NK Cell Activity and CD57+/NKG2Chigh Phenotype Are Increased in Men Who Have Sex With Men at High Risk for HIV
Introduction: The HIV-exposed seronegative (HESN) status is for individuals who remain seronegative despite repeated exposure to HIV. One of the main cohorts within this group is men who have sex with men (MSM). Studies of this cohort have revealed different immunological and genetic mechanisms that...
- Autores:
-
Zapata Builes, Wildeman
Flórez Álvarez, Lizdany
Blanquiceth, Yurany
Ramírez, Katherin
Ossa Giraldo, Ana Claudia
Velilla Hernandez, Paula Andrea
Hernández López, Juan Carlos
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/28302
- Acceso en línea:
- https://hdl.handle.net/20.500.12494/28302
- Palabra clave:
- CD57C/NKG2Chigh NK cell
cytotoxicity
Highly exposed seronegative
men who have sex with men
natural resistance
HIV
CD57C/NKG2Chigh NK cell
cytotoxicity
Highly exposed seronegative
men who have sex with men
natural resistance
HIV
- Rights
- openAccess
- License
- Atribución
id |
COOPER2_5acb5e76b4edad4eea7b9be0e5448926 |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/28302 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
NK Cell Activity and CD57+/NKG2Chigh Phenotype Are Increased in Men Who Have Sex With Men at High Risk for HIV |
title |
NK Cell Activity and CD57+/NKG2Chigh Phenotype Are Increased in Men Who Have Sex With Men at High Risk for HIV |
spellingShingle |
NK Cell Activity and CD57+/NKG2Chigh Phenotype Are Increased in Men Who Have Sex With Men at High Risk for HIV CD57C/NKG2Chigh NK cell cytotoxicity Highly exposed seronegative men who have sex with men natural resistance HIV CD57C/NKG2Chigh NK cell cytotoxicity Highly exposed seronegative men who have sex with men natural resistance HIV |
title_short |
NK Cell Activity and CD57+/NKG2Chigh Phenotype Are Increased in Men Who Have Sex With Men at High Risk for HIV |
title_full |
NK Cell Activity and CD57+/NKG2Chigh Phenotype Are Increased in Men Who Have Sex With Men at High Risk for HIV |
title_fullStr |
NK Cell Activity and CD57+/NKG2Chigh Phenotype Are Increased in Men Who Have Sex With Men at High Risk for HIV |
title_full_unstemmed |
NK Cell Activity and CD57+/NKG2Chigh Phenotype Are Increased in Men Who Have Sex With Men at High Risk for HIV |
title_sort |
NK Cell Activity and CD57+/NKG2Chigh Phenotype Are Increased in Men Who Have Sex With Men at High Risk for HIV |
dc.creator.fl_str_mv |
Zapata Builes, Wildeman Flórez Álvarez, Lizdany Blanquiceth, Yurany Ramírez, Katherin Ossa Giraldo, Ana Claudia Velilla Hernandez, Paula Andrea Hernández López, Juan Carlos |
dc.contributor.author.none.fl_str_mv |
Zapata Builes, Wildeman Flórez Álvarez, Lizdany Blanquiceth, Yurany Ramírez, Katherin Ossa Giraldo, Ana Claudia Velilla Hernandez, Paula Andrea Hernández López, Juan Carlos |
dc.subject.spa.fl_str_mv |
CD57C/NKG2Chigh NK cell cytotoxicity Highly exposed seronegative men who have sex with men natural resistance HIV |
topic |
CD57C/NKG2Chigh NK cell cytotoxicity Highly exposed seronegative men who have sex with men natural resistance HIV CD57C/NKG2Chigh NK cell cytotoxicity Highly exposed seronegative men who have sex with men natural resistance HIV |
dc.subject.other.spa.fl_str_mv |
CD57C/NKG2Chigh NK cell cytotoxicity Highly exposed seronegative men who have sex with men natural resistance HIV |
description |
Introduction: The HIV-exposed seronegative (HESN) status is for individuals who remain seronegative despite repeated exposure to HIV. One of the main cohorts within this group is men who have sex with men (MSM). Studies of this cohort have revealed different immunological and genetic mechanisms that can explain the phenomenon of natural HIV resistance. NK cells’ higher effector capacity is related to natural resistance to HIV. Besides, a new population of NK cells with adaptive features was described recently. These cells are increased in some HESN cohorts and appear to be involved in better control of viral replication in primarily HIV-infected subjects. The present study evaluated the role of NK cells in the natural resistance to HIV-1 infection in MSM. Methodology: Phenotypic and functional features were evaluated in NK cells from two groups of MSM, at different risks of HIV infection, according to the number of sexual partners. The production of IFN-g and b-chemokines was included in the analysis, as well as the cytotoxic capacity and adaptive NK cell frequency. Genetic features, such as HLA and KIR allele frequencies, were also explored. Results: High-risk MSM exhibit an increased frequency of fully mature and CD57C/NKG2Chigh NK cells. These individuals also show higher cytotoxic capacity and IFN-g production in response to K562 stimuli. NK cells with a CD107aC/IFN-gC functional profile were found more frequently and displayed higher IFN-g production capacity among high-risk MSM than among low-risk MSM. The protective allele HLAB 18 was only present in the high-risk MSM group as well as HLA-B 39. The protective phenotype KIR3DL1/S1-HLA-B Bw4, in a homozygous state, was particularly abundant in the high-risk population. Notably, some of these functional features were related to higher frequencies of mature and CD57C/NKG2Chigh NK cells, which, in turn, were associated with a higher number of sexual partners. Conclusion: The changes observed in the NK cell compartment can be driven by the magnitude of sexual exposure and immunological challenges of high-risk individuals, which could influence their resistance/susceptibility to HIV infection. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-11-27T16:29:52Z |
dc.date.available.none.fl_str_mv |
2020-11-27T16:29:52Z |
dc.date.issued.none.fl_str_mv |
2020-09-11 |
dc.type.none.fl_str_mv |
Artículo |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
1664-3224 |
dc.identifier.uri.spa.fl_str_mv |
10.3389/fimmu.2020.537044 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/28302 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Flórez-Álvarez, L., Blanquiceth, Y., Ramírez, K., Ossa-Giraldo, A. C., Velilla, P. A., Hernandez, J. C. y Zapata, W. (2020) NK Cell Activity and CD57+/NKG2Chigh Phenotype Are Increased in Men Who Have Sex With Men at High Risk for HIV |
identifier_str_mv |
1664-3224 10.3389/fimmu.2020.537044 Flórez-Álvarez, L., Blanquiceth, Y., Ramírez, K., Ossa-Giraldo, A. C., Velilla, P. A., Hernandez, J. C. y Zapata, W. (2020) NK Cell Activity and CD57+/NKG2Chigh Phenotype Are Increased in Men Who Have Sex With Men at High Risk for HIV |
url |
https://hdl.handle.net/20.500.12494/28302 |
dc.relation.isversionof.spa.fl_str_mv |
https://www.frontiersin.org/articles/10.3389/fimmu.2020.537044/full?report=reader |
dc.relation.ispartofjournal.spa.fl_str_mv |
Frontiers in Immunology |
dc.relation.references.spa.fl_str_mv |
Horton RE, McLaren PJ, Fowke K, Kimani J, Ball TB. Cohorts for the study of HIV−1–exposed but uninfected individuals: benefits and limitations. J Infect Dis. (2010) 202:S377–81. Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell. (1996) 86:367–77. doi: 10.1016/s0092-8674(00)80110-5 Dean M, Carrington M,Winkler C, Huttley GA, Smith MW, Allikmets R, et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia growth and development study, multicenter aids cohort study, multicenter hemophilia cohort study, San Francisco City Cohort, ALIVE Study. Science. (1996) 273:1856–62. doi: 10.1126/science.273.5283.1856 CDC Monitoring Selected National HIV Prevention and Care Objectives by Using HIV Surveillance Data—United States and 6 U.S. Dependent Areas— 2011. HIV Surveillance Supplemental Report. (Vol. 13). Atlanta, GA: Centers for Disease Control and Prevention. (2013). Scott-Algara D, Truong LX, Versmisse P, David A, Luong TT, Nguyen NV, et al. Cutting edge: increased NK cell activity in HIV-1-exposed but uninfected Vietnamese intravascular drug users. J Immunol. (2003) 171:5663–7. doi: 10.4049/jimmunol.171.11.5663 Tomescu C, Seaton KE, Smith P, Taylor M, Tomaras GD, Metzger DS, et al. Innate activation of MDC and NK cells in high-risk HIV-1-exposed seronegative IV-drug users who share needles when compared with low- risk nonsharing IV-drug user controls. J Acquir Immune Defic Syndr. (2015) 68:264–73. doi: 10.1097/qai.0000000000000470 Florez-Alvarez L, Hernandez JC, Zapata W. NK cells in HIV-1 infection: from basic science to vaccine strategies. Front Immunol. (2018) 9:2290. doi: 10.3389/fimmu.2018.02290 Lohman-Payne B, Slyker JA, Moore S, Maleche-Obimbo E, Wamalwa DC, Richardson BA, et al. Breast milk cellular HIV-specific interferon γ responses are associated with protection from peripartum HIV transmission. AIDS. (2012) 26:2007–16. doi: 10.1097/qad.0b013e328359b7e0 Montoya CJ, Velilla PA, Chougnet C, Landay AL, Rugeles MT. Increased IFN-gamma production by NK and CD3+/CD56+ cells in sexually HIV-1- exposed but uninfected individuals. Clin Immunol. (2006) 120:138–46. doi: 10.1016/j.clim.2006.02.008 Quillay H, Costa HE, Durie M, Marlin R, Cannou C, Madec Y, et al. NK cells control HIV−1 infection of macrophages through soluble factors and cellular contacts in the human decidua. Retrovirology. (2016) 13:39. Vega JA, Villegas-Ospina S, Aguilar-Jiménez W, Rugeles MT, Bedoya G, Zapata W, et al. Haplotypes in CCR5-CCR2, CCL3 and CCL5 are associated with natural resistance to HIV-1 infection in a Colombian cohort. Biomédica. (2017) 37:267–73. O’Leary JG, Goodarzi M, Drayton DL, von Andrian UH. T cell– and B cell– independent adaptive immunity mediated by natural killer cells. Nat Immunol. (2006) 7:507–16. doi: 10.1038/ni1332 Reeves RK, Li H, Jost S, Blass E, Li H, Schafer JL, et al. Antigen-specific NK cell memory in rhesus macaques. Nat Immunol. (2015) 16:927–32. doi: 10.1038/ni.3227 Lima JF, Oliveira LMS, Pereira NZ, Mitsunari GE, Duarte AJS, Sato MN. Distinct natural killer cells in HIV-exposed seronegative subjects with effector cytotoxic CD56dim and CD56bright cells and memory-Like CD57+NKG2C+CD56dim Cells. JAIDS J Acquir Immune Defic Syndr. (2014) 67:463–71. doi: 10.1097/qai.0000000000000350 Gondois-Rey F, Chéret A, Granjeaud S, Mallet F, Bidaut G, Lécuroux C, et al. NKG2C+memory-like NK cells contribute to the control of HIV viremia during primary infection: optiprim-ANRS 147. Clin Transl Immunol. (2017) 6:e150. doi: 10.1038/cti.2017.22 Pines HA, Karris MY, Little SJ. Sexual partner concurrency among partners reported by MSM with recent HIV infection. AIDS Behav. (2017) 21:3026–34. doi: 10.1007/s10461-017-1855-x Tieu HV, Nandi V, Frye V, Stewart K, Oquendo H, Bush B, et al. Concurrent partnerships and HIV risk among men who have sex with men in New York City. Sex Transm Dis. (2014) 41:200–8. doi: 10.1097/olq.0000000000000090 Marmor M, Sheppard HW, Donnell D, Bozeman S, Celum C, Buchbinder S, et al. Homozygous and heterozygous CCR5-Delta32 genotypes are associated with resistance to HIV infection. J Acquir Immune Defic Syndr. (2001) 27:472– 81. doi: 10.1097/00126334-200108150-00009 Trecarichi EM, Tumbarello M, de Gaetano Donati K, Tamburrini E, Cauda R, Brahe C, et al. Partial protective effect of CCR5-Delta 32 heterozygosity in a cohort of heterosexual Italian HIV-1 exposed uninfected individuals. AIDS Res Ther. (2006) 3:22. Gupta A, Padh H. The global distribution of CCR5 delta 32 polymorphism: role in HIV-1 protection. BMC Infect Dis. (2012) 12:O16. doi: 10.1186/1471- 2334-12-S1-O16 Liu S, Kong C, Wu J, Ying H, Zhu H. Effect of CCR5-Delta32 heterozygosity on HIV-1 susceptibility: a meta-analysis. PLoS One. (2012) 7:e35020. doi: 10.1371/journal.pone.0035020 de Silva E, Stumpf MP. HIV and the CCR5-Delta32 resistance allele. FEMS Microbiol Lett. (2004) 241:1–12. doi: 10.1016/j.femsle.2004.09.040 Nielsen CM, White MJ, Goodier MR, Riley EM. Functional significance of CD57 expression on human NK cells and relevance to disease. Front Immunol. (2013) 4:422. doi: 10.3389/fimmu.2013.00422 Björkström NK, Riese P, Heuts F, Andersson S, Fauriat C, Ivarsson MA, et al. Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK-cell differentiation uncoupled from NK-cell education. Blood. (2010) 116:3853–64. doi: 10.1182/blood-2010-04-281675 Le Garff-Tavernier M, Beziat V, Decocq J, Siguret V, Gandjbakhch F, Pautas E, et al. Human NK cells display major phenotypic and functional changes over the life span. Aging Cell. (2010) 9:527–35. doi: 10.1111/j.1474-9726.2010. 00584.x Goodier MR, White MJ, Darboe A, Nielsen CM, Goncalves A, Bottomley C, et al. Rapid NK cell differentiation in a population with near-universal human cytomegalovirus infection is attenuated by NKG2C deletions. Blood. (2014) 124:2213–22. doi: 10.1182/blood-2014-05-576124 Foley B, Cooley S, Verneris MR, Pitt M, Curtsinger J, Luo X, et al. Cytomegalovirus reactivation after allogeneic transplantation promotes a lasting increase in educated NKG2C+ natural killer cells with potent function. Blood. (2012) 119:2665–74. doi: 10.1182/blood-2011-10-386995 Bjorkstrom NK, Lindgren T, Stoltz M, Fauriat C, Braun M, Evander M, et al. Rapid expansion and long-term persistence of elevated NK cell numbers in humans infected with hantavirus. J Exp Med. (2011) 208:13–21. doi: 10.1084/ jem.20100762 Beziat V, Dalgard O, Asselah T, Halfon P, Bedossa P, Boudifa A, et al. CMV drives clonal expansion of NKG2C+ NK cells expressing self-specific KIRs in chronic hepatitis patients. Eur J Immunol. (2012) 42:447–57. doi: 10.1002/eji. 201141826 Petitdemange C, Becquart P, Wauquier N, Beziat V, Debre P, Leroy EM, et al. Unconventional repertoire profile is imprinted during acute chikungunya infection for natural killer cells polarization toward cytotoxicity. PLoS Pathog. (2011) 7:e1002268. doi: 10.1371/journal.ppat.1002268 Lopez-Vergès S, Milush JM, Pandey S, York VA, Arakawa-Hoyt J, Pircher H, et al. CD57 defines a functionally distinct population of mature NK cells in the human CD56dimCD16+ NK-cell subset. Blood. (2010) 116:3865–74. doi: 10.1182/blood-2010-04-282301 Jiang Y, Zhou F, Tian Y, Zhang Z, Kuang R, Liu J, et al. Higher NK cell IFN-gamma production is associated with delayed HIV disease progression in LTNPs. J Clin Immunol. (2013) 33:1376–85. doi: 10.1007/s10875-013-9930-1 Jiang Y, Chen O, Cui C, Zhao B, Han X, Zhang Z, et al. KIR3DS1/L1 and HLA-Bw4-80I are associated with HIV disease progression among HIV typical progressors and long-term nonprogressors. BMC Infect Dis. (2013) 13:405. doi: 10.1186/1471-2334-13-405 Chung AW, Navis M, Isitman G, Wren L, Silvers J, Amin J, et al. Activation of NK cells by ADCC antibodies and HIV disease progression. J Acquir Immune Defic Syndr. (2011) 58:127–31. doi: 10.1097/qai.0b013e31822c62b9 Luetke-Eversloh M, Hammer Q, Durek P, Nordström K, Gasparoni G, Pink M, et al. Human cytomegalovirus drives epigenetic imprinting of the IFNG locus in NKG2Chi natural killer cells. PLoS pathogens. (2014) 10:e1004441. doi: 10.1371/journal.ppat.1004441 Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol. (2004) 75:163–89. doi: 10.1189/jlb.0603252 Samuel CE. Antiviral actions ofinterferons. ClinMicrobiol Rev. (2001) 14:778– 809. doi: 10.1128/cmr.14.4.778-809.2001 Chaix J, Tessmer MS, Hoebe K, Fuseri N, Ryffel B, Dalod M, et al. Cutting edge: priming of NK cells by IL-18. J Immunol. (2008) 181:1627–31. doi: 10.4049/jimmunol.181.3.1627 Fehniger TA, Cai SF, Cao X, Bredemeyer AJ, Presti RM, French AR, et al. Acquisition of murine NK cell cytotoxicity requires the translation of a pre-existing pool of granzyme B and perforin mRNAs. Immunity. (2007) 26:798–811. doi: 10.1016/j.immuni.2007.04.010 Lucas M, Schachterle W, Oberle K, Aichele P, Diefenbach A. Dendritic cells prime natural killer cells by trans-presenting interleukin 15. Immunity. (2007) 26:503–17. doi: 10.1016/j.immuni.2007.03.006 Bukowski JF, Biron CA, Welsh RM. Elevated natural killer cell-mediated cytotoxicity, plasma interferon, and tumor cell rejection in mice persistently infected with lymphocytic choriomeningitis virus. J Immunol. (1983) 131:991–6. Barton ES, White DW, Cathelyn JS, Brett-McClellan KA, Engle M, Diamond MS, et al. Herpesvirus latency confers symbiotic protection from bacterial infection. Nature. (2007) 447:326–9. doi: 10.1038/nature05762 Min-Oo G, Lanier LL. Cytomegalovirus generates long-lived antigen-specific NK cells with diminished bystander activation to heterologous infection. J Exp Med. (2014) 211:2669–80. doi: 10.1084/jem.20141172 Gumá M, Cabrera C, Erkizia I, Bofill M, Clotet B, Ruiz L, et al. Human cytomegalovirus infection is associated with increased proportions ofNK cells that express the CD94/NKG2C receptor in aviremic HIV−1–positive patients. J Infect Dis. (2006) 194:38–41. doi: 10.1086/504719 Drews E, Adam A, Htoo P, Townsley E, Mathew A. Upregulation of HLA- E by dengue and not Zika viruses. Clin Transl Immunol. (2018) 7:e1039. doi: 10.1002/cti2.1039 Martini F, Agrati C, D’Offizi G, Poccia F. HLA-E up-regulation induced by HIV infection may directly contribute to CD94-mediated impairment of NK cells. Int J Immunopathol Pharmacol. (2005) 18:269–76. doi: 10.1177/ 039463200501800209 Liu LL, Landskron J, Ask EH, Enqvist M, Sohlberg E, Traherne JA, et al. Critical role ofCD2 Co-stimulation in adaptive natural killer cell responses revealed in NKG2C-deficient humans. Cell Rep. (2016) 15:1088–99. doi: 10.1016/j.celrep. 2016.04.005 Bryceson YT, Ljunggren HG, Long EO. Minimal requirement for induction of natural cytotoxicity and intersection of activation signals by inhibitory receptors. Blood. (2009) 114:2657–66. doi: 10.1182/blood-2009-01-20 1632 Farquhar C, Rowland-Jones S, Mbori-Ngacha D, Redman M, Lohman B, Slyker J, et al. Human leukocyte antigen (HLA) B∗18 and protection against mother-to-child HIV type 1 transmission. AIDS Res Hum Retroviruses. (2004) 20:692–7. doi: 10.1089/0889222041524616 Chaudhari DV, Chavan VR, Ahir SP, Kerkar SC, Mehta PR, Mania- Pramanik J. Human leukocyte antigen B distribution in HIV discordant cohort from India. Immunol Lett. (2013) 156:1–6. doi: 10.1016/j.imlet.2013. 09.002 Valenzuela-Ponce H, Alva-Hernandez S, Garrido-Rodriguez D, Soto-Nava M, Garcia-Tellez T, Escamilla-Gomez T, et al. Novel HLA class I associations with HIV-1 control in a unique genetically admixed population. Sci Rep. (2018) 8:6111. Payne R, Muenchhoff M, Mann J, Roberts HE, Matthews P, Adland E, et al. Impact of HLA-driven HIV adaptation on virulence in populations of high HIV seroprevalence. Proc Natl Acad Sci USA. (2014) 111:E5393–400. Raulet DH. Missing self recognition and self tolerance of natural killer (NK) cells. Semin Immunol. (2006) 18:145–50. doi: 10.1016/j.smim.2006.03.003 Alter G, Rihn S, Walter K, Nolting A, Martin M, Rosenberg ES, et al. HLA class I subtype-dependent expansion of KIR3DS1+ and KIR3DL1+ NK cells during acute human immunodeficiency virus type 1 infection. J Virol. (2009) 83:6798–805. doi: 10.1128/jvi.00256-09 Boudreau JE, Mulrooney TJ, Le Luduec JB, Barker E, Hsu KC. KIR3DL1 and HLA-B density and binding calibrate NK education and response to HIV. J Immunol. (2016) 196:3398–410. doi: 10.4049/jimmunol.1502469 Boulet S, Song R, Kamya P, Bruneau J, Shoukry NH, Tsoukas CM, et al. HIV protective KIR3DL1 and HLA-B genotypes influence NK cell function following stimulation with HLA-devoid cells. J Immunol. (2010) 184:2057–64. doi: 10.4049/jimmunol.0902621 Song R, Lisovsky I, Lebouche B, Routy JP, Bruneau J, Bernard NF. HIV protective KIR3DL1/S1-HLA-B genotypes influence NK cell-mediated inhibition of HIV replication in autologous CD4 targets. PLoS Pathog. (2014) 10:e1003867. doi: 10.1371/journal.ppat.1003867 Habegger de Sorrentino A, Sinchi JL, Marinic K, Lopez R, Iliovich E. KIR- HLA-A and B alleles of the Bw4 epitope against HIV infection in discordant heterosexual couples in Chaco Argentina. Immunology. (2013) 140:273–9. doi: 10.1111/imm.12137 Flores-Villanueva PO, Yunis EJ, Delgado JC, Vittinghoff E, Buchbinder S, Leung JY, et al. Control of HIV-1 viremia and protection from AIDS are associated with HLA-Bw4 homozygosity. Proc Natl Acad Sci USA. (2001) 98:5140–5. doi: 10.1073/pnas.071548198 |
dc.rights.license.none.fl_str_mv |
Atribución |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
14 |
dc.coverage.temporal.spa.fl_str_mv |
11:537044 |
dc.publisher.spa.fl_str_mv |
Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina, Medellín y Envigado Christian Körner, Heinrich-Pette-Institut, Leibniz-Institut für Experimentelle Virologie, Germany |
dc.publisher.program.spa.fl_str_mv |
Medicina |
dc.publisher.place.spa.fl_str_mv |
Medellín |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/ee55e5a8-24c0-4283-bde6-dec023814634/download https://repository.ucc.edu.co/bitstreams/a55cb273-381f-4073-b6bc-dacda9ac5ae4/download https://repository.ucc.edu.co/bitstreams/c2f6b7f4-4dfa-44e4-b203-e2252fbca09d/download https://repository.ucc.edu.co/bitstreams/961ecd82-3588-4e44-97d8-ce1e767b7bdb/download |
bitstream.checksum.fl_str_mv |
3bce4f7ab09dfc588f126e1e36e98a45 41fb0aa8d0a3705f08c589170645ed26 4e31d537421f3c6188093b7d12baeef2 ce9e18b8808f6b1ca7b713e0e56ba751 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814246758583107584 |
spelling |
Zapata Builes, WildemanFlórez Álvarez, LizdanyBlanquiceth, YuranyRamírez, KatherinOssa Giraldo, Ana ClaudiaVelilla Hernandez, Paula AndreaHernández López, Juan Carlos 11:5370442020-11-27T16:29:52Z2020-11-27T16:29:52Z2020-09-111664-322410.3389/fimmu.2020.537044https://hdl.handle.net/20.500.12494/28302Flórez-Álvarez, L., Blanquiceth, Y., Ramírez, K., Ossa-Giraldo, A. C., Velilla, P. A., Hernandez, J. C. y Zapata, W. (2020) NK Cell Activity and CD57+/NKG2Chigh Phenotype Are Increased in Men Who Have Sex With Men at High Risk for HIVIntroduction: The HIV-exposed seronegative (HESN) status is for individuals who remain seronegative despite repeated exposure to HIV. One of the main cohorts within this group is men who have sex with men (MSM). Studies of this cohort have revealed different immunological and genetic mechanisms that can explain the phenomenon of natural HIV resistance. NK cells’ higher effector capacity is related to natural resistance to HIV. Besides, a new population of NK cells with adaptive features was described recently. These cells are increased in some HESN cohorts and appear to be involved in better control of viral replication in primarily HIV-infected subjects. The present study evaluated the role of NK cells in the natural resistance to HIV-1 infection in MSM. Methodology: Phenotypic and functional features were evaluated in NK cells from two groups of MSM, at different risks of HIV infection, according to the number of sexual partners. The production of IFN-g and b-chemokines was included in the analysis, as well as the cytotoxic capacity and adaptive NK cell frequency. Genetic features, such as HLA and KIR allele frequencies, were also explored. Results: High-risk MSM exhibit an increased frequency of fully mature and CD57C/NKG2Chigh NK cells. These individuals also show higher cytotoxic capacity and IFN-g production in response to K562 stimuli. NK cells with a CD107aC/IFN-gC functional profile were found more frequently and displayed higher IFN-g production capacity among high-risk MSM than among low-risk MSM. The protective allele HLAB 18 was only present in the high-risk MSM group as well as HLA-B 39. The protective phenotype KIR3DL1/S1-HLA-B Bw4, in a homozygous state, was particularly abundant in the high-risk population. Notably, some of these functional features were related to higher frequencies of mature and CD57C/NKG2Chigh NK cells, which, in turn, were associated with a higher number of sexual partners. Conclusion: The changes observed in the NK cell compartment can be driven by the magnitude of sexual exposure and immunological challenges of high-risk individuals, which could influence their resistance/susceptibility to HIV infection.Introduction: The HIV-exposed seronegative (HESN) status is for individuals who remain seronegative despite repeated exposure to HIV. One of the main cohorts within this group is men who have sex with men (MSM). Studies of this cohort have revealed different immunological and genetic mechanisms that can explain the phenomenon of natural HIV resistance. NK cells’ higher effector capacity is related to natural resistance to HIV. Besides, a new population of NK cells with adaptive features was described recently. These cells are increased in some HESN cohorts and appear to be involved in better control of viral replication in primarily HIV-infected subjects. The present study evaluated the role of NK cells in the natural resistance to HIV-1 infection in MSM. Methodology: Phenotypic and functional features were evaluated in NK cells from two groups of MSM, at different risks of HIV infection, according to the number of sexual partners. The production of IFN-g and b-chemokines was included in the analysis, as well as the cytotoxic capacity and adaptive NK cell frequency. Genetic features, such as HLA and KIR allele frequencies, were also explored. Results: High-risk MSM exhibit an increased frequency of fully mature and CD57C/NKG2Chigh NK cells. These individuals also show higher cytotoxic capacity and IFN-g production in response to K562 stimuli. NK cells with a CD107aC/IFN-gC functional profile were found more frequently and displayed higher IFN-g production capacity among high-risk MSM than among low-risk MSM. The protective allele HLAB 18 was only present in the high-risk MSM group as well as HLA-B 39. The protective phenotype KIR3DL1/S1-HLA-B Bw4, in a homozygous state, was particularly abundant in the high-risk population. Notably, some of these functional features were related to higher frequencies of mature and CD57C/NKG2Chigh NK cells, which, in turn, were associated with a higher number of sexual partners. Conclusion: The changes observed in the NK cell compartment can be driven by the magnitude of sexual exposure and immunological challenges of high-risk individuals, which could influence their resistance/susceptibility to HIV infection.https://scienti.minciencias.gov.co/cvlac/EnProdArticulo/query.do?cod_producto=73&cod_rh=0000157775https://orcid.org/0000-0002-7351-8738COL0112548wildeman.zapatab@campusucc.edu.cohttps://scholar.google.com.co/citations?hl=en&user=VLZxl1UAAAAJ14Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina, Medellín y EnvigadoChristian Körner, Heinrich-Pette-Institut, Leibniz-Institut für Experimentelle Virologie, GermanyMedicinaMedellínhttps://www.frontiersin.org/articles/10.3389/fimmu.2020.537044/full?report=readerFrontiers in ImmunologyHorton RE, McLaren PJ, Fowke K, Kimani J, Ball TB. Cohorts for the study of HIV−1–exposed but uninfected individuals: benefits and limitations. J Infect Dis. (2010) 202:S377–81.Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell. (1996) 86:367–77. doi: 10.1016/s0092-8674(00)80110-5Dean M, Carrington M,Winkler C, Huttley GA, Smith MW, Allikmets R, et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia growth and development study, multicenter aids cohort study, multicenter hemophilia cohort study, San Francisco City Cohort, ALIVE Study. Science. (1996) 273:1856–62. doi: 10.1126/science.273.5283.1856CDC Monitoring Selected National HIV Prevention and Care Objectives by Using HIV Surveillance Data—United States and 6 U.S. Dependent Areas— 2011. HIV Surveillance Supplemental Report. (Vol. 13). Atlanta, GA: Centers for Disease Control and Prevention. (2013).Scott-Algara D, Truong LX, Versmisse P, David A, Luong TT, Nguyen NV, et al. Cutting edge: increased NK cell activity in HIV-1-exposed but uninfected Vietnamese intravascular drug users. J Immunol. (2003) 171:5663–7. doi: 10.4049/jimmunol.171.11.5663Tomescu C, Seaton KE, Smith P, Taylor M, Tomaras GD, Metzger DS, et al. Innate activation of MDC and NK cells in high-risk HIV-1-exposed seronegative IV-drug users who share needles when compared with low- risk nonsharing IV-drug user controls. J Acquir Immune Defic Syndr. (2015) 68:264–73. doi: 10.1097/qai.0000000000000470Florez-Alvarez L, Hernandez JC, Zapata W. NK cells in HIV-1 infection: from basic science to vaccine strategies. Front Immunol. (2018) 9:2290. doi: 10.3389/fimmu.2018.02290Lohman-Payne B, Slyker JA, Moore S, Maleche-Obimbo E, Wamalwa DC, Richardson BA, et al. Breast milk cellular HIV-specific interferon γ responses are associated with protection from peripartum HIV transmission. AIDS. (2012) 26:2007–16. doi: 10.1097/qad.0b013e328359b7e0Montoya CJ, Velilla PA, Chougnet C, Landay AL, Rugeles MT. Increased IFN-gamma production by NK and CD3+/CD56+ cells in sexually HIV-1- exposed but uninfected individuals. Clin Immunol. (2006) 120:138–46. doi: 10.1016/j.clim.2006.02.008Quillay H, Costa HE, Durie M, Marlin R, Cannou C, Madec Y, et al. NK cells control HIV−1 infection of macrophages through soluble factors and cellular contacts in the human decidua. Retrovirology. (2016) 13:39.Vega JA, Villegas-Ospina S, Aguilar-Jiménez W, Rugeles MT, Bedoya G, Zapata W, et al. Haplotypes in CCR5-CCR2, CCL3 and CCL5 are associated with natural resistance to HIV-1 infection in a Colombian cohort. Biomédica. (2017) 37:267–73.O’Leary JG, Goodarzi M, Drayton DL, von Andrian UH. T cell– and B cell– independent adaptive immunity mediated by natural killer cells. Nat Immunol. (2006) 7:507–16. doi: 10.1038/ni1332Reeves RK, Li H, Jost S, Blass E, Li H, Schafer JL, et al. Antigen-specific NK cell memory in rhesus macaques. Nat Immunol. (2015) 16:927–32. doi: 10.1038/ni.3227Lima JF, Oliveira LMS, Pereira NZ, Mitsunari GE, Duarte AJS, Sato MN. Distinct natural killer cells in HIV-exposed seronegative subjects with effector cytotoxic CD56dim and CD56bright cells and memory-Like CD57+NKG2C+CD56dim Cells. JAIDS J Acquir Immune Defic Syndr. (2014) 67:463–71. doi: 10.1097/qai.0000000000000350Gondois-Rey F, Chéret A, Granjeaud S, Mallet F, Bidaut G, Lécuroux C, et al. NKG2C+memory-like NK cells contribute to the control of HIV viremia during primary infection: optiprim-ANRS 147. Clin Transl Immunol. (2017) 6:e150. doi: 10.1038/cti.2017.22Pines HA, Karris MY, Little SJ. Sexual partner concurrency among partners reported by MSM with recent HIV infection. AIDS Behav. (2017) 21:3026–34. doi: 10.1007/s10461-017-1855-xTieu HV, Nandi V, Frye V, Stewart K, Oquendo H, Bush B, et al. Concurrent partnerships and HIV risk among men who have sex with men in New York City. Sex Transm Dis. (2014) 41:200–8. doi: 10.1097/olq.0000000000000090Marmor M, Sheppard HW, Donnell D, Bozeman S, Celum C, Buchbinder S, et al. Homozygous and heterozygous CCR5-Delta32 genotypes are associated with resistance to HIV infection. J Acquir Immune Defic Syndr. (2001) 27:472– 81. doi: 10.1097/00126334-200108150-00009Trecarichi EM, Tumbarello M, de Gaetano Donati K, Tamburrini E, Cauda R, Brahe C, et al. Partial protective effect of CCR5-Delta 32 heterozygosity in a cohort of heterosexual Italian HIV-1 exposed uninfected individuals. AIDS Res Ther. (2006) 3:22.Gupta A, Padh H. The global distribution of CCR5 delta 32 polymorphism: role in HIV-1 protection. BMC Infect Dis. (2012) 12:O16. doi: 10.1186/1471- 2334-12-S1-O16Liu S, Kong C, Wu J, Ying H, Zhu H. Effect of CCR5-Delta32 heterozygosity on HIV-1 susceptibility: a meta-analysis. PLoS One. (2012) 7:e35020. doi: 10.1371/journal.pone.0035020de Silva E, Stumpf MP. HIV and the CCR5-Delta32 resistance allele. FEMS Microbiol Lett. (2004) 241:1–12. doi: 10.1016/j.femsle.2004.09.040Nielsen CM, White MJ, Goodier MR, Riley EM. Functional significance of CD57 expression on human NK cells and relevance to disease. Front Immunol. (2013) 4:422. doi: 10.3389/fimmu.2013.00422Björkström NK, Riese P, Heuts F, Andersson S, Fauriat C, Ivarsson MA, et al. Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK-cell differentiation uncoupled from NK-cell education. Blood. (2010) 116:3853–64. doi: 10.1182/blood-2010-04-281675Le Garff-Tavernier M, Beziat V, Decocq J, Siguret V, Gandjbakhch F, Pautas E, et al. Human NK cells display major phenotypic and functional changes over the life span. Aging Cell. (2010) 9:527–35. doi: 10.1111/j.1474-9726.2010. 00584.xGoodier MR, White MJ, Darboe A, Nielsen CM, Goncalves A, Bottomley C, et al. Rapid NK cell differentiation in a population with near-universal human cytomegalovirus infection is attenuated by NKG2C deletions. Blood. (2014) 124:2213–22. doi: 10.1182/blood-2014-05-576124Foley B, Cooley S, Verneris MR, Pitt M, Curtsinger J, Luo X, et al. Cytomegalovirus reactivation after allogeneic transplantation promotes a lasting increase in educated NKG2C+ natural killer cells with potent function. Blood. (2012) 119:2665–74. doi: 10.1182/blood-2011-10-386995Bjorkstrom NK, Lindgren T, Stoltz M, Fauriat C, Braun M, Evander M, et al. Rapid expansion and long-term persistence of elevated NK cell numbers in humans infected with hantavirus. J Exp Med. (2011) 208:13–21. doi: 10.1084/ jem.20100762Beziat V, Dalgard O, Asselah T, Halfon P, Bedossa P, Boudifa A, et al. CMV drives clonal expansion of NKG2C+ NK cells expressing self-specific KIRs in chronic hepatitis patients. Eur J Immunol. (2012) 42:447–57. doi: 10.1002/eji. 201141826Petitdemange C, Becquart P, Wauquier N, Beziat V, Debre P, Leroy EM, et al. Unconventional repertoire profile is imprinted during acute chikungunya infection for natural killer cells polarization toward cytotoxicity. PLoS Pathog. (2011) 7:e1002268. doi: 10.1371/journal.ppat.1002268Lopez-Vergès S, Milush JM, Pandey S, York VA, Arakawa-Hoyt J, Pircher H, et al. CD57 defines a functionally distinct population of mature NK cells in the human CD56dimCD16+ NK-cell subset. Blood. (2010) 116:3865–74. doi: 10.1182/blood-2010-04-282301Jiang Y, Zhou F, Tian Y, Zhang Z, Kuang R, Liu J, et al. Higher NK cell IFN-gamma production is associated with delayed HIV disease progression in LTNPs. J Clin Immunol. (2013) 33:1376–85. doi: 10.1007/s10875-013-9930-1Jiang Y, Chen O, Cui C, Zhao B, Han X, Zhang Z, et al. KIR3DS1/L1 and HLA-Bw4-80I are associated with HIV disease progression among HIV typical progressors and long-term nonprogressors. BMC Infect Dis. (2013) 13:405. doi: 10.1186/1471-2334-13-405Chung AW, Navis M, Isitman G, Wren L, Silvers J, Amin J, et al. Activation of NK cells by ADCC antibodies and HIV disease progression. J Acquir Immune Defic Syndr. (2011) 58:127–31. doi: 10.1097/qai.0b013e31822c62b9Luetke-Eversloh M, Hammer Q, Durek P, Nordström K, Gasparoni G, Pink M, et al. Human cytomegalovirus drives epigenetic imprinting of the IFNG locus in NKG2Chi natural killer cells. PLoS pathogens. (2014) 10:e1004441. doi: 10.1371/journal.ppat.1004441Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol. (2004) 75:163–89. doi: 10.1189/jlb.0603252Samuel CE. Antiviral actions ofinterferons. ClinMicrobiol Rev. (2001) 14:778– 809. doi: 10.1128/cmr.14.4.778-809.2001Chaix J, Tessmer MS, Hoebe K, Fuseri N, Ryffel B, Dalod M, et al. Cutting edge: priming of NK cells by IL-18. J Immunol. (2008) 181:1627–31. doi: 10.4049/jimmunol.181.3.1627Fehniger TA, Cai SF, Cao X, Bredemeyer AJ, Presti RM, French AR, et al. Acquisition of murine NK cell cytotoxicity requires the translation of a pre-existing pool of granzyme B and perforin mRNAs. Immunity. (2007) 26:798–811. doi: 10.1016/j.immuni.2007.04.010Lucas M, Schachterle W, Oberle K, Aichele P, Diefenbach A. Dendritic cells prime natural killer cells by trans-presenting interleukin 15. Immunity. (2007) 26:503–17. doi: 10.1016/j.immuni.2007.03.006Bukowski JF, Biron CA, Welsh RM. Elevated natural killer cell-mediated cytotoxicity, plasma interferon, and tumor cell rejection in mice persistently infected with lymphocytic choriomeningitis virus. J Immunol. (1983) 131:991–6.Barton ES, White DW, Cathelyn JS, Brett-McClellan KA, Engle M, Diamond MS, et al. Herpesvirus latency confers symbiotic protection from bacterial infection. Nature. (2007) 447:326–9. doi: 10.1038/nature05762Min-Oo G, Lanier LL. Cytomegalovirus generates long-lived antigen-specific NK cells with diminished bystander activation to heterologous infection. J Exp Med. (2014) 211:2669–80. doi: 10.1084/jem.20141172Gumá M, Cabrera C, Erkizia I, Bofill M, Clotet B, Ruiz L, et al. Human cytomegalovirus infection is associated with increased proportions ofNK cells that express the CD94/NKG2C receptor in aviremic HIV−1–positive patients. J Infect Dis. (2006) 194:38–41. doi: 10.1086/504719Drews E, Adam A, Htoo P, Townsley E, Mathew A. Upregulation of HLA- E by dengue and not Zika viruses. Clin Transl Immunol. (2018) 7:e1039. doi: 10.1002/cti2.1039Martini F, Agrati C, D’Offizi G, Poccia F. HLA-E up-regulation induced by HIV infection may directly contribute to CD94-mediated impairment of NK cells. Int J Immunopathol Pharmacol. (2005) 18:269–76. doi: 10.1177/ 039463200501800209Liu LL, Landskron J, Ask EH, Enqvist M, Sohlberg E, Traherne JA, et al. Critical role ofCD2 Co-stimulation in adaptive natural killer cell responses revealed in NKG2C-deficient humans. Cell Rep. (2016) 15:1088–99. doi: 10.1016/j.celrep. 2016.04.005Bryceson YT, Ljunggren HG, Long EO. Minimal requirement for induction of natural cytotoxicity and intersection of activation signals by inhibitory receptors. Blood. (2009) 114:2657–66. doi: 10.1182/blood-2009-01-20 1632Farquhar C, Rowland-Jones S, Mbori-Ngacha D, Redman M, Lohman B, Slyker J, et al. Human leukocyte antigen (HLA) B∗18 and protection against mother-to-child HIV type 1 transmission. AIDS Res Hum Retroviruses. (2004) 20:692–7. doi: 10.1089/0889222041524616Chaudhari DV, Chavan VR, Ahir SP, Kerkar SC, Mehta PR, Mania- Pramanik J. Human leukocyte antigen B distribution in HIV discordant cohort from India. Immunol Lett. (2013) 156:1–6. doi: 10.1016/j.imlet.2013. 09.002Valenzuela-Ponce H, Alva-Hernandez S, Garrido-Rodriguez D, Soto-Nava M, Garcia-Tellez T, Escamilla-Gomez T, et al. Novel HLA class I associations with HIV-1 control in a unique genetically admixed population. Sci Rep. (2018) 8:6111.Payne R, Muenchhoff M, Mann J, Roberts HE, Matthews P, Adland E, et al. Impact of HLA-driven HIV adaptation on virulence in populations of high HIV seroprevalence. Proc Natl Acad Sci USA. (2014) 111:E5393–400.Raulet DH. Missing self recognition and self tolerance of natural killer (NK) cells. Semin Immunol. (2006) 18:145–50. doi: 10.1016/j.smim.2006.03.003Alter G, Rihn S, Walter K, Nolting A, Martin M, Rosenberg ES, et al. HLA class I subtype-dependent expansion of KIR3DS1+ and KIR3DL1+ NK cells during acute human immunodeficiency virus type 1 infection. J Virol. (2009) 83:6798–805. doi: 10.1128/jvi.00256-09Boudreau JE, Mulrooney TJ, Le Luduec JB, Barker E, Hsu KC. KIR3DL1 and HLA-B density and binding calibrate NK education and response to HIV. J Immunol. (2016) 196:3398–410. doi: 10.4049/jimmunol.1502469Boulet S, Song R, Kamya P, Bruneau J, Shoukry NH, Tsoukas CM, et al. HIV protective KIR3DL1 and HLA-B genotypes influence NK cell function following stimulation with HLA-devoid cells. J Immunol. (2010) 184:2057–64. doi: 10.4049/jimmunol.0902621Song R, Lisovsky I, Lebouche B, Routy JP, Bruneau J, Bernard NF. HIV protective KIR3DL1/S1-HLA-B genotypes influence NK cell-mediated inhibition of HIV replication in autologous CD4 targets. PLoS Pathog. (2014) 10:e1003867. doi: 10.1371/journal.ppat.1003867Habegger de Sorrentino A, Sinchi JL, Marinic K, Lopez R, Iliovich E. KIR- HLA-A and B alleles of the Bw4 epitope against HIV infection in discordant heterosexual couples in Chaco Argentina. Immunology. (2013) 140:273–9. doi: 10.1111/imm.12137Flores-Villanueva PO, Yunis EJ, Delgado JC, Vittinghoff E, Buchbinder S, Leung JY, et al. Control of HIV-1 viremia and protection from AIDS are associated with HLA-Bw4 homozygosity. Proc Natl Acad Sci USA. (2001) 98:5140–5. doi: 10.1073/pnas.071548198CD57C/NKG2Chigh NK cellcytotoxicityHighly exposed seronegativemen who have sex with mennatural resistanceHIVCD57C/NKG2Chigh NK cellcytotoxicityHighly exposed seronegativemen who have sex with mennatural resistanceHIVNK Cell Activity and CD57+/NKG2Chigh Phenotype Are Increased in Men Who Have Sex With Men at High Risk for HIVArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/ee55e5a8-24c0-4283-bde6-dec023814634/download3bce4f7ab09dfc588f126e1e36e98a45MD52ORIGINALfimmu-11-537044.pdffimmu-11-537044.pdfArtículoapplication/pdf3403179https://repository.ucc.edu.co/bitstreams/a55cb273-381f-4073-b6bc-dacda9ac5ae4/download41fb0aa8d0a3705f08c589170645ed26MD51THUMBNAILfimmu-11-537044.pdf.jpgfimmu-11-537044.pdf.jpgGenerated Thumbnailimage/jpeg5896https://repository.ucc.edu.co/bitstreams/c2f6b7f4-4dfa-44e4-b203-e2252fbca09d/download4e31d537421f3c6188093b7d12baeef2MD53TEXTfimmu-11-537044.pdf.txtfimmu-11-537044.pdf.txtExtracted texttext/plain71119https://repository.ucc.edu.co/bitstreams/961ecd82-3588-4e44-97d8-ce1e767b7bdb/downloadce9e18b8808f6b1ca7b713e0e56ba751MD5420.500.12494/28302oai:repository.ucc.edu.co:20.500.12494/283022024-08-10 22:41:05.949restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo= |