Biogas Production by Pilot-Scale Anaerobic Co-Digestion and Life Cycle Assessment Using a Real Scale Scenario: Independent Parameters and Co-Substrates Influence

Este estudio evalúa el comportamiento de diferentes subproductos agrícolas para identificar el efecto potencial de variables independientes, utilizando como variable dependiente la producción de biogás. Se realizó un diseño experimental Box-Behnken en una planta a escala piloto de cuatro agitadores...

Full description

Autores:
Mosquera, Jhessica
Rangel, Carol
Thomas, Jogy
Santis Navarro, Angélica María
Acevedo Pabón, Paola Andrea
Cabeza Rojas, Iván Orlando
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/46347
Acceso en línea:
https://doi.org/10.3390/pr9111875
https://hdl.handle.net/20.500.12494/46347
Palabra clave:
Biomasa residual
Diseño Box–Behnken
Potencial de producción de biogás
Codigestión anaeróbica
Evaluación del ciclo de vida
Residual biomass
Box–Behnken design
Biogas production potential
Anaerobic codigestion
Life cycle assessment
Rights
openAccess
License
Atribución
id COOPER2_609ccb6b670790665542192ae379b5c4
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/46347
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Biogas Production by Pilot-Scale Anaerobic Co-Digestion and Life Cycle Assessment Using a Real Scale Scenario: Independent Parameters and Co-Substrates Influence
title Biogas Production by Pilot-Scale Anaerobic Co-Digestion and Life Cycle Assessment Using a Real Scale Scenario: Independent Parameters and Co-Substrates Influence
spellingShingle Biogas Production by Pilot-Scale Anaerobic Co-Digestion and Life Cycle Assessment Using a Real Scale Scenario: Independent Parameters and Co-Substrates Influence
Biomasa residual
Diseño Box–Behnken
Potencial de producción de biogás
Codigestión anaeróbica
Evaluación del ciclo de vida
Residual biomass
Box–Behnken design
Biogas production potential
Anaerobic codigestion
Life cycle assessment
title_short Biogas Production by Pilot-Scale Anaerobic Co-Digestion and Life Cycle Assessment Using a Real Scale Scenario: Independent Parameters and Co-Substrates Influence
title_full Biogas Production by Pilot-Scale Anaerobic Co-Digestion and Life Cycle Assessment Using a Real Scale Scenario: Independent Parameters and Co-Substrates Influence
title_fullStr Biogas Production by Pilot-Scale Anaerobic Co-Digestion and Life Cycle Assessment Using a Real Scale Scenario: Independent Parameters and Co-Substrates Influence
title_full_unstemmed Biogas Production by Pilot-Scale Anaerobic Co-Digestion and Life Cycle Assessment Using a Real Scale Scenario: Independent Parameters and Co-Substrates Influence
title_sort Biogas Production by Pilot-Scale Anaerobic Co-Digestion and Life Cycle Assessment Using a Real Scale Scenario: Independent Parameters and Co-Substrates Influence
dc.creator.fl_str_mv Mosquera, Jhessica
Rangel, Carol
Thomas, Jogy
Santis Navarro, Angélica María
Acevedo Pabón, Paola Andrea
Cabeza Rojas, Iván Orlando
dc.contributor.author.none.fl_str_mv Mosquera, Jhessica
Rangel, Carol
Thomas, Jogy
Santis Navarro, Angélica María
Acevedo Pabón, Paola Andrea
Cabeza Rojas, Iván Orlando
dc.subject.spa.fl_str_mv Biomasa residual
Diseño Box–Behnken
Potencial de producción de biogás
Codigestión anaeróbica
Evaluación del ciclo de vida
topic Biomasa residual
Diseño Box–Behnken
Potencial de producción de biogás
Codigestión anaeróbica
Evaluación del ciclo de vida
Residual biomass
Box–Behnken design
Biogas production potential
Anaerobic codigestion
Life cycle assessment
dc.subject.other.spa.fl_str_mv Residual biomass
Box–Behnken design
Biogas production potential
Anaerobic codigestion
Life cycle assessment
description Este estudio evalúa el comportamiento de diferentes subproductos agrícolas para identificar el efecto potencial de variables independientes, utilizando como variable dependiente la producción de biogás. Se realizó un diseño experimental Box-Behnken en una planta a escala piloto de cuatro agitadores de acero inoxidable digestores bajo digestión mesófila semicontinua. Los resultados obtenidos respaldan la creación de un marco técnico para escalar el proceso y una mayor evaluación de los posibles impactos ambientales a través de la metodología de evaluación del ciclo de vida (ACV). Se logró un comportamiento estable en 12 de los 13 experimentos propuestos. El valor más alto de producción diaria de biogás fue de 2200.15 mL día ??1 con un tiempo de estabilización de 14 días, una tasa de carga orgánica de 4 g VS alimento diario, baja relación C/N y una relación 1:1 de proveedores de nitrógeno. Las concentraciones de CH4 se mantuvieron estables luego de la estabilización de la producción y se obtuvo una composición de biogás promedio de 60.6% CH4, 40.1% CO2 y 0.3% O2 para las condiciones mencionadas anteriormente. Por tanto, se estimó que la planta a escala real gestionaría 2,67 toneladas de biomasa residual al día, generando 369,69 kWh/día de electricidad. El análisis ACV confirma que el proceso de codigestión evaluado es una opción factible y ambientalmente sostenible para la diversificación de la matriz energética colombiana y el desarrollo de la sector agroindustrial.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-10-21
dc.date.accessioned.none.fl_str_mv 2022-09-12T17:18:32Z
dc.date.available.none.fl_str_mv 2022-09-12T17:18:32Z
dc.type.none.fl_str_mv Artículo
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 22279717
dc.identifier.uri.spa.fl_str_mv https://doi.org/10.3390/pr9111875
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/46347
dc.identifier.bibliographicCitation.spa.fl_str_mv Mosquera, J.; Rangel, C.; Thomas, J.; Santis, A.; Acevedo, P.; Cabeza, I. Biogas Production by Pilot-Scale Anaerobic Co-Digestion and Life Cycle Assessment Using a Real Scale Scenario: Independent Parameters and Co-Substrates Influence. Processes 2021, 9, 1875. https://doi.org/10.3390/pr9111875
identifier_str_mv 22279717
Mosquera, J.; Rangel, C.; Thomas, J.; Santis, A.; Acevedo, P.; Cabeza, I. Biogas Production by Pilot-Scale Anaerobic Co-Digestion and Life Cycle Assessment Using a Real Scale Scenario: Independent Parameters and Co-Substrates Influence. Processes 2021, 9, 1875. https://doi.org/10.3390/pr9111875
url https://doi.org/10.3390/pr9111875
https://hdl.handle.net/20.500.12494/46347
dc.relation.isversionof.spa.fl_str_mv https://www.mdpi.com/2227-9717/9/11/1875
dc.relation.ispartofjournal.spa.fl_str_mv Processes
dc.relation.references.spa.fl_str_mv Yoo, S.-H.; Kwak, S.-Y. Electricity Consumption and Economic Growth in Seven South American Countries. Energy Policy 2010, 38, 181–188. [CrossRef]
Garcia, C.; Gonzalez, O.; Baez, O.; Tellez, L.; Obando, D. Plan de Acción Indicativo de Eficiencia Energética 2017–2022; Ministerio de Minas y Energía: Bogota, Colombia, 2016
Unidad de Planeación Minero Energética. Available online: http://www1.upme.gov.co/InformacionCifras/Paginas/PETROLEO. aspx (accessed on 10 May 2021).
Rodríguez, R.; Gauthier-Maradei, P.; Escalante, H. Fuzzy spatial decision tool to rank suitable sites for allocation of bioenergy plants based on crop residue. Biomass Bioenergy 2017, 100, 17–30. [CrossRef]
Serna, L.V.D.; Toro, J.C.S.; Loaiza, S.S.; Perez, Y.C.; Alzate, C.A.C. Agricultural waste management through energy producing biorefineries: The Colombian case. Waste Biomass Valorization 2016, 7, 789–798. [CrossRef]
Yukesh Kannah, R.; Merrylin, J.; Poornima Devi, T.; Kavitha, S.; Sivashanmugam, P.; Kumar, G.; Rajesh Banu, J. Food waste valorization: Biofuels and value added product recovery. Bioresour. Technol. Rep. 2020, 11, 100524. [CrossRef]
Søndergaard, M.M.; Fotidis, I.A.; Kovalovszki, A.; Angelidaki, I. Anaerobic co-digestion of agricultural byproducts with manure for enhanced biogas production. Energy Fuels 2015, 29, 8088–8094. [CrossRef]
Pastor-Poquet, V.; Papirio, S.; Trably, E.; Rintala, J.; Escudié, R.; Esposito, G. Semi-continuous mono-digestion of OFMSW and co-digestion of OFMSW with beech sawdust: Assessment of the maximum operational total solid content. J. Environ. Manag. 2019, 231, 1293–1302. [CrossRef] [PubMed]
Hagos, K.; Zong, J.; Li, D.; Liu, C.; Lu, X. Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives. Renew. Sustain. Energy Rev. 2017, 76, 1485–1496. [CrossRef]
Tsapekos, P.; Kougias, P.G.; Kuthiala, S.; Angelidaki, I. Co-Digestion and model simulations of source separated municipal organic waste with cattle manure under batch and continuously stirred tank reactors. Energy Convers. Manag. 2018, 159, 1–6. [CrossRef]
Jingura, R.M.; Matengaifa, R. The potential for energy production from crop residues in Zimbabwe. Biomass Bioenergy 2008, 32, 1287–1292. [CrossRef]
Katuwal, H.; Bohara, A.K. Biogas: A Promising Renewable Technology and Its Impact on Rural Households in Nepal. Renew. Sustain. Energy Rev. 2009, 13, 2668–2674. [CrossRef]
Duan, N.; Khoshnevisan, B.; Lin, C.; Liu, Z.; Liu, H. Life cycle assessment of anaerobic digestion of pig manure coupled with different digestate treatment technologies. Environ. Int. 2020, 137, 105522. [CrossRef]
Ingrao, C.; Bacenetti, J.; Adamczyk, J.; Ferrante, V.; Messineo, A.; Huisingh, D. Investigating energy and environmental issues of agro-biogas derived energy systems: A comprehensive review of life cycle assessments. Renew. Energy 2019, 136, 296–307. [CrossRef]
Ruiz, D.; Miguel, G.S.; Corona, B.; Gaitero, A.; Domínguez, A. Environmental and economic analysis of power generation in a thermophilic biogas plant. Sci. Total Environ. 2018, 633, 1418–1428. [CrossRef]
Garfí, M.; Castro, L.; Montero, N.; Escalante, H.; Ferrer, I. Evaluating environmental benefits of low-cost biogas digesters in small-scale farms in Colombia: A life cycle assessment. Bioresour. Technol. 2019, 274, 541–548. [CrossRef]
Mayer, F.; Bhandari, R.; Gäth, S. Critical review on life cycle assessment of conventional and innovative waste-to-energy technologies. Sci. Total Environ. 2019, 672, 708–721. [CrossRef] [PubMed]
Amado, M.; Carrasco, J.; Ochoa, L.D.; Rangel, C.J.; Becerra, A.P.; Cabeza, I.O.; Acevedo, P.A. Technical and environmental analysis of large-scale pig manure digestion through process simulation and life cycle assessment. Chem. Eng. Trans. 2021, 87, 439–444. [CrossRef]
Mendieta, O.; Castro, L.; Escalante, H.; Garfí, M. Low-cost anaerobic digester to promote the circular bioeconomy in the non-centrifugal cane sugar sector: A life cycle assessment. Bioresour. Technol. 2021, 326, 124783. [CrossRef]
Informe de Sostenibilidad Postobon; Postobon: Bogotá, Colombia, 2021.
Fondo de Estabilización de Precios del Cacao. Informe de Gestión 2019; Federación Nacional de Cacaoteros: Bogotá, Colombia, 2019
Censo Pecuario Nacional Año 2021; Instituto Colombiano Agropecuario—ICA: Bogota, Colombia, 2021.
Vargas, A.K.N.; Calderón, J.; Velásquez, D.; Castro, M.; Núñez, D.A. Biological system analysis for domestic wastewater treatment in Colombia. Ingeniare 2020, 28, 315–322. [CrossRef]
Mosquera, J.; Varela, L.; Santis, A.; Villamizar, S.; Acevedo, P.; Cabeza, I. Improving anaerobic co-digestion of different residual biomass sources readily available in Colombia by process parameters optimization. Biomass Bioenergy 2020, 142, 105790. [CrossRef]
Rojas, F.; Sánchez, E.J.S. Guia Ambiental Para el Cultivo Del Cacao; Ministerio de Agricultura y Desarrollo Rural: Bogota, Colombia, 2013
Beniche, I.; Hungría, J.; El Bari, H.; Siles, J.A.; Chica, A.F.; Martín, M.A. Effects of C/N ratio on anaerobic co-digestion of cabbage, cauliflower, and restaurant food waste. Biomass Convers. Biorefin. 2020, 11, 2133–2145. [CrossRef]
Dechrugsa, S.; Kantachote, D.; Chaiprapat, S. Effects of inoculum to substrate ratio, substrate mix ratio and inoculum source on batch co-digestion of grass and pig manure. Bioresour. Technol. 2013, 146, 101–108. [CrossRef]
Cabeza, I.; Thomas, M.; Vásquez, A.; Acevedo, P. Anaerobic co-digestion of organic residues from different productive sectors in Colombia: Biomethanation potential assessment. Chem. Eng. Trans. 2016, 49, 385–390. [CrossRef]
Suarez, D.; Castellanos, J.; Acevedo, P.; Santis, A.; Rodriguez, C.; Cabeza, I.; Hernandez, M. Data processing for anaerobic digestion reactor: Instrumentation, acquisition. In Proceedings of the 15th IWA World Conference of Anaerobic Digestion, Beijing, China, 17–20 October 2017.
Khoshnevisan, B.; Tsapekos, P.; Alvarado-Morales, M.; Angelidaki, I. Process performance and modelling of anaerobic digestion using source-sorted organic household waste. Bioresour. Technol. 2018, 247, 486–495. [CrossRef] [PubMed]
Sun, H.; Wu, S.; Dong, R. Monitoring volatile fatty acids and carbonate alkalinity in anaerobic digestion: Titration methodologies. Chem. Eng. Technol. 2016, 39, 599–610. [CrossRef]
Joyce, R.M. Experiment optimization in chemistry and chemical engineering, S. Akhnazarova and V. Kafarov, Mir Publishers, Moscow and Chicago, 1982, 312 pp. Price: $9.95. J. Polym. Sci. Polym. Lett. Ed. 1984, 22, 372. [CrossRef]
Mäkelä, M. Experimental design and response surface methodology in energy applications: A tutorial review. Energy Convers. Manag. 2017, 151, 630–640. [CrossRef]
Ferreira, S.L.C.; Lemos, V.A.; de Carvalho, V.S.; da Silva, E.G.P.; Queiroz, A.F.S.; Felix, C.S.A.; da Silva, D.L.F.; Dourado, G.B.; Oliveira, R.V. Multivariate optimization techniques in analytical chemistry—An overview. Microchem. J. 2018, 140, 176–182. [CrossRef]
ISO 14040. Environmental Management—Life Cycle Assessment—Principles and Framework; International International Standard for Organization: Geneva, Switzerland, 2006.
Pöschl, M.; Ward, S.; Owende, P. Evaluation of energy efficiency of various biogas production and utilization pathways. Appl. Energy 2010, 87, 3305–3321. [CrossRef]
Li, L.; Peng, X.; Wang, X.; Wu, D. Anaerobic digestion of food waste: A review focusing on process stability. Bioresour. Technol. 2018, 248, 20–28. [CrossRef]
Shahbaz, M.; Ammar, M.; Korai, R.M.; Ahmad, N.; Ali, A.; Khalid, M.S.; Zou, D.; Li, X.J. Impact of C/N ratios and organic loading rates of paper, cardboard and tissue wastes in batch and CSTR anaerobic digestion with food waste on their biogas production and digester stability. SN Appl. Sci. 2020, 2, 1–13. [CrossRef]
Alvarez, R.; Lidén, G. Semi-continuous co-digestion of solid slaughterhouse waste, manure, and fruit and vegetable waste. Renew. Energy 2008, 33, 726–734. [CrossRef]
Gou, C.; Yang, Z.; Huang, J.; Wang, H.; Xu, H.; Wang, L. Effects of temperature and organic loading rate on the performance and microbial community of anaerobic co-digestion of waste activated sludge and food waste. Chemosphere 2014, 105, 146–151. [CrossRef] [PubMed]
Khoshnevisan, B.; Tabatabaei, M.; Tsapekos, P.; Rafiee, S.; Aghbashlo, M.; Lindeneg, S.; Angelidaki, I. Environmental life cycle assessment of different biorefinery platforms valorizing municipal solid waste to bioenergy, microbial protein, lactic and succinic acid. Renew. Sustain. Energy Rev. 2020, 117, 109493. [CrossRef]
Bajpai, P. Process parameters affecting anaerobic digestion. In Anaerobic Technology in Pulp and Paper Industry; Springer: Berlin/Heidelberg, Germany, 2017.
Kougias, P.G.; Angelidaki, I. Biogas and its opportunities—A review. Front. Environ. Sci. Eng. 2018, 12, 14. [CrossRef]
Fan, Y.; Yang, X.; Lei, Z.; Adachi, Y.; Kobayashi, M.; Zhang, Z.; Shimizu, K. Novel insight into enhanced recoverability of acidic inhibition to anaerobic digestion with nano-bubble water supplementation. Bioresour. Technol. 2021, 326, 124782. [CrossRef]
Singh, B.; Szamosi, Z.; Siménfalvi, Z. State of the art on mixing in an anaerobic digester: A review. Renew. Energy 2019, 141, 922–936. [CrossRef]
Li, L.; He, Q.; Zhao, X.; Wu, D.; Wang, X.; Peng, X. Anaerobic digestion of food waste: Correlation of kinetic parameters with operational conditions and process performance. Biochem. Eng. J. 2018, 130, 1–9. [CrossRef]
Ward, A.J.; Hobbs, P.J.; Holliman, P.J.; Jones, D.L. Optimisation of the anaerobic digestion of agricultural resources. Bioresour. Technol. 2008, 99, 7928–7940. [CrossRef]
Nges, I.A.; Björnsson, L. High methane yields and stable operation during anaerobic digestion of nutrient-supplemented energy crop mixtures. Biomass Bioenergy 2012, 47, 62–70. [CrossRef]
Bouallagui, H.; Lahdheb, H.; Romdan, E.B.; Rachdi, B.; Hamdi, M. Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition. J. Environ. Manag. 2009, 90, 1844–1849. [CrossRef]
Martínez, E.J.; Gil, M.V.; Fernandez, C.; Rosas, J.G.; Gómez, X. Anaerobic codigestion of sludge: Addition of butcher’s fat waste as a cosubstrate for increasing biogas production. PLoS ONE 2016, 11, e0153139. [CrossRef] [PubMed]
Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 2008, 99, 4044–4064. [CrossRef] [PubMed]
Pan, Y.; Zhi, Z.; Zhen, G.; Lu, X.; Bakonyi, P.; Li, Y.-Y.; Zhao, Y.; Rajesh Banu, J. Synergistic effect and biodegradation kinetics of sewage sludge and food waste mesophilic anaerobic co-digestion and the underlying stimulation mechanisms. Fuel 2019, 253, 40–49. [CrossRef]
Khan, M.A.; Ngo, H.H.; Guo, W.S.; Liu, Y.; Nghiem, L.D.; Hai, F.I.; Deng, L.J.; Wang, J.; Wu, Y. Optimization of process parameters for production of volatile fatty acid, biohydrogen and methane from anaerobic digestion. Bioresour. Technol. 2016, 219, 738–748. [CrossRef]
Liu, X.; Gao, X.; Wang, W.; Zheng, L.; Zhou, Y.; Sun, Y. Pilot-scale anaerobic co-digestion of municipal biomass waste: Focusing on biogas production and GHG reduction. Renew. Energy 2012, 44, 463–468. [CrossRef]
Stan, C.; Collaguazo, G.; Streche, C.; Apostol, T.; Cocarta, D.M. Pilot-Scale anaerobic co-digestion of the OFMSW: Improving biogas production and startup. Sustainability 2018, 10, 1939. [CrossRef]
Bacenetti, J.; Sala, C.; Fusi, A.; Fiala, M. Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable. Appl. Energy 2016, 179, 669–686. [CrossRef]
Rigon, M.R.; Zortea, R.; Moraes, C.A.M.; Modolo, R.C.E. Suggestion of life cycle impact assessment methodology: Selection criteria for environmental impact categories. In New Frontiers on Life Cycle Assessment—Theory and Application; IntechOpen: London, UK, 2019
Edwards, J.; Othman, M.; Crossin, E.; Burn, S. Anaerobic co-digestion of municipal food waste and sewage sludge: A comparative life cycle assessment in the context of a waste service provision. Bioresour. Technol. 2017, 223, 237–249. [CrossRef]
Cusenza, M.A.; Longo, S.; Guarino, F.; Cellura, M. Energy and environmental assessment of residual bio-wastes management strategies. J. Clean. Prod. 2021, 285, 124815. [CrossRef]
Fusi, A.; Bacenetti, J.; Fiala, M.; Azapagic, A. Life cycle environmental impacts of electricity from biogas produced by anaerobic digestion. Front. Bioeng. Biotechnol. 2016, 4, 26. [CrossRef] [PubMed]
Sadhukhan, J.; Sen, S.; Gadkari, S. The mathematics of life cycle sustainability assessment. J. Clean. Prod. 2021, 309, 127457. [CrossRef]
Vasco-Correa, J.; Khanal, S.; Manandhar, A.; Shah, A. Anaerobic digestion for bioenergy production: Global status, environmental and techno-economic implications, and government policies. Bioresour. Technol. 2018, 247, 1015–1026. [CrossRef]
Nkoa, R. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: A review. Agron. Sustain. Dev. 2014, 34, 473–492. [CrossRef]
Ochoa, C.; Hernández, M.A.; Bayona, O.L.; Camargo, H.A.; Cabeza, I.O.; Candela, A.M. Phosphorus recovery by struvite from anaerobic co-digestion effluents during residual biomass treatment. Biomass Convers. Biorefin. 2021, 11, 261–274. [CrossRef]
dc.rights.license.none.fl_str_mv Atribución
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 16 p.
dc.coverage.temporal.spa.fl_str_mv Vol. 9, No. 11
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, Bogotá
dc.publisher.program.spa.fl_str_mv Ingeniería Industrial
dc.publisher.place.spa.fl_str_mv Bogotá
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/1f8ccd5d-064c-47e5-bc12-283c955a7828/download
https://repository.ucc.edu.co/bitstreams/51a96f8b-f30c-42be-af60-b03522ddfec1/download
https://repository.ucc.edu.co/bitstreams/b329463d-57e7-4d04-819b-cba6ff73c01c/download
https://repository.ucc.edu.co/bitstreams/36c37a76-3780-429a-b214-b289484d3a8a/download
bitstream.checksum.fl_str_mv d8003a40d8227f996aecc73817cd02c0
8a4605be74aa9ea9d79846c1fba20a33
e717d0f71cc818161021c9bd258f3c08
dfa982211a031ff60a856c82c88fd778
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808788912647176192
spelling Mosquera, JhessicaRangel, CarolThomas, JogySantis Navarro, Angélica MaríaAcevedo Pabón, Paola Andrea Cabeza Rojas, Iván Orlando Vol. 9, No. 112022-09-12T17:18:32Z2022-09-12T17:18:32Z2021-10-2122279717https://doi.org/10.3390/pr9111875https://hdl.handle.net/20.500.12494/46347Mosquera, J.; Rangel, C.; Thomas, J.; Santis, A.; Acevedo, P.; Cabeza, I. Biogas Production by Pilot-Scale Anaerobic Co-Digestion and Life Cycle Assessment Using a Real Scale Scenario: Independent Parameters and Co-Substrates Influence. Processes 2021, 9, 1875. https://doi.org/10.3390/pr9111875Este estudio evalúa el comportamiento de diferentes subproductos agrícolas para identificar el efecto potencial de variables independientes, utilizando como variable dependiente la producción de biogás. Se realizó un diseño experimental Box-Behnken en una planta a escala piloto de cuatro agitadores de acero inoxidable digestores bajo digestión mesófila semicontinua. Los resultados obtenidos respaldan la creación de un marco técnico para escalar el proceso y una mayor evaluación de los posibles impactos ambientales a través de la metodología de evaluación del ciclo de vida (ACV). Se logró un comportamiento estable en 12 de los 13 experimentos propuestos. El valor más alto de producción diaria de biogás fue de 2200.15 mL día ??1 con un tiempo de estabilización de 14 días, una tasa de carga orgánica de 4 g VS alimento diario, baja relación C/N y una relación 1:1 de proveedores de nitrógeno. Las concentraciones de CH4 se mantuvieron estables luego de la estabilización de la producción y se obtuvo una composición de biogás promedio de 60.6% CH4, 40.1% CO2 y 0.3% O2 para las condiciones mencionadas anteriormente. Por tanto, se estimó que la planta a escala real gestionaría 2,67 toneladas de biomasa residual al día, generando 369,69 kWh/día de electricidad. El análisis ACV confirma que el proceso de codigestión evaluado es una opción factible y ambientalmente sostenible para la diversificación de la matriz energética colombiana y el desarrollo de la sector agroindustrial.This study evaluates the performance of different agricultural by-products to identify the potential effect of independent variables, using as the dependent variable the biogas production. A Box–Behnken experimental design was carried out in a pilot-scale plant of four stirred stainless-steel digesters under mesophilic semi-continuous digestion. The results obtained support the creation of a technical framework to scale up the process and further evaluation of the potential environmental impacts through life cycle assessment (LCA) methodology. A stable behaviour was achieved in 12 of the 13 experiments proposed. The highest value of daily biogas production was 2200.15 mL day1 with a stabilization time of 14 days, an organic loading rate of 4 g VS feed daily, low C/N ratio and a 1:1 relation of nitrogen providers. The concentrations of CH4 remained stable after the production stabilization and an average biogas composition of 60.6% CH4, 40.1% CO2 and 0.3% O2 was obtained for the conditions mentioned above. Therefore, the real scale plant was estimated to manage 2.67 tonnes of residual biomass per day, generating 369.69 kWh day1 of electricity. The LCA analysis confirms that the co-digestion process evaluated is a feasible and environmentally sustainable option for the diversification of the Colombian energy matrix and the development of the agro-industrial sector.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001535259https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00010281110000-0002-9807-78280000-0002-1549-3819https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000002960angelica.santisn@campusucc.edu.copaola.acevedop@campusucc.edu.co16 p.Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, BogotáIngeniería IndustrialBogotáhttps://www.mdpi.com/2227-9717/9/11/1875ProcessesYoo, S.-H.; Kwak, S.-Y. Electricity Consumption and Economic Growth in Seven South American Countries. Energy Policy 2010, 38, 181–188. [CrossRef]Garcia, C.; Gonzalez, O.; Baez, O.; Tellez, L.; Obando, D. Plan de Acción Indicativo de Eficiencia Energética 2017–2022; Ministerio de Minas y Energía: Bogota, Colombia, 2016Unidad de Planeación Minero Energética. Available online: http://www1.upme.gov.co/InformacionCifras/Paginas/PETROLEO. aspx (accessed on 10 May 2021).Rodríguez, R.; Gauthier-Maradei, P.; Escalante, H. Fuzzy spatial decision tool to rank suitable sites for allocation of bioenergy plants based on crop residue. Biomass Bioenergy 2017, 100, 17–30. [CrossRef]Serna, L.V.D.; Toro, J.C.S.; Loaiza, S.S.; Perez, Y.C.; Alzate, C.A.C. Agricultural waste management through energy producing biorefineries: The Colombian case. Waste Biomass Valorization 2016, 7, 789–798. [CrossRef]Yukesh Kannah, R.; Merrylin, J.; Poornima Devi, T.; Kavitha, S.; Sivashanmugam, P.; Kumar, G.; Rajesh Banu, J. Food waste valorization: Biofuels and value added product recovery. Bioresour. Technol. Rep. 2020, 11, 100524. [CrossRef]Søndergaard, M.M.; Fotidis, I.A.; Kovalovszki, A.; Angelidaki, I. Anaerobic co-digestion of agricultural byproducts with manure for enhanced biogas production. Energy Fuels 2015, 29, 8088–8094. [CrossRef]Pastor-Poquet, V.; Papirio, S.; Trably, E.; Rintala, J.; Escudié, R.; Esposito, G. Semi-continuous mono-digestion of OFMSW and co-digestion of OFMSW with beech sawdust: Assessment of the maximum operational total solid content. J. Environ. Manag. 2019, 231, 1293–1302. [CrossRef] [PubMed]Hagos, K.; Zong, J.; Li, D.; Liu, C.; Lu, X. Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives. Renew. Sustain. Energy Rev. 2017, 76, 1485–1496. [CrossRef]Tsapekos, P.; Kougias, P.G.; Kuthiala, S.; Angelidaki, I. Co-Digestion and model simulations of source separated municipal organic waste with cattle manure under batch and continuously stirred tank reactors. Energy Convers. Manag. 2018, 159, 1–6. [CrossRef]Jingura, R.M.; Matengaifa, R. The potential for energy production from crop residues in Zimbabwe. Biomass Bioenergy 2008, 32, 1287–1292. [CrossRef]Katuwal, H.; Bohara, A.K. Biogas: A Promising Renewable Technology and Its Impact on Rural Households in Nepal. Renew. Sustain. Energy Rev. 2009, 13, 2668–2674. [CrossRef]Duan, N.; Khoshnevisan, B.; Lin, C.; Liu, Z.; Liu, H. Life cycle assessment of anaerobic digestion of pig manure coupled with different digestate treatment technologies. Environ. Int. 2020, 137, 105522. [CrossRef]Ingrao, C.; Bacenetti, J.; Adamczyk, J.; Ferrante, V.; Messineo, A.; Huisingh, D. Investigating energy and environmental issues of agro-biogas derived energy systems: A comprehensive review of life cycle assessments. Renew. Energy 2019, 136, 296–307. [CrossRef]Ruiz, D.; Miguel, G.S.; Corona, B.; Gaitero, A.; Domínguez, A. Environmental and economic analysis of power generation in a thermophilic biogas plant. Sci. Total Environ. 2018, 633, 1418–1428. [CrossRef]Garfí, M.; Castro, L.; Montero, N.; Escalante, H.; Ferrer, I. Evaluating environmental benefits of low-cost biogas digesters in small-scale farms in Colombia: A life cycle assessment. Bioresour. Technol. 2019, 274, 541–548. [CrossRef]Mayer, F.; Bhandari, R.; Gäth, S. Critical review on life cycle assessment of conventional and innovative waste-to-energy technologies. Sci. Total Environ. 2019, 672, 708–721. [CrossRef] [PubMed]Amado, M.; Carrasco, J.; Ochoa, L.D.; Rangel, C.J.; Becerra, A.P.; Cabeza, I.O.; Acevedo, P.A. Technical and environmental analysis of large-scale pig manure digestion through process simulation and life cycle assessment. Chem. Eng. Trans. 2021, 87, 439–444. [CrossRef]Mendieta, O.; Castro, L.; Escalante, H.; Garfí, M. Low-cost anaerobic digester to promote the circular bioeconomy in the non-centrifugal cane sugar sector: A life cycle assessment. Bioresour. Technol. 2021, 326, 124783. [CrossRef]Informe de Sostenibilidad Postobon; Postobon: Bogotá, Colombia, 2021.Fondo de Estabilización de Precios del Cacao. Informe de Gestión 2019; Federación Nacional de Cacaoteros: Bogotá, Colombia, 2019Censo Pecuario Nacional Año 2021; Instituto Colombiano Agropecuario—ICA: Bogota, Colombia, 2021.Vargas, A.K.N.; Calderón, J.; Velásquez, D.; Castro, M.; Núñez, D.A. Biological system analysis for domestic wastewater treatment in Colombia. Ingeniare 2020, 28, 315–322. [CrossRef]Mosquera, J.; Varela, L.; Santis, A.; Villamizar, S.; Acevedo, P.; Cabeza, I. Improving anaerobic co-digestion of different residual biomass sources readily available in Colombia by process parameters optimization. Biomass Bioenergy 2020, 142, 105790. [CrossRef]Rojas, F.; Sánchez, E.J.S. Guia Ambiental Para el Cultivo Del Cacao; Ministerio de Agricultura y Desarrollo Rural: Bogota, Colombia, 2013Beniche, I.; Hungría, J.; El Bari, H.; Siles, J.A.; Chica, A.F.; Martín, M.A. Effects of C/N ratio on anaerobic co-digestion of cabbage, cauliflower, and restaurant food waste. Biomass Convers. Biorefin. 2020, 11, 2133–2145. [CrossRef]Dechrugsa, S.; Kantachote, D.; Chaiprapat, S. Effects of inoculum to substrate ratio, substrate mix ratio and inoculum source on batch co-digestion of grass and pig manure. Bioresour. Technol. 2013, 146, 101–108. [CrossRef]Cabeza, I.; Thomas, M.; Vásquez, A.; Acevedo, P. Anaerobic co-digestion of organic residues from different productive sectors in Colombia: Biomethanation potential assessment. Chem. Eng. Trans. 2016, 49, 385–390. [CrossRef]Suarez, D.; Castellanos, J.; Acevedo, P.; Santis, A.; Rodriguez, C.; Cabeza, I.; Hernandez, M. Data processing for anaerobic digestion reactor: Instrumentation, acquisition. In Proceedings of the 15th IWA World Conference of Anaerobic Digestion, Beijing, China, 17–20 October 2017.Khoshnevisan, B.; Tsapekos, P.; Alvarado-Morales, M.; Angelidaki, I. Process performance and modelling of anaerobic digestion using source-sorted organic household waste. Bioresour. Technol. 2018, 247, 486–495. [CrossRef] [PubMed]Sun, H.; Wu, S.; Dong, R. Monitoring volatile fatty acids and carbonate alkalinity in anaerobic digestion: Titration methodologies. Chem. Eng. Technol. 2016, 39, 599–610. [CrossRef]Joyce, R.M. Experiment optimization in chemistry and chemical engineering, S. Akhnazarova and V. Kafarov, Mir Publishers, Moscow and Chicago, 1982, 312 pp. Price: $9.95. J. Polym. Sci. Polym. Lett. Ed. 1984, 22, 372. [CrossRef]Mäkelä, M. Experimental design and response surface methodology in energy applications: A tutorial review. Energy Convers. Manag. 2017, 151, 630–640. [CrossRef]Ferreira, S.L.C.; Lemos, V.A.; de Carvalho, V.S.; da Silva, E.G.P.; Queiroz, A.F.S.; Felix, C.S.A.; da Silva, D.L.F.; Dourado, G.B.; Oliveira, R.V. Multivariate optimization techniques in analytical chemistry—An overview. Microchem. J. 2018, 140, 176–182. [CrossRef]ISO 14040. Environmental Management—Life Cycle Assessment—Principles and Framework; International International Standard for Organization: Geneva, Switzerland, 2006.Pöschl, M.; Ward, S.; Owende, P. Evaluation of energy efficiency of various biogas production and utilization pathways. Appl. Energy 2010, 87, 3305–3321. [CrossRef]Li, L.; Peng, X.; Wang, X.; Wu, D. Anaerobic digestion of food waste: A review focusing on process stability. Bioresour. Technol. 2018, 248, 20–28. [CrossRef]Shahbaz, M.; Ammar, M.; Korai, R.M.; Ahmad, N.; Ali, A.; Khalid, M.S.; Zou, D.; Li, X.J. Impact of C/N ratios and organic loading rates of paper, cardboard and tissue wastes in batch and CSTR anaerobic digestion with food waste on their biogas production and digester stability. SN Appl. Sci. 2020, 2, 1–13. [CrossRef]Alvarez, R.; Lidén, G. Semi-continuous co-digestion of solid slaughterhouse waste, manure, and fruit and vegetable waste. Renew. Energy 2008, 33, 726–734. [CrossRef]Gou, C.; Yang, Z.; Huang, J.; Wang, H.; Xu, H.; Wang, L. Effects of temperature and organic loading rate on the performance and microbial community of anaerobic co-digestion of waste activated sludge and food waste. Chemosphere 2014, 105, 146–151. [CrossRef] [PubMed]Khoshnevisan, B.; Tabatabaei, M.; Tsapekos, P.; Rafiee, S.; Aghbashlo, M.; Lindeneg, S.; Angelidaki, I. Environmental life cycle assessment of different biorefinery platforms valorizing municipal solid waste to bioenergy, microbial protein, lactic and succinic acid. Renew. Sustain. Energy Rev. 2020, 117, 109493. [CrossRef]Bajpai, P. Process parameters affecting anaerobic digestion. In Anaerobic Technology in Pulp and Paper Industry; Springer: Berlin/Heidelberg, Germany, 2017.Kougias, P.G.; Angelidaki, I. Biogas and its opportunities—A review. Front. Environ. Sci. Eng. 2018, 12, 14. [CrossRef]Fan, Y.; Yang, X.; Lei, Z.; Adachi, Y.; Kobayashi, M.; Zhang, Z.; Shimizu, K. Novel insight into enhanced recoverability of acidic inhibition to anaerobic digestion with nano-bubble water supplementation. Bioresour. Technol. 2021, 326, 124782. [CrossRef]Singh, B.; Szamosi, Z.; Siménfalvi, Z. State of the art on mixing in an anaerobic digester: A review. Renew. Energy 2019, 141, 922–936. [CrossRef]Li, L.; He, Q.; Zhao, X.; Wu, D.; Wang, X.; Peng, X. Anaerobic digestion of food waste: Correlation of kinetic parameters with operational conditions and process performance. Biochem. Eng. J. 2018, 130, 1–9. [CrossRef]Ward, A.J.; Hobbs, P.J.; Holliman, P.J.; Jones, D.L. Optimisation of the anaerobic digestion of agricultural resources. Bioresour. Technol. 2008, 99, 7928–7940. [CrossRef]Nges, I.A.; Björnsson, L. High methane yields and stable operation during anaerobic digestion of nutrient-supplemented energy crop mixtures. Biomass Bioenergy 2012, 47, 62–70. [CrossRef]Bouallagui, H.; Lahdheb, H.; Romdan, E.B.; Rachdi, B.; Hamdi, M. Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition. J. Environ. Manag. 2009, 90, 1844–1849. [CrossRef]Martínez, E.J.; Gil, M.V.; Fernandez, C.; Rosas, J.G.; Gómez, X. Anaerobic codigestion of sludge: Addition of butcher’s fat waste as a cosubstrate for increasing biogas production. PLoS ONE 2016, 11, e0153139. [CrossRef] [PubMed]Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 2008, 99, 4044–4064. [CrossRef] [PubMed]Pan, Y.; Zhi, Z.; Zhen, G.; Lu, X.; Bakonyi, P.; Li, Y.-Y.; Zhao, Y.; Rajesh Banu, J. Synergistic effect and biodegradation kinetics of sewage sludge and food waste mesophilic anaerobic co-digestion and the underlying stimulation mechanisms. Fuel 2019, 253, 40–49. [CrossRef]Khan, M.A.; Ngo, H.H.; Guo, W.S.; Liu, Y.; Nghiem, L.D.; Hai, F.I.; Deng, L.J.; Wang, J.; Wu, Y. Optimization of process parameters for production of volatile fatty acid, biohydrogen and methane from anaerobic digestion. Bioresour. Technol. 2016, 219, 738–748. [CrossRef]Liu, X.; Gao, X.; Wang, W.; Zheng, L.; Zhou, Y.; Sun, Y. Pilot-scale anaerobic co-digestion of municipal biomass waste: Focusing on biogas production and GHG reduction. Renew. Energy 2012, 44, 463–468. [CrossRef]Stan, C.; Collaguazo, G.; Streche, C.; Apostol, T.; Cocarta, D.M. Pilot-Scale anaerobic co-digestion of the OFMSW: Improving biogas production and startup. Sustainability 2018, 10, 1939. [CrossRef]Bacenetti, J.; Sala, C.; Fusi, A.; Fiala, M. Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable. Appl. Energy 2016, 179, 669–686. [CrossRef]Rigon, M.R.; Zortea, R.; Moraes, C.A.M.; Modolo, R.C.E. Suggestion of life cycle impact assessment methodology: Selection criteria for environmental impact categories. In New Frontiers on Life Cycle Assessment—Theory and Application; IntechOpen: London, UK, 2019Edwards, J.; Othman, M.; Crossin, E.; Burn, S. Anaerobic co-digestion of municipal food waste and sewage sludge: A comparative life cycle assessment in the context of a waste service provision. Bioresour. Technol. 2017, 223, 237–249. [CrossRef]Cusenza, M.A.; Longo, S.; Guarino, F.; Cellura, M. Energy and environmental assessment of residual bio-wastes management strategies. J. Clean. Prod. 2021, 285, 124815. [CrossRef]Fusi, A.; Bacenetti, J.; Fiala, M.; Azapagic, A. Life cycle environmental impacts of electricity from biogas produced by anaerobic digestion. Front. Bioeng. Biotechnol. 2016, 4, 26. [CrossRef] [PubMed]Sadhukhan, J.; Sen, S.; Gadkari, S. The mathematics of life cycle sustainability assessment. J. Clean. Prod. 2021, 309, 127457. [CrossRef]Vasco-Correa, J.; Khanal, S.; Manandhar, A.; Shah, A. Anaerobic digestion for bioenergy production: Global status, environmental and techno-economic implications, and government policies. Bioresour. Technol. 2018, 247, 1015–1026. [CrossRef]Nkoa, R. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: A review. Agron. Sustain. Dev. 2014, 34, 473–492. [CrossRef]Ochoa, C.; Hernández, M.A.; Bayona, O.L.; Camargo, H.A.; Cabeza, I.O.; Candela, A.M. Phosphorus recovery by struvite from anaerobic co-digestion effluents during residual biomass treatment. Biomass Convers. Biorefin. 2021, 11, 261–274. [CrossRef]Biomasa residualDiseño Box–BehnkenPotencial de producción de biogásCodigestión anaeróbicaEvaluación del ciclo de vidaResidual biomassBox–Behnken designBiogas production potentialAnaerobic codigestionLife cycle assessmentBiogas Production by Pilot-Scale Anaerobic Co-Digestion and Life Cycle Assessment Using a Real Scale Scenario: Independent Parameters and Co-Substrates InfluenceArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINAL2021-SantisyAcevedo-Biogas_AnaerobicCo-Digestion_LifeCycle.pdf2021-SantisyAcevedo-Biogas_AnaerobicCo-Digestion_LifeCycle.pdfArticuloapplication/pdf1503285https://repository.ucc.edu.co/bitstreams/1f8ccd5d-064c-47e5-bc12-283c955a7828/downloadd8003a40d8227f996aecc73817cd02c0MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.ucc.edu.co/bitstreams/51a96f8b-f30c-42be-af60-b03522ddfec1/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAIL2021-SantisyAcevedo-Biogas_AnaerobicCo-Digestion_LifeCycle.pdf.jpg2021-SantisyAcevedo-Biogas_AnaerobicCo-Digestion_LifeCycle.pdf.jpgGenerated Thumbnailimage/jpeg5879https://repository.ucc.edu.co/bitstreams/b329463d-57e7-4d04-819b-cba6ff73c01c/downloade717d0f71cc818161021c9bd258f3c08MD53TEXT2021-SantisyAcevedo-Biogas_AnaerobicCo-Digestion_LifeCycle.pdf.txt2021-SantisyAcevedo-Biogas_AnaerobicCo-Digestion_LifeCycle.pdf.txtExtracted texttext/plain81413https://repository.ucc.edu.co/bitstreams/36c37a76-3780-429a-b214-b289484d3a8a/downloaddfa982211a031ff60a856c82c88fd778MD5420.500.12494/46347oai:repository.ucc.edu.co:20.500.12494/463472024-08-10 21:02:22.881restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=