com/articles/s41598-021-91783-2
dc.relation.ispartofjournal.spa.fl_str_mv Scientific Reports
dc.relation.references.spa.fl_str_mv Hotez, P. J. et al. An unfolding tragedy of chagas disease in North America. PLoS Negl. Trop. Dis. 7(10), e2300. https://doi.org/10. 1371/journal.pntd.0002300 (2013) (PMID: 24205411).
Hotez, P. J., Bottazzi, M. E., Franco-Paredes, C., Ault, S. K. & Periago, M. R. The neglected tropical diseases of Latin America and the Caribbean: A review of disease burden and distribution and a roadmap for control and elimination. PLoS Negl. Trop. Dis. 2(9), e300. https://doi.org/10.1371/journal.pntd.0000300 (2008) (PMID: 18820747).
Lee, B. Y., Bacon, K. M., Bottazzi, M. E. & Hotez, P. J. Global economic burden of Chagas disease: A computational simulation model. Lancet Infect. Dis. 13(4), 342–348. https://doi.org/10.1016/S1473-3099(13)70002-1 (2013) (PMID: 23395248). 4. WHO. Chagas disease in Latin America: An epidemiological update based on 2010 estimates. Wkly. Epidemiol. Rec. 90(6), 33–43 (2015) (PMID: 25671846).
Pena-Garcia, V. H., Gomez-Palacio, A. M., Triana-Chavez, O. & Mejia-Jaramillo, A. M. Eco-epidemiology of Chagas disease in an endemic area of Colombia: Risk factor estimation, Trypanosoma cruzi characterization and identification of blood-meal sources in bugs. Am. J. Trop. Med. Hyg. 91(6), 1116–1124. https://doi.org/10.4269/ajtmh.14-0112 (2014) (PMID: 25331808).
Mejia-Jaramillo, A. M. et al. Genotyping of Trypanosoma cruzi in a hyper-endemic area of Colombia reveals an overlap among domestic and sylvatic cycles of Chagas disease. Parasit. Vectors. 7, 108. https://doi.org/10.1186/1756-3305-7-108 (2014) (PMID: 24656115).
Dib, J. C., Agudelo, L. A. & Velez, I. D. Prevalencia de patologías tropicales y factores de riesgo en la comunidad indígena de Bunkwimake, Sierra Nevada de Santa Marta. DUAZARY. 3(1), 38–44 (2006).
Parra-Henao, G. et al. In search of congenital Chagas disease in the Sierra Nevada de Santa Marta, Colombia. Am. J. Trop. Med. Hyg. 101(3), 482–483. https://doi.org/10.4269/ajtmh.19-0110 (2019) (PMID: 31264558).
Guhl, F., Aguilera, G., Pinto, N. & Vergara, D. Actualización de la distribución geográfica y ecoepidemiología de la fauna de triatominos (Reduviidae: Triatominae) en Colombia. Biomedica. 27(Suppl 1), 143–162 (2007) (PMID: 18154255).
Parra-Henao, G., Suarez-Escudero, L. C. & Gonzalez-Caro, S. Potential distribution of Chagas disease vectors (Hemiptera, Reduviidae, Triatominae) in Colombia, based on Ecological Niche Modeling. J. Trop. Med. 2016, 1439090. https://doi.org/10.1155/ 2016/1439090 (2016) (PMID: 28115946).
Rodriguez-Mongui, E., Cantillo-Barraza, O., Prieto-Alvarado, F. E. & Cucunuba, Z. M. Heterogeneity of Trypanosoma cruzi infection rates in vectors and animal reservoirs in Colombia: A systematic review and meta-analysis. Parasit. Vectors. 12(1), 308. https://doi.org/10.1186/s13071-019-3541-5 (2019) (PMID: 31221188).
Dib, J., Barnabe, C., Tibayrenc, M. & Triana, O. Incrimination of Eratyrus cuspidatus (Stal) in the transmission of Chagas’ disease by molecular epidemiology analysis of Trypanosoma cruzi isolates from a geographically restricted area in the north of Colombia. Acta Trop. 111(3), 237–242. https://doi.org/10.1016/j.actatropica.2009.05.004 (2009) (PMID: 19442641).
Parra Henao, G., Angulo, V., Jaramillo, N. & Restrepo, M. Triatominos (Hemiptera: Reduviidae) de ka Sierra Nevada de Santa Marta, Colombia. Aspectos epidemiológicos, entomológicos y de distribución. Rev. CES Med. 23(1), 17–26 (2009).
Hernandez, C. et al. Untangling the transmission dynamics of primary and secondary vectors of Trypanosoma cruzi in Colombia: Parasite infection, feeding sources and discrete typing units. Parasit. Vectors. 9(1), 620. https://doi.org/10.1186/s13071-016-1907-5 (2016) (PMID: 27903288).
Cantillo-Barraza, O., Chaverra, D., Marcet, P., Arboleda-Sanchez, S. & Triana-Chavez, O. Trypanosoma cruzi transmission in a Colombian Caribbean region suggests that secondary vectors play an important epidemiological role. Parasit. Vectors. 7, 381. https://doi.org/10.1186/1756-3305-7-381 (2014) (PMID: 25141852).
Weiss, B. & Aksoy, S. Microbiome infuences on insect host vector competence. Trends Parasitol. 27(11), 514–522. https://doi.org/ 10.1016/j.pt.2011.05.001 (2011) (PMID: 21697014).
Azambuja, P., Garcia, E. S. & Ratclife, N. A. Gut microbiota and parasite transmission by insect vectors. Trends Parasitol. 21(12), 568–572 (2005) (PMID: 16226491).
Dumonteil, E. et al. Interactions among Triatoma sanguisuga blood feeding sources, gut microbiota and Trypanosoma cruzi diversity in southern Louisiana. Mol Ecol. 29(19), 3747–3761 (2020).
Zingales, B. et al. A new consensus for Trypanosoma cruzi intraspecifc nomenclature: Second revision meeting recommends TcI to TcVI. Mem. Inst. Oswaldo Cruz. 104(7), 1051–1054 (2009) (PMID: 20027478).
Zingales, B. et al. Te revised Trypanosoma cruzi subspecifc nomenclature: Rationale, epidemiological relevance and research applications. Infect. Genet. Evol. 12(2), 240–253. https://doi.org/10.1016/j.meegid.2011.12.009 (2012) (PMID: 22226704).
Tibayrenc, M. & Ayala, F. J. Te population genetics of Trypanosoma cruzi revisited in the light of the predominant clonal evolution model. Acta Trop. 151, 156–165. https://doi.org/10.1016/j.actatropica.2015.05.006 (2015) (PMID: 26188332).
Majeau, A., Murphy, L., Herrera, C. & Dumonteil, E. Assessing Trypanosoma cruzi parasite diversity through comparative genomics: Implications for disease epidemiology and diagnostics. Pathogens. 10, 212. https://doi.org/10.3390/pathogens10020212 (2021)
. Flores-Ferrer, A., Marcou, O., Waleckx, E., Dumonteil, E. & Gourbière, S. Evolutionary ecology of Chagas disease; what do we know and what do we need?. Evol. Appl. 11(4), 470–487. https://doi.org/10.1111/eva.12582 (2017).
Tibayrenc, M., Kjellberg, F. & Ayala, F. J. A clonal theory of parasitic protozoa: Te population structures of Entamoeba, Giardia, Leishmania, Naegleria, Plasmodium, Trichomonas, and Trypanosoma and their medical and taxonomical consequences. Proc. Natl. Acad. Sci. USA 87, 2414–2418 (1990).
Berry, A. S. F. et al. Sexual reproduction in a natural Trypanosoma cruzi population. PLoS Negl. Trop. Dis. 13(5), e0007392. https:// doi.org/10.1371/journal.pntd.0007392 (2019) (PMID: 31107905).
Schwabl, P. et al. Meiotic sex in Chagas disease parasite Trypanosoma cruzi. Nat. Commun. 10(1), 3972. https://doi.org/10.1038/ s41467-019-11771-z (2019) (PMID: 31481692).
Falla, A. et al. Haplotype identifcation within Trypanosoma cruzi I in Colombian isolates from several reservoirs, vectors and humans. Acta Trop. 110(1), 15–21 (2009) (PMID: 19135020).
Cura, C. I. et al. Trypanosoma cruzi I genotypes in diferent geographical regions and transmission cycles based on a microsatellite motif of the intergenic spacer of spliced-leader genes. Int. J. Parasitol. 40(14), 1599–1607. https://doi.org/10.1016/j.ijpara.2010.06. 006 (2010) (PMID: 20670628).
Rodriguez, I. B. et al. Transmission dynamics of Trypanosoma cruzi determined by low-stringency single primer polymerase chain reaction and southern blot analyses in four indigenous communities of the Sierra Nevada de Santa Marta, Colombia. Am. J. Trop. Med. Hyg. 81(3), 396–403 (2009) (PMID: 19706903).
Waleckx, E., Gourbière, S. & Dumonteil, E. Intrusive triatomines and the challenge of adapting vector control practices. Mem. Inst. Oswaldo Cruz. 110(3), 324–338 (2015)
Dumonteil, E. et al. Detailed ecological associations of triatomines revealed by metabarcoding and next-generation sequencing: Implications for triatomine behavior and Trypanosoma cruzi transmission cycles. Sci. Rep. 8(1), 4140. https://doi.org/10.1038/ s41598-018-22455-x (2018) (PMID: 29515202).
Dumonteil, E. et al. Interactions among Triatoma sanguisuga blood feeding sources, gut microbiota and Trypanosoma cruzi diversity in southern Louisiana. Mol. Ecol. https://doi.org/10.1111/mec.15582 (2020) (PMID: 32749727).
O’Connor, O., Bosseno, M. F., Barnabe, C., Douzery, E. J. & Breniere, S. F. Genetic clustering of Trypanosoma cruzi I lineage evidenced by intergenic miniexon gene sequencing. Infect. Genet. Evol. 7(5), 587–593. https://doi.org/10.1016/j.meegid.2007.05.003 (2007) (PMID: 17553755).
Villanueva-Lizama, L., Teh-Poot, C., Majeau, A., Herrera, C. & Dumonteil, E. Molecular genotyping of Trypanosoma cruzi by nextgeneration sequencing of the mini-exon gene reveals infections with multiple parasite DTUs in Chagasic patients from Yucatan, Mexico. J. Inf. Dis. 219(12), 1980–1988 (2019)
Parra-Henao, G., Angulo, V. M., Osorio, L. & Jaramillo, O. N. Geographic distribution and ecology of Triatoma dimidiata (Hemiptera: Reduviidae) in Colombia. J. Med. Entomol. 53(1), 122–129. https://doi.org/10.1093/jme/tjv163 (2016) (PMID: 26487247).
Angulo, V. M., Esteban, L. & Luna, K. P. Attalea butyracea proximas a las viviendas como posible fuente de infestacion domiciliaria por Rhodnius prolixus (Hemiptera: Reduviidae) en los Llanos Orientales de Colombia. Biomedica. 32(2), 277–285. https://doi.org/ 10.1590/S0120-41572012000300016 (2012) (PMID: 23242302).
Feliciangeli, M. D., Sanchez-Martin, M., Marrero, R., Davies, C. & Dujardin, J. P. Morphometric evidence for a possible role of Rhodnius prolixus from palm trees in house re-infestation in the State of Barinas (Venezuela). Acta Trop. 101(2), 169–177. https:// doi.org/10.1016/j.actatropica.2006.12.010 (2007) (PMID: 17306204).
Fitzpatrick, S., Feliciangeli, M. D., Sanchez-Martin, M. J., Monteiro, F. A. & Miles, M. A. Molecular genetics reveal that silvatic Rhodnius prolixus do colonise rural houses. PLoS Negl. Trop. Dis. 2(4), e210. https://doi.org/10.1371/journal.pntd.0000210 (2008) (PMID: 18382605).
Lopez, G. & Moreno, J. Genetic variability and diferentiation between populations of Rhodnius prolixus and R. pallescens, vectors of Chagas’ disease in Colombia. Mem. Inst. Oswaldo Cruz. 90, 353–357 (1995).
Dumonteil, E. et al. Detailed ecological associations of triatomines revealed by metabarcoding based on next-generation sequencing: linking triatomine behavioral ecology and Trypanosoma cruzi transmission cycles. Sci. Rep. 8(1), 4140. https://doi.org/10. 1038/s41598-018-22455-x (2018).
Hernández-Andrade, A., Moo-Millan, J., Cigarroa-Toledo, N., Ramos-Ligonio, A., Herrera, C., Bucheton, B., et al. Metabarcoding: A powerful yet still underestimated approach for the comprehensive study of vector-borne pathogen transmission cycles and their dynamics. in Vector-Borne Diseases: Recent Developments in Epidemiology and Control (ed. Claborn, D.) 1–6. (Intechopen, 2020). https://doi.org/10.5772/intechopen.83110
Flores-Ferrer, A., Waleckx, E., Rascalou, G., Dumonteil, E. & Gourbière, S. Trypanosoma cruzi transmission dynamics in a synanthropic and domesticated host community. PLoS Negl. Trop. Dis. 13(12), e0007902. https://doi.org/10.1371/journal.pntd.00079 02 (2019).
Llewellyn, M. S. et al. Genome-scale multilocus microsatellite typing of Trypanosoma cruzi discrete typing unit I reveals phylogeographic structure and specifc genotypes linked to human infection. PLoS Pathog. 5(5), e1000410. https://doi.org/10.1371/journ al.ppat.1000410 (2009) (PMID: 19412340).
Herrera, C. et al. Genetic variability and phylogenetic relationships within Trypanosoma cruzi I isolated in Colombia based on Miniexon Gene Sequences. J. Parasitol. Res. https://doi.org/10.1155/2009/897364 (2009) (PMID: 20798881).
Zumaya-Estrada, F. A. et al. North American import? Charting the origins of an enigmatic Trypanosoma cruzi domestic genotype. Parasit. Vectors. 5, 226. https://doi.org/10.1186/1756-3305-5-226 (2012) (PMID: 23050833).
Montoya-Porras, L. M., Omar, T. C., Alzate, J. F., Moreno-Herrera, C. X. & Cadavid-Restrepo, G. E. 16S rRNA gene amplicon sequencing reveals dominance of Actinobacteria in Rhodnius pallescens compared to Triatoma maculata midgut microbiota in natural populations of vector insects from Colombia. Acta Trop. 178, 327–332. https://doi.org/10.1016/j.actatropica.2017.11.004 (2018) (PMID: 29154947)
Kieran, T. J. et al. Regional biogeography of microbiota composition in the Chagas disease vector Rhodnius pallescens. Parasit. Vectors. 12(1), 504. https://doi.org/10.1186/s13071-019-3761-8 (2019) (PMID: 31665056).
Rodriguez-Ruano, S. M. et al. Microbiomes of North American Triatominae: Te grounds for Chagas Disease epidemiology. Front. Microbiol. 9, 1167. https://doi.org/10.3389/fmicb.2018.01167 (2018) (PMID: 29951039).
Eichler, S. & Schaub, G. A. Development of symbionts in triatomine bugs and the efects of infections with trypanosomatids. Exp. Parasitol. 100(1), 17–27 (2002).
Waltmann, A. et al. Hindgut microbiota in laboratory-reared and wild Triatoma infestans. PLoS Negl. Trop. Dis. 13(5), e0007383. https://doi.org/10.1371/journal.pntd.0007383 (2019) (PMID: 31059501).
Herren, J. K. et al. A microsporidian impairs Plasmodium falciparum transmission in Anopheles arabiensis mosquitoes. Nat. Commun. 11(1), 2187. https://doi.org/10.1038/s41467-020-16121-y (2020) (PMID: 32366903).
Moreira, L. A. et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139(7), 1268–1278. https://doi.org/10.1016/j.cell.2009.11.042 (2009) (PMID: 20064373).
Angulo, V. M. & Esteban, L. Nueva trampa para la captura de triatominos en habitats silvestres y peridomesticos. Biomedica. 31(2), 264–268. https://doi.org/10.1590/S0120-41572011000200015 (2011) (PMID: 22159544).
Lent, H. & Wygodzinsky, P. Revision of Triatominae (Hemiptera: Reduviidae), and their signifcance as vectors of Chagas’ disease. Bull. Am. Mus. Nat. His. 163, 123–520 (1979).
Monteiro, F. A. et al. Molecular phylogeography of the Amazonian Chagas disease vectors Rhodnius prolixus and R. robustus. Mol. Ecol. 12(4), 997–1006. https://doi.org/10.1046/j.1365-294x.2003.01802.x (2003) (PMID: 12753218).
Baker, G. C., Smith, J. J. & Cowan, D. A. Review and reanalysis of domain-specifc 16s primers. J. Microbiol. Meth. 55, 541–555 (2003).
Heuer, H., Krsek, M., Baker, P., Smalla, K. & Wellington, E. M. Analysis of actinomycete communities by specifc amplifcation of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63(8), 3233–3241 (1997).
Souto, R. P., Fernandes, O., Macedo, A. M., Campbell, D. A. & Zingales, B. DNA markers defne two major phylogenetic lineages of Trypanosoma cruzi. Mol. Biochem. Parasitol. 83(2), 141–152 (1996) (PMID: 9027747).
Majeau, A., Herrera, C. & Dumonteil, E. An improved approach to Trypanosoma cruzi molecular genotyping by next-generation sequencing of the mini-exon gene. Methods Mol. Biol. 1955, 47–60 (2019).
Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16), 2194–2200. https://doi.org/10.1093/bioinformatics/btr381 (2011) (PMID: 21700674).
Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. arXiv preprint. (arXiv:1207.3907 [q-bio. GN]), 1–9. https://arxiv.org/abs/1207.3907v2 (2012).
Dhariwal, A. et al. MicrobiomeAnalyst: A web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 45(W1), W180–W188. https://doi.org/10.1093/nar/gkx295 (2017) (PMID: 28449106).
Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS ONE 5(3), e9490. https://doi.org/10.1371/journal.pone.0009490 (2010) (PMID: 20224823)
Bouckaert, R. et al. BEAST 2.5: An advanced sofware platform for Bayesian evolutionary analysis. PLoS Comput Biol. 15(4), e1006650. https://doi.org/10.1371/journal.pcbi.1006650 (2019) (PMID: 30958812).
Torres-Silva, C. F. et al. Assessment of genetic mutation frequency induced by oxidative stress in Trypanosoma cruzi. Genet Mol Biol. 41(2), 466–474. https://doi.org/10.1590/1678-4685-GMB-2017-0281 (2018) (PMID: 30088612).
Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics sofware package for education and data analysis. Palaeontol. Electron. 4(1), 9 (2001).
Cole, J. R. et al. Ribosomal Database Project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42(Database issue), D633–D642. https://doi.org/10.1093/nar/gkt1244 (2014) (PMID: 24288368).
dc.rights.license.none.fl_str_mv Atribución
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 14
dc.coverage.temporal.spa.fl_str_mv 11
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina, Santa Marta
Richard White
dc.publisher.program.spa.fl_str_mv Medicina
dc.publisher.place.spa.fl_str_mv Santa Marta
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/a1fa5ade-11a8-42ab-839b-c4000601fdb1/download
https://repository.ucc.edu.co/bitstreams/b4baa45f-bc58-40f2-b026-27ff1d68f084/download
https://repository.ucc.edu.co/bitstreams/927975d6-b4e9-4168-9001-d5e0ec009b56/download
https://repository.ucc.edu.co/bitstreams/dfc5f0cb-2187-433a-b90d-c52da5042799/download
https://repository.ucc.edu.co/bitstreams/f9888eca-76af-4ddf-ba64-da22a2f2992d/download
https://repository.ucc.edu.co/bitstreams/fd6b2a18-e58e-4314-b172-2d121926ae39/download
https://repository.ucc.edu.co/bitstreams/68a34f20-f735-4d03-b0aa-50e1181c2765/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
65789589751335bedf8ff86cba7aaff6
50fe07a005d7a68bd22f4231218a34b1
660e1a59cd2594a874c4e62bf73645c3
e83b28d51c60622e8309f96fe42abc51
03d8f8674bbee59e5c51dc80f8bc0789
6b9319d5a6b00dd77e97b99fd4c67014
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1811565132134744064
spelling Murillo Solano, ClaribelLópez Domínguez, JaimeGongora, RafaelRojas Gulloso, Andrés CamiloUsme Ciro, José AldemarPerdomo Balaguera, ErickHerrera, ClaudiaParra Henao, GabrielDumonteil, Eric112022-07-07T14:01:56Z2022-07-07T14:01:56Z2021-06-102045-232210.1038/s41598-021-91783-2https://hdl.handle.net/20.500.12494/45596Murillo-Solano C, López-Domínguez J, Gongora R, Rojas-Gulloso A, Usme-Ciro J, et al. Diversity and interactions among triatomine bugs, their blood feeding sources, gut microbiota and Trypanosoma cruzi in the Sierra Nevada de Santa Marta in Colombia. Sci Rep. 2021 Jun 10;11(1):12306. doi: 10.1038/s41598-021-91783-2.https://repository.ucc.edu.co/handle/20.500.12494/45596Chagas disease remains a major neglected disease in Colombia. We aimed to characterize Trypanosoma cruzi transmission networks in the Sierra Nevada de Santa Marta (SNSM) region, to shed light on disease ecology and help optimize control strategies. Triatomines were collected in rural communities and analyzed for blood feeding sources, parasite diversity and gut microbiota composition through a metagenomic and deep sequencing approach. Triatoma dimidiata predominated, followed by Rhodnius prolixus, Triatoma maculata, Rhodnius pallescens, Panstrongylus geniculatus and Eratyrus cuspidatus. Twenty-two species were identified as blood sources, resulting in an integrated transmission network with extensive connectivity among sylvatic and domestic host species. Only TcI parasites were detected, predominantly from TcIb but TcIa was also reported. The close relatedness of T. cruzi strains further supported the lack of separate transmission cycles according to habitats or triatomine species. Triatomine microbiota varied according to species, developmental stage and T. cruzi infection. Bacterial families correlated with the presence/absence of T. cruzi were identified. In conclusion, we identified a domestic transmission cycle encompassing multiple vector species and tightly connected with sylvatic hosts in the SNSM region, rather than an isolated domestic transmission cycle. Therefore, integrated interventions targeting all vector species and their contact with humans should be considered.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000318507https://orcid.org/0000-0002-8093-0544https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000008981jose.usmec@campusucc.edu.cohttps://scholar.google.com.co/citations?user=cU2KyT4AAAAJ&hl=en14Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina, Santa MartaRichard WhiteMedicinaSanta Martahttps://www.nature.com/articles/s41598-021-91783-2Scientific ReportsHotez, P. J. et al. An unfolding tragedy of chagas disease in North America. PLoS Negl. Trop. Dis. 7(10), e2300. https://doi.org/10. 1371/journal.pntd.0002300 (2013) (PMID: 24205411).Hotez, P. J., Bottazzi, M. E., Franco-Paredes, C., Ault, S. K. & Periago, M. R. The neglected tropical diseases of Latin America and the Caribbean: A review of disease burden and distribution and a roadmap for control and elimination. PLoS Negl. Trop. Dis. 2(9), e300. https://doi.org/10.1371/journal.pntd.0000300 (2008) (PMID: 18820747).Lee, B. Y., Bacon, K. M., Bottazzi, M. E. & Hotez, P. J. Global economic burden of Chagas disease: A computational simulation model. Lancet Infect. Dis. 13(4), 342–348. https://doi.org/10.1016/S1473-3099(13)70002-1 (2013) (PMID: 23395248). 4. WHO. Chagas disease in Latin America: An epidemiological update based on 2010 estimates. Wkly. Epidemiol. Rec. 90(6), 33–43 (2015) (PMID: 25671846).Pena-Garcia, V. H., Gomez-Palacio, A. M., Triana-Chavez, O. & Mejia-Jaramillo, A. M. Eco-epidemiology of Chagas disease in an endemic area of Colombia: Risk factor estimation, Trypanosoma cruzi characterization and identification of blood-meal sources in bugs. Am. J. Trop. Med. Hyg. 91(6), 1116–1124. https://doi.org/10.4269/ajtmh.14-0112 (2014) (PMID: 25331808).Mejia-Jaramillo, A. M. et al. Genotyping of Trypanosoma cruzi in a hyper-endemic area of Colombia reveals an overlap among domestic and sylvatic cycles of Chagas disease. Parasit. Vectors. 7, 108. https://doi.org/10.1186/1756-3305-7-108 (2014) (PMID: 24656115).Dib, J. C., Agudelo, L. A. & Velez, I. D. Prevalencia de patologías tropicales y factores de riesgo en la comunidad indígena de Bunkwimake, Sierra Nevada de Santa Marta. DUAZARY. 3(1), 38–44 (2006).Parra-Henao, G. et al. In search of congenital Chagas disease in the Sierra Nevada de Santa Marta, Colombia. Am. J. Trop. Med. Hyg. 101(3), 482–483. https://doi.org/10.4269/ajtmh.19-0110 (2019) (PMID: 31264558).Guhl, F., Aguilera, G., Pinto, N. & Vergara, D. Actualización de la distribución geográfica y ecoepidemiología de la fauna de triatominos (Reduviidae: Triatominae) en Colombia. Biomedica. 27(Suppl 1), 143–162 (2007) (PMID: 18154255).Parra-Henao, G., Suarez-Escudero, L. C. & Gonzalez-Caro, S. Potential distribution of Chagas disease vectors (Hemiptera, Reduviidae, Triatominae) in Colombia, based on Ecological Niche Modeling. J. Trop. Med. 2016, 1439090. https://doi.org/10.1155/ 2016/1439090 (2016) (PMID: 28115946).Rodriguez-Mongui, E., Cantillo-Barraza, O., Prieto-Alvarado, F. E. & Cucunuba, Z. M. Heterogeneity of Trypanosoma cruzi infection rates in vectors and animal reservoirs in Colombia: A systematic review and meta-analysis. Parasit. Vectors. 12(1), 308. https://doi.org/10.1186/s13071-019-3541-5 (2019) (PMID: 31221188).Dib, J., Barnabe, C., Tibayrenc, M. & Triana, O. Incrimination of Eratyrus cuspidatus (Stal) in the transmission of Chagas’ disease by molecular epidemiology analysis of Trypanosoma cruzi isolates from a geographically restricted area in the north of Colombia. Acta Trop. 111(3), 237–242. https://doi.org/10.1016/j.actatropica.2009.05.004 (2009) (PMID: 19442641).Parra Henao, G., Angulo, V., Jaramillo, N. & Restrepo, M. Triatominos (Hemiptera: Reduviidae) de ka Sierra Nevada de Santa Marta, Colombia. Aspectos epidemiológicos, entomológicos y de distribución. Rev. CES Med. 23(1), 17–26 (2009).Hernandez, C. et al. Untangling the transmission dynamics of primary and secondary vectors of Trypanosoma cruzi in Colombia: Parasite infection, feeding sources and discrete typing units. Parasit. Vectors. 9(1), 620. https://doi.org/10.1186/s13071-016-1907-5 (2016) (PMID: 27903288).Cantillo-Barraza, O., Chaverra, D., Marcet, P., Arboleda-Sanchez, S. & Triana-Chavez, O. Trypanosoma cruzi transmission in a Colombian Caribbean region suggests that secondary vectors play an important epidemiological role. Parasit. Vectors. 7, 381. https://doi.org/10.1186/1756-3305-7-381 (2014) (PMID: 25141852).Weiss, B. & Aksoy, S. Microbiome infuences on insect host vector competence. Trends Parasitol. 27(11), 514–522. https://doi.org/ 10.1016/j.pt.2011.05.001 (2011) (PMID: 21697014).Azambuja, P., Garcia, E. S. & Ratclife, N. A. Gut microbiota and parasite transmission by insect vectors. Trends Parasitol. 21(12), 568–572 (2005) (PMID: 16226491).Dumonteil, E. et al. Interactions among Triatoma sanguisuga blood feeding sources, gut microbiota and Trypanosoma cruzi diversity in southern Louisiana. Mol Ecol. 29(19), 3747–3761 (2020).Zingales, B. et al. A new consensus for Trypanosoma cruzi intraspecifc nomenclature: Second revision meeting recommends TcI to TcVI. Mem. Inst. Oswaldo Cruz. 104(7), 1051–1054 (2009) (PMID: 20027478).Zingales, B. et al. Te revised Trypanosoma cruzi subspecifc nomenclature: Rationale, epidemiological relevance and research applications. Infect. Genet. Evol. 12(2), 240–253. https://doi.org/10.1016/j.meegid.2011.12.009 (2012) (PMID: 22226704).Tibayrenc, M. & Ayala, F. J. Te population genetics of Trypanosoma cruzi revisited in the light of the predominant clonal evolution model. Acta Trop. 151, 156–165. https://doi.org/10.1016/j.actatropica.2015.05.006 (2015) (PMID: 26188332).Majeau, A., Murphy, L., Herrera, C. & Dumonteil, E. Assessing Trypanosoma cruzi parasite diversity through comparative genomics: Implications for disease epidemiology and diagnostics. Pathogens. 10, 212. https://doi.org/10.3390/pathogens10020212 (2021). Flores-Ferrer, A., Marcou, O., Waleckx, E., Dumonteil, E. & Gourbière, S. Evolutionary ecology of Chagas disease; what do we know and what do we need?. Evol. Appl. 11(4), 470–487. https://doi.org/10.1111/eva.12582 (2017).Tibayrenc, M., Kjellberg, F. & Ayala, F. J. A clonal theory of parasitic protozoa: Te population structures of Entamoeba, Giardia, Leishmania, Naegleria, Plasmodium, Trichomonas, and Trypanosoma and their medical and taxonomical consequences. Proc. Natl. Acad. Sci. USA 87, 2414–2418 (1990).Berry, A. S. F. et al. Sexual reproduction in a natural Trypanosoma cruzi population. PLoS Negl. Trop. Dis. 13(5), e0007392. https:// doi.org/10.1371/journal.pntd.0007392 (2019) (PMID: 31107905).Schwabl, P. et al. Meiotic sex in Chagas disease parasite Trypanosoma cruzi. Nat. Commun. 10(1), 3972. https://doi.org/10.1038/ s41467-019-11771-z (2019) (PMID: 31481692).Falla, A. et al. Haplotype identifcation within Trypanosoma cruzi I in Colombian isolates from several reservoirs, vectors and humans. Acta Trop. 110(1), 15–21 (2009) (PMID: 19135020).Cura, C. I. et al. Trypanosoma cruzi I genotypes in diferent geographical regions and transmission cycles based on a microsatellite motif of the intergenic spacer of spliced-leader genes. Int. J. Parasitol. 40(14), 1599–1607. https://doi.org/10.1016/j.ijpara.2010.06. 006 (2010) (PMID: 20670628).Rodriguez, I. B. et al. Transmission dynamics of Trypanosoma cruzi determined by low-stringency single primer polymerase chain reaction and southern blot analyses in four indigenous communities of the Sierra Nevada de Santa Marta, Colombia. Am. J. Trop. Med. Hyg. 81(3), 396–403 (2009) (PMID: 19706903).Waleckx, E., Gourbière, S. & Dumonteil, E. Intrusive triatomines and the challenge of adapting vector control practices. Mem. Inst. Oswaldo Cruz. 110(3), 324–338 (2015)Dumonteil, E. et al. Detailed ecological associations of triatomines revealed by metabarcoding and next-generation sequencing: Implications for triatomine behavior and Trypanosoma cruzi transmission cycles. Sci. Rep. 8(1), 4140. https://doi.org/10.1038/ s41598-018-22455-x (2018) (PMID: 29515202).Dumonteil, E. et al. Interactions among Triatoma sanguisuga blood feeding sources, gut microbiota and Trypanosoma cruzi diversity in southern Louisiana. Mol. Ecol. https://doi.org/10.1111/mec.15582 (2020) (PMID: 32749727).O’Connor, O., Bosseno, M. F., Barnabe, C., Douzery, E. J. & Breniere, S. F. Genetic clustering of Trypanosoma cruzi I lineage evidenced by intergenic miniexon gene sequencing. Infect. Genet. Evol. 7(5), 587–593. https://doi.org/10.1016/j.meegid.2007.05.003 (2007) (PMID: 17553755).Villanueva-Lizama, L., Teh-Poot, C., Majeau, A., Herrera, C. & Dumonteil, E. Molecular genotyping of Trypanosoma cruzi by nextgeneration sequencing of the mini-exon gene reveals infections with multiple parasite DTUs in Chagasic patients from Yucatan, Mexico. J. Inf. Dis. 219(12), 1980–1988 (2019)Parra-Henao, G., Angulo, V. M., Osorio, L. & Jaramillo, O. N. Geographic distribution and ecology of Triatoma dimidiata (Hemiptera: Reduviidae) in Colombia. J. Med. Entomol. 53(1), 122–129. https://doi.org/10.1093/jme/tjv163 (2016) (PMID: 26487247).Angulo, V. M., Esteban, L. & Luna, K. P. Attalea butyracea proximas a las viviendas como posible fuente de infestacion domiciliaria por Rhodnius prolixus (Hemiptera: Reduviidae) en los Llanos Orientales de Colombia. Biomedica. 32(2), 277–285. https://doi.org/ 10.1590/S0120-41572012000300016 (2012) (PMID: 23242302).Feliciangeli, M. D., Sanchez-Martin, M., Marrero, R., Davies, C. & Dujardin, J. P. Morphometric evidence for a possible role of Rhodnius prolixus from palm trees in house re-infestation in the State of Barinas (Venezuela). Acta Trop. 101(2), 169–177. https:// doi.org/10.1016/j.actatropica.2006.12.010 (2007) (PMID: 17306204).Fitzpatrick, S., Feliciangeli, M. D., Sanchez-Martin, M. J., Monteiro, F. A. & Miles, M. A. Molecular genetics reveal that silvatic Rhodnius prolixus do colonise rural houses. PLoS Negl. Trop. Dis. 2(4), e210. https://doi.org/10.1371/journal.pntd.0000210 (2008) (PMID: 18382605).Lopez, G. & Moreno, J. Genetic variability and diferentiation between populations of Rhodnius prolixus and R. pallescens, vectors of Chagas’ disease in Colombia. Mem. Inst. Oswaldo Cruz. 90, 353–357 (1995).Dumonteil, E. et al. Detailed ecological associations of triatomines revealed by metabarcoding based on next-generation sequencing: linking triatomine behavioral ecology and Trypanosoma cruzi transmission cycles. Sci. Rep. 8(1), 4140. https://doi.org/10. 1038/s41598-018-22455-x (2018).Hernández-Andrade, A., Moo-Millan, J., Cigarroa-Toledo, N., Ramos-Ligonio, A., Herrera, C., Bucheton, B., et al. Metabarcoding: A powerful yet still underestimated approach for the comprehensive study of vector-borne pathogen transmission cycles and their dynamics. in Vector-Borne Diseases: Recent Developments in Epidemiology and Control (ed. Claborn, D.) 1–6. (Intechopen, 2020). https://doi.org/10.5772/intechopen.83110Flores-Ferrer, A., Waleckx, E., Rascalou, G., Dumonteil, E. & Gourbière, S. Trypanosoma cruzi transmission dynamics in a synanthropic and domesticated host community. PLoS Negl. Trop. Dis. 13(12), e0007902. https://doi.org/10.1371/journal.pntd.00079 02 (2019).Llewellyn, M. S. et al. Genome-scale multilocus microsatellite typing of Trypanosoma cruzi discrete typing unit I reveals phylogeographic structure and specifc genotypes linked to human infection. PLoS Pathog. 5(5), e1000410. https://doi.org/10.1371/journ al.ppat.1000410 (2009) (PMID: 19412340).Herrera, C. et al. Genetic variability and phylogenetic relationships within Trypanosoma cruzi I isolated in Colombia based on Miniexon Gene Sequences. J. Parasitol. Res. https://doi.org/10.1155/2009/897364 (2009) (PMID: 20798881).Zumaya-Estrada, F. A. et al. North American import? Charting the origins of an enigmatic Trypanosoma cruzi domestic genotype. Parasit. Vectors. 5, 226. https://doi.org/10.1186/1756-3305-5-226 (2012) (PMID: 23050833).Montoya-Porras, L. M., Omar, T. C., Alzate, J. F., Moreno-Herrera, C. X. & Cadavid-Restrepo, G. E. 16S rRNA gene amplicon sequencing reveals dominance of Actinobacteria in Rhodnius pallescens compared to Triatoma maculata midgut microbiota in natural populations of vector insects from Colombia. Acta Trop. 178, 327–332. https://doi.org/10.1016/j.actatropica.2017.11.004 (2018) (PMID: 29154947)Kieran, T. J. et al. Regional biogeography of microbiota composition in the Chagas disease vector Rhodnius pallescens. Parasit. Vectors. 12(1), 504. https://doi.org/10.1186/s13071-019-3761-8 (2019) (PMID: 31665056).Rodriguez-Ruano, S. M. et al. Microbiomes of North American Triatominae: Te grounds for Chagas Disease epidemiology. Front. Microbiol. 9, 1167. https://doi.org/10.3389/fmicb.2018.01167 (2018) (PMID: 29951039).Eichler, S. & Schaub, G. A. Development of symbionts in triatomine bugs and the efects of infections with trypanosomatids. Exp. Parasitol. 100(1), 17–27 (2002).Waltmann, A. et al. Hindgut microbiota in laboratory-reared and wild Triatoma infestans. PLoS Negl. Trop. Dis. 13(5), e0007383. https://doi.org/10.1371/journal.pntd.0007383 (2019) (PMID: 31059501).Herren, J. K. et al. A microsporidian impairs Plasmodium falciparum transmission in Anopheles arabiensis mosquitoes. Nat. Commun. 11(1), 2187. https://doi.org/10.1038/s41467-020-16121-y (2020) (PMID: 32366903).Moreira, L. A. et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139(7), 1268–1278. https://doi.org/10.1016/j.cell.2009.11.042 (2009) (PMID: 20064373).Angulo, V. M. & Esteban, L. Nueva trampa para la captura de triatominos en habitats silvestres y peridomesticos. Biomedica. 31(2), 264–268. https://doi.org/10.1590/S0120-41572011000200015 (2011) (PMID: 22159544).Lent, H. & Wygodzinsky, P. Revision of Triatominae (Hemiptera: Reduviidae), and their signifcance as vectors of Chagas’ disease. Bull. Am. Mus. Nat. His. 163, 123–520 (1979).Monteiro, F. A. et al. Molecular phylogeography of the Amazonian Chagas disease vectors Rhodnius prolixus and R. robustus. Mol. Ecol. 12(4), 997–1006. https://doi.org/10.1046/j.1365-294x.2003.01802.x (2003) (PMID: 12753218).Baker, G. C., Smith, J. J. & Cowan, D. A. Review and reanalysis of domain-specifc 16s primers. J. Microbiol. Meth. 55, 541–555 (2003).Heuer, H., Krsek, M., Baker, P., Smalla, K. & Wellington, E. M. Analysis of actinomycete communities by specifc amplifcation of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63(8), 3233–3241 (1997).Souto, R. P., Fernandes, O., Macedo, A. M., Campbell, D. A. & Zingales, B. DNA markers defne two major phylogenetic lineages of Trypanosoma cruzi. Mol. Biochem. Parasitol. 83(2), 141–152 (1996) (PMID: 9027747).Majeau, A., Herrera, C. & Dumonteil, E. An improved approach to Trypanosoma cruzi molecular genotyping by next-generation sequencing of the mini-exon gene. Methods Mol. Biol. 1955, 47–60 (2019).Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16), 2194–2200. https://doi.org/10.1093/bioinformatics/btr381 (2011) (PMID: 21700674).Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. arXiv preprint. (arXiv:1207.3907 [q-bio. GN]), 1–9. https://arxiv.org/abs/1207.3907v2 (2012).Dhariwal, A. et al. MicrobiomeAnalyst: A web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 45(W1), W180–W188. https://doi.org/10.1093/nar/gkx295 (2017) (PMID: 28449106).Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS ONE 5(3), e9490. https://doi.org/10.1371/journal.pone.0009490 (2010) (PMID: 20224823)Bouckaert, R. et al. BEAST 2.5: An advanced sofware platform for Bayesian evolutionary analysis. PLoS Comput Biol. 15(4), e1006650. https://doi.org/10.1371/journal.pcbi.1006650 (2019) (PMID: 30958812).Torres-Silva, C. F. et al. Assessment of genetic mutation frequency induced by oxidative stress in Trypanosoma cruzi. Genet Mol Biol. 41(2), 466–474. https://doi.org/10.1590/1678-4685-GMB-2017-0281 (2018) (PMID: 30088612).Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics sofware package for education and data analysis. Palaeontol. Electron. 4(1), 9 (2001).Cole, J. R. et al. Ribosomal Database Project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42(Database issue), D633–D642. https://doi.org/10.1093/nar/gkt1244 (2014) (PMID: 24288368).TrypanosomaMicrobiomaTriatomaColombiaTrypanosomaMicrobiomaTriatomaColombiaDiversity and interactions among triatomine bugs, their blood feeding sources, gut microbiota and Trypanosoma cruzi in the Sierra Nevada de Santa Marta in ColombiaArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.ucc.edu.co/bitstreams/a1fa5ade-11a8-42ab-839b-c4000601fdb1/download8a4605be74aa9ea9d79846c1fba20a33MD54ORIGINAL33. Diversity and interactions among triatomine bugs. Murillo-Solano et al 2021.pdf33. Diversity and interactions among triatomine bugs. Murillo-Solano et al 2021.pdfapplication/pdf4196814https://repository.ucc.edu.co/bitstreams/b4baa45f-bc58-40f2-b026-27ff1d68f084/download65789589751335bedf8ff86cba7aaff6MD51Licencia de uso RI Ver5 - 9-07-2021. Diversity and interactions among triatomine bugs.doc.pdfLicencia de uso RI Ver5 - 9-07-2021. Diversity and interactions among triatomine bugs.doc.pdfLicencia de usoapplication/pdf195439https://repository.ucc.edu.co/bitstreams/927975d6-b4e9-4168-9001-d5e0ec009b56/download50fe07a005d7a68bd22f4231218a34b1MD53THUMBNAIL33. Diversity and interactions among triatomine bugs. Murillo-Solano et al 2021.pdf.jpg33. Diversity and interactions among triatomine bugs. Murillo-Solano et al 2021.pdf.jpgGenerated Thumbnailimage/jpeg6454https://repository.ucc.edu.co/bitstreams/dfc5f0cb-2187-433a-b90d-c52da5042799/download660e1a59cd2594a874c4e62bf73645c3MD55Licencia de uso RI Ver5 - 9-07-2021. Diversity and interactions among triatomine bugs.doc.pdf.jpgLicencia de uso RI Ver5 - 9-07-2021. Diversity and interactions among triatomine bugs.doc.pdf.jpgGenerated Thumbnailimage/jpeg5345https://repository.ucc.edu.co/bitstreams/f9888eca-76af-4ddf-ba64-da22a2f2992d/downloade83b28d51c60622e8309f96fe42abc51MD56TEXT33. Diversity and interactions among triatomine bugs. Murillo-Solano et al 2021.pdf.txt33. Diversity and interactions among triatomine bugs. Murillo-Solano et al 2021.pdf.txtExtracted texttext/plain67014https://repository.ucc.edu.co/bitstreams/fd6b2a18-e58e-4314-b172-2d121926ae39/download03d8f8674bbee59e5c51dc80f8bc0789MD57Licencia de uso RI Ver5 - 9-07-2021. Diversity and interactions among triatomine bugs.doc.pdf.txtLicencia de uso RI Ver5 - 9-07-2021. Diversity and interactions among triatomine bugs.doc.pdf.txtExtracted texttext/plain5879https://repository.ucc.edu.co/bitstreams/68a34f20-f735-4d03-b0aa-50e1181c2765/download6b9319d5a6b00dd77e97b99fd4c67014MD5820.500.12494/45596oai:repository.ucc.edu.co:20.500.12494/455962024-08-10 22:48:19.126open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=