Equilibrium solubility and apparent specific volume at saturation of sodium sulfadiazine in some aqueous cosolvent mixtures at 298.2 K
El objetivo principal de esta investigación fue determinar y correlacionar la solubilidad en equilibrio de sulfadiazina de sodio en varias mezclas de {cosolvente (1) + agua (2)} a 298.2 K. Los codisolventes fueron formamida, N- metilformamida, N, N -dimetilformamida, dimetil sulfóxido, N-metil-2-pir...
- Autores:
-
Muñoz, María M
Martinez, Fleming
Delgado, Daniel Ricardo
Jouyban, Abolghasem
Acree Jr, William Eugene
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/15573
- Acceso en línea:
- https://doi.org/10.1080/00319104.2019.1675158
https://hdl.handle.net/20.500.12494/15573
- Palabra clave:
- Sodium sulfadiazine
cosolvents
solubility
cosolvency
apparent specific volume
Jouyban-Acree model
Sodium sulfadiazine
cosolvents
solubility
cosolvency
apparent specific volume
Jouyban-Acree model
- Rights
- closedAccess
- License
- Atribución – No comercial – Sin Derivar
id |
COOPER2_5ddb40220ee3ab4796b6fc3d2ba0fe3d |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/15573 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Equilibrium solubility and apparent specific volume at saturation of sodium sulfadiazine in some aqueous cosolvent mixtures at 298.2 K |
title |
Equilibrium solubility and apparent specific volume at saturation of sodium sulfadiazine in some aqueous cosolvent mixtures at 298.2 K |
spellingShingle |
Equilibrium solubility and apparent specific volume at saturation of sodium sulfadiazine in some aqueous cosolvent mixtures at 298.2 K Sodium sulfadiazine cosolvents solubility cosolvency apparent specific volume Jouyban-Acree model Sodium sulfadiazine cosolvents solubility cosolvency apparent specific volume Jouyban-Acree model |
title_short |
Equilibrium solubility and apparent specific volume at saturation of sodium sulfadiazine in some aqueous cosolvent mixtures at 298.2 K |
title_full |
Equilibrium solubility and apparent specific volume at saturation of sodium sulfadiazine in some aqueous cosolvent mixtures at 298.2 K |
title_fullStr |
Equilibrium solubility and apparent specific volume at saturation of sodium sulfadiazine in some aqueous cosolvent mixtures at 298.2 K |
title_full_unstemmed |
Equilibrium solubility and apparent specific volume at saturation of sodium sulfadiazine in some aqueous cosolvent mixtures at 298.2 K |
title_sort |
Equilibrium solubility and apparent specific volume at saturation of sodium sulfadiazine in some aqueous cosolvent mixtures at 298.2 K |
dc.creator.fl_str_mv |
Muñoz, María M Martinez, Fleming Delgado, Daniel Ricardo Jouyban, Abolghasem Acree Jr, William Eugene |
dc.contributor.author.none.fl_str_mv |
Muñoz, María M Martinez, Fleming Delgado, Daniel Ricardo Jouyban, Abolghasem Acree Jr, William Eugene |
dc.subject.spa.fl_str_mv |
Sodium sulfadiazine cosolvents solubility cosolvency apparent specific volume Jouyban-Acree model |
topic |
Sodium sulfadiazine cosolvents solubility cosolvency apparent specific volume Jouyban-Acree model Sodium sulfadiazine cosolvents solubility cosolvency apparent specific volume Jouyban-Acree model |
dc.subject.other.spa.fl_str_mv |
Sodium sulfadiazine cosolvents solubility cosolvency apparent specific volume Jouyban-Acree model |
description |
El objetivo principal de esta investigación fue determinar y correlacionar la solubilidad en equilibrio de sulfadiazina de sodio en varias mezclas de {cosolvente (1) + agua (2)} a 298.2 K. Los codisolventes fueron formamida, N- metilformamida, N, N -dimetilformamida, dimetil sulfóxido, N-metil-2-pirrolidona, 1,4-dioxano y metanol. Se usó el método clásico de matraz de agitación para determinar la solubilidad isotérmica. Las mediciones de la concentración del fármaco se realizaron mediante determinaciones de conductividad eléctrica después de diluciones acuosas adecuadas. La solubilidad de la sulfadiazina de sodio disminuye de forma no lineal con la adición de cosolvente al agua en casi todas las composiciones de mezclas. Los modelos Jouyban-Acree y Jouyban-Acree-Abraham correlacionan los valores de solubilidad con la composición de mezclas para todos los sistemas cosolventes. Además, el volumen específico aparente de este fármaco en la saturación también se calculó a partir de la densidad y las composiciones de mezclas. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-12-11T19:01:06Z |
dc.date.available.none.fl_str_mv |
2019-12-11T19:01:06Z |
dc.date.issued.none.fl_str_mv |
2019-10-28 |
dc.type.none.fl_str_mv |
Artículo |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
10290451 |
dc.identifier.uri.spa.fl_str_mv |
https://doi.org/10.1080/00319104.2019.1675158 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/15573 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
María M. Muñoz, Fleming Martinez, Daniel R. Delgado, Abolghasem Jouyban & William E. Acree Jr. (2019) Equilibrium solubility and apparent specific volume at saturation of sodium sulfadiazine in some aqueous cosolvent mixtures at 298.2 K, Physics and Chemistry of Liquids, DOI: 10.1080/00319104.2019.1675158 |
identifier_str_mv |
10290451 María M. Muñoz, Fleming Martinez, Daniel R. Delgado, Abolghasem Jouyban & William E. Acree Jr. (2019) Equilibrium solubility and apparent specific volume at saturation of sodium sulfadiazine in some aqueous cosolvent mixtures at 298.2 K, Physics and Chemistry of Liquids, DOI: 10.1080/00319104.2019.1675158 |
url |
https://doi.org/10.1080/00319104.2019.1675158 https://hdl.handle.net/20.500.12494/15573 |
dc.relation.isversionof.spa.fl_str_mv |
https://www.tandfonline.com/doi/abs/10.1080/00319104.2019.1675158 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Physics and Chemistry of Liquids |
dc.relation.references.spa.fl_str_mv |
Rubino JT. Cosolvents and cosolvency. In: Swarbrick JC, Boylan J, editors. Encyclopedia of pharmaceutical technology. Vol. 3. New York (NY): Marcel Dekker; 1988. p. 375–398. Martin A, Bustamante P, Chun AHC. Physical chemical principles in the pharmaceutical sciences. 4th ed. Philadelphia: Lea & Febiger; 1993. Yalkowsky SH. Solubility and solubilization in aqueous media. New York: American Chemical Society and Oxford University Press; 1999. Martinez F, Jouyban A, Acree WE Jr. Pharmaceuticals solubility is still nowadays widely studied everywhere (Editorial). Pharm Sci (Tabriz). 2017;23:1–2. Budavari S, O’Neil MJ, Smith A, et al. The Merck index, an encyclopedia of chemicals, drugs, and biologicals. 13th ed. Whitehouse Station (NJ): Merck & Co., Inc.; 2001. Martínez F, Gómez A. Thermodynamics of partitioning of some sulfonamides in 1-octanol/buffer and liposome systems. J Phys Org Chem. 2002;15:874–880. Gelone S, O’Donell JA. Anti-infectives. In: Gennaro AR, editor. Remington: the science and practice of pharmacy. 21 ed. Philadelphia (PA): Lippincott Williams & Wilkins; 2005. p. 1630–1633. Delgado DR, Martínez F. Thermodynamic study of the solubility of sodium sulfadiazine in some ethanol + water cosolvent mixtures. Vitae Rev Fac Quím Farm. 2010;17:191–198. Delgado DR, Martínez F, Fakhree MAA, et al. Study of the solubility of some sodium sulfonamides in ethanol + water cosolvent mixtures and correlation with the Jouyban-Acree model. Biomed Int. 2011;2:5–11. Delgado DR, Vargas EF, Martínez F. Thermodynamics of mixing of some sodium sulfonamides in ethanol + water cosolvent mixtures. Vitae Rev Fac Quím Farm. 2011;18:192–200. Muñoz MM, Rodríguez CJ, Delgado DR, et al. Solubility and saturation apparent specific volume of some sodium sulfonamides in propylene glycol + water mixtures at 298.15 K. J Mol Liq. 2015;211:192–196. Martínez F, Gómez A, Ávila CM. Partial molal volumes of transfer of some sulfonamides from water to the (x = 0.5) ethanol-water mixture. Acta Farm Bonaerense. 2002;21:107–118. Delgado DR, Vargas EF, Martínez F. Apparent molar volumes of some sodium sulfonamides in water at several concentrations and temperatures. J Solution Chem. 2011;40:1955–1963 Rodríguez GA, Martínez F, Vargas EF. Volumetric and acoustic properties of some sodium sulfonamides in dilute aqueous solutions at several temperatures. J Chem Thermodyn. 2018;118:159–164 Galindres DM, Rodríguez GA, Martínez F, et al. Molar electrical conductivity of sodium sulfonamides in aqueous solution at several temperatures. J Mol Liq. 2019;287:110984. Jouyban A. Handbook of solubility data for pharmaceuticals. Boca Raton (FL): CRC Press; 2010. p. 69–505. Pérez DC, Guevara CC, Cárdenas CA, et al. Solubility and displacement volumes of acetaminophen in binary mixtures formed by propylene glycol, ethanol, and water at 25.0 °C. Rev Colomb Cienc Quím Farm. 2003;32:116–136. Cárdenas ZJ, Jiménez DM, Martínez F. Solubility and saturation apparent volume of propranolol.HCl in some binary aqueous cosolvent mixtures at 298.15 K. J Chem Eng Data. 2015;60:1520–1525 Jiménez DM, Cárdenas ZJ, Martínez F. Solubility and apparent specific volume of some pharmaceutical salts in propylene glycol + water mixtures at 298.15 K. Chem Eng Commun. 2016;203:1013–1019. Muñoz MM, Almanza OA, Peña MÁ, et al. Solubility and apparent specific volume at saturation of some pharmaceutical salts in methanol + water mixtures at 298.15 K. J Mol Liq. 2016;220:842–847. Tinjacá DA, Muñoz MM, Rahimpour E, et al. Solubility and apparent specific volume of sucrose in some aqueous polyethylene glycol mixtures at 298.2 K. Pharm Sci (Tabriz). 2018;24:163–167 Tinjacá DA, Muñoz MM, Jouyban A, et al. Equilibrium solubility, preferential solvation and apparent specific volume of sucrose in some {cosolvent (1) + water (2)} mixtures at 298.2 K. Phys Chem Liq. 2019;57(259–273). Romdhani A, Martínez F, Almanza OA, et al. Solubility of sulfacetamide in (ethanol + water) mixtures: measurement, correlation, thermodynamics, preferential solvation and volumetric contribution at saturation. J Mol Liq. 2019;290:111219. Echeverry LC, Muñoz MM, Tinjacá DA, et al. Equilibrium solubility and apparent specific volume of lidocaine.HCl.H2O in some {cosolvent (1) + water (2)} mixtures at 298.2 K. Phys Chem Liq. 2019;57:679–688 Muñoz MM, Romdhani A, Tinjacá DA, et al. Equilibrium solubility and apparent specific volume at saturation of sodium diclofenac in {formamide (1)/N-methylformamide (1)/or N,N,-dimethylformamide (1) + water (2)} mixtures at 298.2 K. Phys Chem Liq. Forthcoming 2019. DOI:10.1080/00319104.2019.1608547 Marcus Y. The properties of solvents. Chichester: John Wiley & Sons; 1998. Marcus Y. Solvent mixtures: properties and selective solvation. New York (NY): Dekker; 2002. Leduc PA, Fortier JL, Desnoyers JE. Apparent molal volumes, heat capacities, and excess enthalpies of nalkylamine hydrobromides in water as a function of temperature. J Phys Chem. 1974;78:1217–1225. Shahidi F. Partial molar volumes of phenalkylamines and their physiologically active derivatives in water. Can J Chem. 1987;65:1924–1926 Iqbal M, Verall RE. Apparent molar volume and adiabatic compressibility studies of aqueous solutions of some drug compounds at 25°C. Can J Chem. 1989;67:727–735. Iqbal M, Jamal MA, Ahmed M, et al. Partial molar volumes of some drugs in water and ethanol at 35 °C. Can J Chem. 1994;72:1076–1079. Ruso JM, Gonzalez-Perez A, Prieto G, et al. Volumetric study of two related amphiphilic beta-blockers as a function of temperature and electrolyte concentration. Colloids Surf B Biointerfaces. 2004;11:165–175. Torres DR, Blanco L, Martínez F, et al. Apparent molal volumes of lidocaine-HCl and procaine-HCl in aqueous solution as a function of temperature. J Chem Eng Data. 2007;52:1700–1703. Delgado DR, Jiménez-Kairuz AF, Manzo RH, et al. Apparent molar volumes of the anesthetics procaine-HCl and lidocaine-HCl in water at temperatures from 278.15 to 313.15 K. Rev Colomb Cienc Quím Farm. 2010;39:57–67. Aulton ME. Pharmaceutics. The Science of Dosage Forms Design. 2nd ed. London: Churchill Livingstone; 2002. p. 309–322. Allen LV Jr, Popovich NG, Ansel HC. Ansel’s pharmaceutical dosage forms and drug delivery systems. 8th ed. Baltimore (MD): Lippincott Williams & Wilkins; 2005. p. 336–384. Acree WE Jr. Mathematical representation of thermodynamic properties: part 2. Derivation of the combined nearly ideal binary solvent (NIBS)/Redlich-Kister mathematical representation from a two-body and threebody interactional mixing model. Thermochim Acta. 1992;198:71–79. Jouyban-Gharamaleki A, York P, Hanna M, et al. Solubility prediction of salmeterol xinafoate in waterdioxane mixtures. Int J Pharm. 2001;216:33–41 Abbasi M, Martinez F, Jouyban A. Prediction of deferiprone solubility in aqueous mixtures of ethylene glycol, propylene glycol and polyethylene glycol 400 at various temperatures. J Mol Liq. 2014;197:171–175. Jouyban A, Acree WE Jr. Mathematical derivation of the Jouyban-Acree model to represent solute solubility data in mixed solvents at various temperatures. J Mol Liq. 2018;256:541–547. Jouyban A, Soltanpour S, Soltani S, et al. Prediction of drug solubility in mixed solvents using computed Abraham parameters. J Mol Liq. 2009;146:82–88. Acree WE Jr, Grubbs LM, Abraham MH. Prediction of partition coefficients and permeability of drug molecules in biological systems with Abraham model solute descriptors derived from measured solubilities and water-to-organic solvent partition coefficients. New York: InTech Publisher; 2012. p. 100–102 Rahimpour E, Jouyban A, Acree WE Jr. Comment on. Measurement and correlation of the solubility of 2,6- dihydroxybenzoic acid in alcohols and binary solvents. J Chem Eng Data. 2018;63:2329–2331. Mikhail SZ, Kimel WR. Densities and viscosities of methanol-water mixtures. J Chem Eng Data. 1961;6:533–537. Ruidiaz MA, Martínez F. Volumetric properties of the pharmaceutical model cosolvent system 1,4-dioxane + water at several temperatures. Vitae Rev Fac Quím Farm. 2009;16:327–337. |
dc.rights.license.none.fl_str_mv |
Atribución – No comercial – Sin Derivar |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/closedAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
rights_invalid_str_mv |
Atribución – No comercial – Sin Derivar http://purl.org/coar/access_right/c_14cb |
eu_rights_str_mv |
closedAccess |
dc.format.extent.spa.fl_str_mv |
13 p. |
dc.publisher.spa.fl_str_mv |
Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, Neiva Taylor and Francis |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Industrial |
dc.publisher.place.spa.fl_str_mv |
Neiva |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/db7b4c51-2a33-4df1-a129-ccf49e537b77/download https://repository.ucc.edu.co/bitstreams/5f9a6b4c-6b10-4154-823a-29834e8657a2/download https://repository.ucc.edu.co/bitstreams/65d3e94f-222b-47b0-b9f9-c2a1333d32cc/download https://repository.ucc.edu.co/bitstreams/2d22bfec-655c-4c8e-8ec4-f0c87fb0de34/download |
bitstream.checksum.fl_str_mv |
3bce4f7ab09dfc588f126e1e36e98a45 70bd2da3bd42e48eb58e5983852918b0 6af86ef8ff23670bad0b195b999dd403 5df9912329afccab8a5dab3951548199 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814247259001323520 |
spelling |
Muñoz, María MMartinez, FlemingDelgado, Daniel RicardoJouyban, AbolghasemAcree Jr, William Eugene2019-12-11T19:01:06Z2019-12-11T19:01:06Z2019-10-2810290451https://doi.org/10.1080/00319104.2019.1675158https://hdl.handle.net/20.500.12494/15573María M. Muñoz, Fleming Martinez, Daniel R. Delgado, Abolghasem Jouyban & William E. Acree Jr. (2019) Equilibrium solubility and apparent specific volume at saturation of sodium sulfadiazine in some aqueous cosolvent mixtures at 298.2 K, Physics and Chemistry of Liquids, DOI: 10.1080/00319104.2019.1675158El objetivo principal de esta investigación fue determinar y correlacionar la solubilidad en equilibrio de sulfadiazina de sodio en varias mezclas de {cosolvente (1) + agua (2)} a 298.2 K. Los codisolventes fueron formamida, N- metilformamida, N, N -dimetilformamida, dimetil sulfóxido, N-metil-2-pirrolidona, 1,4-dioxano y metanol. Se usó el método clásico de matraz de agitación para determinar la solubilidad isotérmica. Las mediciones de la concentración del fármaco se realizaron mediante determinaciones de conductividad eléctrica después de diluciones acuosas adecuadas. La solubilidad de la sulfadiazina de sodio disminuye de forma no lineal con la adición de cosolvente al agua en casi todas las composiciones de mezclas. Los modelos Jouyban-Acree y Jouyban-Acree-Abraham correlacionan los valores de solubilidad con la composición de mezclas para todos los sistemas cosolventes. Además, el volumen específico aparente de este fármaco en la saturación también se calculó a partir de la densidad y las composiciones de mezclas.The main objective of this research was to determine and correlate the equilibrium solubility of sodium sulfadiazine in several {cosolvent (1) + water (2)} mixtures at 298.2 K. Cosolvents were formamide, N-methylformamide, N,N-dimethylformamide, dimethyl sulphoxide, N-methyl-2-pyrrolidone, 1,4-dioxane, and methanol. Classical shake-flask method was used to determine isothermal solubility. Drug concentration measurements were performed by means of electrical conductivity determinations after adequate aqueous dilutions. Solubility of sodium sulfadiazine decreases non-linearly with the addition of cosolvent to water in almost all mixtures compositions. The Jouyban-Acree and Jouyban-Acree-Abraham models correlate the solubility values with the mixtures composition for all cosolvent systems. Furthermore, the apparent specific volume of this drug at saturation was also calculated from density and mixtures compositions.http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001402116https://orcid.org/0000-0002-4835-9739https://scienti.colciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000004151danielr.delgado@campusucc.edu.cohttps://scholar.google.com/citations?hl=es&user=OW0mejcAAAAJ&view_op=list_works13 p.Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, NeivaTaylor and FrancisIngeniería IndustrialNeivahttps://www.tandfonline.com/doi/abs/10.1080/00319104.2019.1675158Physics and Chemistry of LiquidsRubino JT. Cosolvents and cosolvency. In: Swarbrick JC, Boylan J, editors. Encyclopedia of pharmaceutical technology. Vol. 3. New York (NY): Marcel Dekker; 1988. p. 375–398.Martin A, Bustamante P, Chun AHC. Physical chemical principles in the pharmaceutical sciences. 4th ed. Philadelphia: Lea & Febiger; 1993.Yalkowsky SH. Solubility and solubilization in aqueous media. New York: American Chemical Society and Oxford University Press; 1999.Martinez F, Jouyban A, Acree WE Jr. Pharmaceuticals solubility is still nowadays widely studied everywhere (Editorial). Pharm Sci (Tabriz). 2017;23:1–2.Budavari S, O’Neil MJ, Smith A, et al. The Merck index, an encyclopedia of chemicals, drugs, and biologicals. 13th ed. Whitehouse Station (NJ): Merck & Co., Inc.; 2001.Martínez F, Gómez A. Thermodynamics of partitioning of some sulfonamides in 1-octanol/buffer and liposome systems. J Phys Org Chem. 2002;15:874–880.Gelone S, O’Donell JA. Anti-infectives. In: Gennaro AR, editor. Remington: the science and practice of pharmacy. 21 ed. Philadelphia (PA): Lippincott Williams & Wilkins; 2005. p. 1630–1633.Delgado DR, Martínez F. Thermodynamic study of the solubility of sodium sulfadiazine in some ethanol + water cosolvent mixtures. Vitae Rev Fac Quím Farm. 2010;17:191–198.Delgado DR, Martínez F, Fakhree MAA, et al. Study of the solubility of some sodium sulfonamides in ethanol + water cosolvent mixtures and correlation with the Jouyban-Acree model. Biomed Int. 2011;2:5–11.Delgado DR, Vargas EF, Martínez F. Thermodynamics of mixing of some sodium sulfonamides in ethanol + water cosolvent mixtures. Vitae Rev Fac Quím Farm. 2011;18:192–200.Muñoz MM, Rodríguez CJ, Delgado DR, et al. Solubility and saturation apparent specific volume of some sodium sulfonamides in propylene glycol + water mixtures at 298.15 K. J Mol Liq. 2015;211:192–196.Martínez F, Gómez A, Ávila CM. Partial molal volumes of transfer of some sulfonamides from water to the (x = 0.5) ethanol-water mixture. Acta Farm Bonaerense. 2002;21:107–118.Delgado DR, Vargas EF, Martínez F. Apparent molar volumes of some sodium sulfonamides in water at several concentrations and temperatures. J Solution Chem. 2011;40:1955–1963Rodríguez GA, Martínez F, Vargas EF. Volumetric and acoustic properties of some sodium sulfonamides in dilute aqueous solutions at several temperatures. J Chem Thermodyn. 2018;118:159–164Galindres DM, Rodríguez GA, Martínez F, et al. Molar electrical conductivity of sodium sulfonamides in aqueous solution at several temperatures. J Mol Liq. 2019;287:110984.Jouyban A. Handbook of solubility data for pharmaceuticals. Boca Raton (FL): CRC Press; 2010. p. 69–505.Pérez DC, Guevara CC, Cárdenas CA, et al. Solubility and displacement volumes of acetaminophen in binary mixtures formed by propylene glycol, ethanol, and water at 25.0 °C. Rev Colomb Cienc Quím Farm. 2003;32:116–136.Cárdenas ZJ, Jiménez DM, Martínez F. Solubility and saturation apparent volume of propranolol.HCl in some binary aqueous cosolvent mixtures at 298.15 K. J Chem Eng Data. 2015;60:1520–1525Jiménez DM, Cárdenas ZJ, Martínez F. Solubility and apparent specific volume of some pharmaceutical salts in propylene glycol + water mixtures at 298.15 K. Chem Eng Commun. 2016;203:1013–1019.Muñoz MM, Almanza OA, Peña MÁ, et al. Solubility and apparent specific volume at saturation of some pharmaceutical salts in methanol + water mixtures at 298.15 K. J Mol Liq. 2016;220:842–847.Tinjacá DA, Muñoz MM, Rahimpour E, et al. Solubility and apparent specific volume of sucrose in some aqueous polyethylene glycol mixtures at 298.2 K. Pharm Sci (Tabriz). 2018;24:163–167Tinjacá DA, Muñoz MM, Jouyban A, et al. Equilibrium solubility, preferential solvation and apparent specific volume of sucrose in some {cosolvent (1) + water (2)} mixtures at 298.2 K. Phys Chem Liq. 2019;57(259–273).Romdhani A, Martínez F, Almanza OA, et al. Solubility of sulfacetamide in (ethanol + water) mixtures: measurement, correlation, thermodynamics, preferential solvation and volumetric contribution at saturation. J Mol Liq. 2019;290:111219.Echeverry LC, Muñoz MM, Tinjacá DA, et al. Equilibrium solubility and apparent specific volume of lidocaine.HCl.H2O in some {cosolvent (1) + water (2)} mixtures at 298.2 K. Phys Chem Liq. 2019;57:679–688Muñoz MM, Romdhani A, Tinjacá DA, et al. Equilibrium solubility and apparent specific volume at saturation of sodium diclofenac in {formamide (1)/N-methylformamide (1)/or N,N,-dimethylformamide (1) + water (2)} mixtures at 298.2 K. Phys Chem Liq. Forthcoming 2019. DOI:10.1080/00319104.2019.1608547Marcus Y. The properties of solvents. Chichester: John Wiley & Sons; 1998.Marcus Y. Solvent mixtures: properties and selective solvation. New York (NY): Dekker; 2002.Leduc PA, Fortier JL, Desnoyers JE. Apparent molal volumes, heat capacities, and excess enthalpies of nalkylamine hydrobromides in water as a function of temperature. J Phys Chem. 1974;78:1217–1225.Shahidi F. Partial molar volumes of phenalkylamines and their physiologically active derivatives in water. Can J Chem. 1987;65:1924–1926Iqbal M, Verall RE. Apparent molar volume and adiabatic compressibility studies of aqueous solutions of some drug compounds at 25°C. Can J Chem. 1989;67:727–735.Iqbal M, Jamal MA, Ahmed M, et al. Partial molar volumes of some drugs in water and ethanol at 35 °C. Can J Chem. 1994;72:1076–1079.Ruso JM, Gonzalez-Perez A, Prieto G, et al. Volumetric study of two related amphiphilic beta-blockers as a function of temperature and electrolyte concentration. Colloids Surf B Biointerfaces. 2004;11:165–175.Torres DR, Blanco L, Martínez F, et al. Apparent molal volumes of lidocaine-HCl and procaine-HCl in aqueous solution as a function of temperature. J Chem Eng Data. 2007;52:1700–1703.Delgado DR, Jiménez-Kairuz AF, Manzo RH, et al. Apparent molar volumes of the anesthetics procaine-HCl and lidocaine-HCl in water at temperatures from 278.15 to 313.15 K. Rev Colomb Cienc Quím Farm. 2010;39:57–67.Aulton ME. Pharmaceutics. The Science of Dosage Forms Design. 2nd ed. London: Churchill Livingstone; 2002. p. 309–322.Allen LV Jr, Popovich NG, Ansel HC. Ansel’s pharmaceutical dosage forms and drug delivery systems. 8th ed. Baltimore (MD): Lippincott Williams & Wilkins; 2005. p. 336–384.Acree WE Jr. Mathematical representation of thermodynamic properties: part 2. Derivation of the combined nearly ideal binary solvent (NIBS)/Redlich-Kister mathematical representation from a two-body and threebody interactional mixing model. Thermochim Acta. 1992;198:71–79.Jouyban-Gharamaleki A, York P, Hanna M, et al. Solubility prediction of salmeterol xinafoate in waterdioxane mixtures. Int J Pharm. 2001;216:33–41Abbasi M, Martinez F, Jouyban A. Prediction of deferiprone solubility in aqueous mixtures of ethylene glycol, propylene glycol and polyethylene glycol 400 at various temperatures. J Mol Liq. 2014;197:171–175.Jouyban A, Acree WE Jr. Mathematical derivation of the Jouyban-Acree model to represent solute solubility data in mixed solvents at various temperatures. J Mol Liq. 2018;256:541–547.Jouyban A, Soltanpour S, Soltani S, et al. Prediction of drug solubility in mixed solvents using computed Abraham parameters. J Mol Liq. 2009;146:82–88.Acree WE Jr, Grubbs LM, Abraham MH. Prediction of partition coefficients and permeability of drug molecules in biological systems with Abraham model solute descriptors derived from measured solubilities and water-to-organic solvent partition coefficients. New York: InTech Publisher; 2012. p. 100–102Rahimpour E, Jouyban A, Acree WE Jr. Comment on. Measurement and correlation of the solubility of 2,6- dihydroxybenzoic acid in alcohols and binary solvents. J Chem Eng Data. 2018;63:2329–2331.Mikhail SZ, Kimel WR. Densities and viscosities of methanol-water mixtures. J Chem Eng Data. 1961;6:533–537.Ruidiaz MA, Martínez F. Volumetric properties of the pharmaceutical model cosolvent system 1,4-dioxane + water at several temperatures. Vitae Rev Fac Quím Farm. 2009;16:327–337.Sodium sulfadiazinecosolventssolubilitycosolvencyapparent specific volumeJouyban-Acree modelSodium sulfadiazinecosolventssolubilitycosolvencyapparent specific volumeJouyban-Acree modelEquilibrium solubility and apparent specific volume at saturation of sodium sulfadiazine in some aqueous cosolvent mixtures at 298.2 KArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribución – No comercial – Sin Derivarinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/db7b4c51-2a33-4df1-a129-ccf49e537b77/download3bce4f7ab09dfc588f126e1e36e98a45MD52TEXTsolubility_sulfadiazine_cosolvent.pdf.txtsolubility_sulfadiazine_cosolvent.pdf.txtExtracted texttext/plain44977https://repository.ucc.edu.co/bitstreams/5f9a6b4c-6b10-4154-823a-29834e8657a2/download70bd2da3bd42e48eb58e5983852918b0MD53ORIGINALsolubility_sulfadiazine_cosolvent.pdfsolubility_sulfadiazine_cosolvent.pdfArtículo Científicoapplication/pdf1806507https://repository.ucc.edu.co/bitstreams/65d3e94f-222b-47b0-b9f9-c2a1333d32cc/download6af86ef8ff23670bad0b195b999dd403MD51THUMBNAILsolubility_sulfadiazine_cosolvent.pdf.jpgsolubility_sulfadiazine_cosolvent.pdf.jpgGenerated Thumbnailimage/jpeg4293https://repository.ucc.edu.co/bitstreams/2d22bfec-655c-4c8e-8ec4-f0c87fb0de34/download5df9912329afccab8a5dab3951548199MD5420.500.12494/15573oai:repository.ucc.edu.co:20.500.12494/155732024-08-10 20:59:30.725restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo= |