Sequential development of embryoblast-like memory entities in human cancer tissues: an evolutionary self-repair structure with pluripotentiality
Hidden collective organization of cancer cells can partially or completely return to embryoid genotype-phenotype with the plasticity to transform their morphology on cell embryoblast-like memory entities by expression of dormant genes that arise from embryogenesis. After hundreds of driver mutations...
- Autores:
-
Sánchez Lerma, Liliana
Diaz Torres, Jairo
Diaz Torres, Luis
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2022
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/46843
- Acceso en línea:
- https://hdl.handle.net/20.500.12494/46843
- Palabra clave:
- cancer, estructuras de auto ensamble, entidades parecidas a embrioblastos
Cancer, self-assembly structures, embryoblast-like entities
- Rights
- openAccess
- License
- Atribución
id |
COOPER2_58cdaee6a8d239b34df3497628d39945 |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/46843 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Sequential development of embryoblast-like memory entities in human cancer tissues: an evolutionary self-repair structure with pluripotentiality |
title |
Sequential development of embryoblast-like memory entities in human cancer tissues: an evolutionary self-repair structure with pluripotentiality |
spellingShingle |
Sequential development of embryoblast-like memory entities in human cancer tissues: an evolutionary self-repair structure with pluripotentiality cancer, estructuras de auto ensamble, entidades parecidas a embrioblastos Cancer, self-assembly structures, embryoblast-like entities |
title_short |
Sequential development of embryoblast-like memory entities in human cancer tissues: an evolutionary self-repair structure with pluripotentiality |
title_full |
Sequential development of embryoblast-like memory entities in human cancer tissues: an evolutionary self-repair structure with pluripotentiality |
title_fullStr |
Sequential development of embryoblast-like memory entities in human cancer tissues: an evolutionary self-repair structure with pluripotentiality |
title_full_unstemmed |
Sequential development of embryoblast-like memory entities in human cancer tissues: an evolutionary self-repair structure with pluripotentiality |
title_sort |
Sequential development of embryoblast-like memory entities in human cancer tissues: an evolutionary self-repair structure with pluripotentiality |
dc.creator.fl_str_mv |
Sánchez Lerma, Liliana Diaz Torres, Jairo Diaz Torres, Luis |
dc.contributor.author.none.fl_str_mv |
Sánchez Lerma, Liliana Diaz Torres, Jairo Diaz Torres, Luis |
dc.subject.spa.fl_str_mv |
cancer, estructuras de auto ensamble, entidades parecidas a embrioblastos |
topic |
cancer, estructuras de auto ensamble, entidades parecidas a embrioblastos Cancer, self-assembly structures, embryoblast-like entities |
dc.subject.other.spa.fl_str_mv |
Cancer, self-assembly structures, embryoblast-like entities |
description |
Hidden collective organization of cancer cells can partially or completely return to embryoid genotype-phenotype with the plasticity to transform their morphology on cell embryoblast-like memory entities by expression of dormant genes that arise from embryogenesis. After hundreds of driver mutations, cancer cells gain new abilities or attributes and recapitulate early stages of embryogenesis. Our findings document how malignant tissues reactivated ancestral storage memory and elaborate inside tumor glands spiral-pyramidal-fractal chiral crystals (Tc) as geometric attractor proteins and biomimicry the primitive cellular blastocyst embryoblast fluid-filled cavity. The resultant evolutionary embryoblast-like entity has higher survivability and spatial cephalic-caudal growth organization with pluripotentiality that carry the correct DNA instructions to repair, and regenerate. The isolation and manipulation of these order structures can guide and control the regenerative pathway mechanism in human tumors as follows: modify and reprogram the phenotype of the tumor where these entities are generated, establish a reverse primordial microscopic mold to use the swirlonic collective behavior of cellular building blocks to regenerate injured tissues, convert cancer cells to a normal phenotype through regeneration using the organizational level and scale properties of reverse genetic guidance, global control of mitotic activity and morphogenetic movements avoiding their spread and metastasis, determining a better life prognosis for patients who incubate these entities in their tumors compared to those who do not express them. An emergent self-repair order structure, biological template can develop targeted therapeutic alternatives not only in cancer but also in treatment of autoimmune, viral diseases, and in regenerative medicine and rejuvenation. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-10-23T01:16:15Z |
dc.date.available.none.fl_str_mv |
2022-10-23T01:16:15Z 2022-10-09 |
dc.date.issued.none.fl_str_mv |
2022-09-14 |
dc.type.none.fl_str_mv |
Artículos Científicos |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
19438141 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/46843 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Jairo A Diaz1,2,3,4*, Liliana Sánchez, Luis A Diaz, Mauricio F Murillo, Laura Poveda, Oscar F Suescun, Sequential development of embryoblast-like memory entities in human cancer tissues: an evolutionary self-repair structure with pluripotentiality. Laura Castro. Am J Transl Res 2022;14(9):6011-6028 www.ajtr.org /ISSN:1943-8141/AJTR0137043 |
identifier_str_mv |
19438141 Jairo A Diaz1,2,3,4*, Liliana Sánchez, Luis A Diaz, Mauricio F Murillo, Laura Poveda, Oscar F Suescun, Sequential development of embryoblast-like memory entities in human cancer tissues: an evolutionary self-repair structure with pluripotentiality. Laura Castro. Am J Transl Res 2022;14(9):6011-6028 www.ajtr.org /ISSN:1943-8141/AJTR0137043 |
url |
https://hdl.handle.net/20.500.12494/46843 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Am J Transl Res |
dc.relation.references.spa.fl_str_mv |
[1] White CP. On the occurrence of crystals in tumours. The Journal of Pathology and Bacterio- logy 1909; 13: 3-10. [2] Rose GG. Biologic crystals and particles produced in tissue culture. Cancer Res 1964; 24. [3] Diaz J, Jaramillo N and Murillo M. Geometric triangular chiral hexagon crystal-like complexes organization in pathological tissues biological collision order. PLoS One 2007; 12: e1282. [4] Díaz JA, Murillo MF and Jaramillo NA. Framework of collagen type i - vasoactive vessels structuring invariant geometric attractor in cancer tissues: insight into biological magnetic field. PLoS One 2009; 4: e4506. [5] Diaz JA and Murillo MF. Phenotype characterization of embryoid body structures generated by a crystal comet effect tail in an intercellular cancer collision scenario. Cancer Manag Res 2012; 4: 9-21. [6] Lee J, Abdeen AA, Wycislo KL, Fan TM and Kilian KA. Interfacial geometry dictates cancer cell tumorigenicity. Nat Mater 2016; 15: 856-62. [7] Tozluoğlu M, Tournier AL, Jenkins RP, Hooper S, Bates PA and Sahai E. Matrix geometry determines optimal cancer cell migration strategy and modulates response to interventions. Nat Cell Biol 2013; 15: 751-62. [8] Roy B, Venkatachalapathy S, Ratna P, Wang Y, Jokhun DS, Nagarajan M and Shivashankar GV. Laterally confined growth of cells induces nuclear reprogramming in the absence of exogenous biochemical factors. Proc Natl Acad Sci U S A 2018; 115: E4741-E4750. [9] Ma Y, Zhang P, Wang F, Yang J, Yang Z and Qin H. The relationship between early embryo development and tumourigenesis. J Cell Mol Med 2010; 14: 2697-2701. [10] Lee JT and Herlyn M. Embryogenesis meets tumorigenesis. Nat Med 2006; 12: 882-4. [11] Behrens J and Lustig B. The Wnt connection to tumorigenesis. Int J Dev Biol 2004; 48: 477-87. [12] Moll UM and Slade N. p63 and p73: roles in development and tumor formation. Mol Cancer Res 2004; 2: 371-86. [13] Chen CM and Behringer RR. Ovca1 regulates cell proliferation, embryonic development, and tumorigenesis. Genes Dev 2004; 18: 320-32. [14] Studer L, Csete M, Lee SH, Kabbani N, Walikonis J, Wold B and McKay R. Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J Neurosci 2000; 20: 7377-83. [15] Perryman SV and Sylvester KG. Repair and regeneration: opportunities for carcinogenesis from tissue stem cells. J Cell Mol Med 2006; 10: 292-308. [16] Baxter RJ, Sykes MF and Watts MG. Magnetization of the three-spin triangular Ising model. Journal of Physics A: Mathematical and General 1975; 8: 245-251. [17] Yao DX, Loh YL, Carlson EW and Ma M. XXZ and ising spins on the triangular kagome lattice. Phys Rev B 2008; 78. [18] Brilliantov NV, Abutuqayqah H, Tyukin IY and Matveev SA. Swirlonic state of active matter. Sci Rep 2020; 10: 16783. [19] Cairns-Smith AG. The origin of life and the nature of the primitive gene. J Theor Biol 1966; 10: 53-88. [20] Díaz JA, Murillo MF and Barrero A. Intercellular cancer collisions generate an ejected crystal comet tail effect with fractal interface embryoid body reassembly transformation. Cancer Manag Res 2011; 3: 143-55. [21] Diaz JA, Murillo MF, Mendoza JA, Barreto AM, Poveda LS, Sanchez LK, Poveda LC and Mora KT. Human somatic cells acquire the plasticity to generate embryoid-like metamorphosis via the actin cytoskeleton in injured tissues. Am J Stem Cells 2016; 5: 53-73. [22] Poplawski GHD, Kawaguchi R, Van Niekerk E, Lu P, Mehta N, Canete P, Lie R, Dragatsis I, Meves JM, Zheng B, Coppola G and Tuszynski MH. Injured adult neurons regress to an embryonic transcriptional growth state. Nature 2020; 581: 77-82. [23] Cohnheim J. (1889). Lectures on general pathology. A Handbook for practitioners and students. (A. B. McKee, Trans.; T. N. S. Society, Ed. 2 ed., Vol. 126). [24] Brinster RL. The effect of cells transferred into the mouse blastocyst on subsequent development. J Exp Med 1974; 140: 1049-56. |
dc.rights.license.none.fl_str_mv |
Atribución |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
6011-6028 |
dc.coverage.temporal.spa.fl_str_mv |
14 |
dc.publisher.spa.fl_str_mv |
Universidad Cooperativa de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medicina |
dc.publisher.place.spa.fl_str_mv |
Villavicencio |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/b36a84ad-f4be-4ab2-b016-58ff5b20e2c6/download https://repository.ucc.edu.co/bitstreams/f69f2f90-ffa6-4899-a98b-1a3fae91c85b/download https://repository.ucc.edu.co/bitstreams/21dc00fc-e853-4267-8327-3d48336bc967/download https://repository.ucc.edu.co/bitstreams/e5550a3d-98c5-467d-9d36-2f98dca98c67/download |
bitstream.checksum.fl_str_mv |
2f5458de53d33d529596abadda2be511 8a4605be74aa9ea9d79846c1fba20a33 0222ff160910ee8843b800a40f4d9d62 166ca1925e952fc5e480c69806d09167 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1811565674434134016 |
spelling |
Sánchez Lerma, LilianaDiaz Torres, JairoDiaz Torres, Luis142022-10-23T01:16:15Z2022-10-23T01:16:15Z2022-10-092022-09-1419438141https://hdl.handle.net/20.500.12494/46843Jairo A Diaz1,2,3,4*, Liliana Sánchez, Luis A Diaz, Mauricio F Murillo, Laura Poveda, Oscar F Suescun, Sequential development of embryoblast-like memory entities in human cancer tissues: an evolutionary self-repair structure with pluripotentiality. Laura Castro. Am J Transl Res 2022;14(9):6011-6028 www.ajtr.org /ISSN:1943-8141/AJTR0137043Hidden collective organization of cancer cells can partially or completely return to embryoid genotype-phenotype with the plasticity to transform their morphology on cell embryoblast-like memory entities by expression of dormant genes that arise from embryogenesis. After hundreds of driver mutations, cancer cells gain new abilities or attributes and recapitulate early stages of embryogenesis. Our findings document how malignant tissues reactivated ancestral storage memory and elaborate inside tumor glands spiral-pyramidal-fractal chiral crystals (Tc) as geometric attractor proteins and biomimicry the primitive cellular blastocyst embryoblast fluid-filled cavity. The resultant evolutionary embryoblast-like entity has higher survivability and spatial cephalic-caudal growth organization with pluripotentiality that carry the correct DNA instructions to repair, and regenerate. The isolation and manipulation of these order structures can guide and control the regenerative pathway mechanism in human tumors as follows: modify and reprogram the phenotype of the tumor where these entities are generated, establish a reverse primordial microscopic mold to use the swirlonic collective behavior of cellular building blocks to regenerate injured tissues, convert cancer cells to a normal phenotype through regeneration using the organizational level and scale properties of reverse genetic guidance, global control of mitotic activity and morphogenetic movements avoiding their spread and metastasis, determining a better life prognosis for patients who incubate these entities in their tumors compared to those who do not express them. An emergent self-repair order structure, biological template can develop targeted therapeutic alternatives not only in cancer but also in treatment of autoimmune, viral diseases, and in regenerative medicine and rejuvenation.Hidden collective organization of cancer cells can partially or completely return to embryoid genotype-phenotype with the plasticity to transform their morphology on cell embryoblast-like memory entities by expression of dormant genes that arise from embryogenesis. After hundreds of driver mutations, cancer cells gain new abilities or attributes and recapitulate early stages of embryogenesis. Our findings document how malignant tissues reactivated ancestral storage memory and elaborate inside tumor glands spiral-pyramidal-fractal chiral crystals (Tc) as geometric attractor proteins and biomimicry the primitive cellular blastocyst embryoblast fluid-filled cavity. The resultant evolutionary embryoblast-like entity has higher survivability and spatial cephalic-caudal growth organization with pluripotentiality that carry the correct DNA instructions to repair, and regenerate. The isolation and manipulation of these order structures can guide and control the regenerative pathway mechanism in human tumors as follows: modify and reprogram the phenotype of the tumor where these entities are generated, establish a reverse primordial microscopic mold to use the swirlonic collective behavior of cellular building blocks to regenerate injured tissues, convert cancer cells to a normal phenotype through regeneration using the organizational level and scale properties of reverse genetic guidance, global control of mitotic activity and morphogenetic movements avoiding their spread and metastasis, determining a better life prognosis for patients who incubate these entities in their tumors compared to those who do not express them. An emergent self-repair order structure, biological template can develop targeted therapeutic alternatives not only in cancer but also in treatment of autoimmune, viral diseases, and in regenerative medicine and rejuvenation.6011-6028Universidad Cooperativa de ColombiaMedicinaVillavicenciocancer, estructuras de auto ensamble, entidades parecidas a embrioblastosCancer, self-assembly structures, embryoblast-like entitiesSequential development of embryoblast-like memory entities in human cancer tissues: an evolutionary self-repair structure with pluripotentialityArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Am J Transl Res[1] White CP. On the occurrence of crystals in tumours. The Journal of Pathology and Bacterio- logy 1909; 13: 3-10. [2] Rose GG. Biologic crystals and particles produced in tissue culture. Cancer Res 1964; 24. [3] Diaz J, Jaramillo N and Murillo M. Geometric triangular chiral hexagon crystal-like complexes organization in pathological tissues biological collision order. PLoS One 2007; 12: e1282. [4] Díaz JA, Murillo MF and Jaramillo NA. Framework of collagen type i - vasoactive vessels structuring invariant geometric attractor in cancer tissues: insight into biological magnetic field. PLoS One 2009; 4: e4506. [5] Diaz JA and Murillo MF. Phenotype characterization of embryoid body structures generated by a crystal comet effect tail in an intercellular cancer collision scenario. Cancer Manag Res 2012; 4: 9-21. [6] Lee J, Abdeen AA, Wycislo KL, Fan TM and Kilian KA. Interfacial geometry dictates cancer cell tumorigenicity. Nat Mater 2016; 15: 856-62. [7] Tozluoğlu M, Tournier AL, Jenkins RP, Hooper S, Bates PA and Sahai E. Matrix geometry determines optimal cancer cell migration strategy and modulates response to interventions. Nat Cell Biol 2013; 15: 751-62. [8] Roy B, Venkatachalapathy S, Ratna P, Wang Y, Jokhun DS, Nagarajan M and Shivashankar GV. Laterally confined growth of cells induces nuclear reprogramming in the absence of exogenous biochemical factors. Proc Natl Acad Sci U S A 2018; 115: E4741-E4750. [9] Ma Y, Zhang P, Wang F, Yang J, Yang Z and Qin H. The relationship between early embryo development and tumourigenesis. J Cell Mol Med 2010; 14: 2697-2701. [10] Lee JT and Herlyn M. Embryogenesis meets tumorigenesis. Nat Med 2006; 12: 882-4. [11] Behrens J and Lustig B. The Wnt connection to tumorigenesis. Int J Dev Biol 2004; 48: 477-87. [12] Moll UM and Slade N. p63 and p73: roles in development and tumor formation. Mol Cancer Res 2004; 2: 371-86. [13] Chen CM and Behringer RR. Ovca1 regulates cell proliferation, embryonic development, and tumorigenesis. Genes Dev 2004; 18: 320-32. [14] Studer L, Csete M, Lee SH, Kabbani N, Walikonis J, Wold B and McKay R. Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J Neurosci 2000; 20: 7377-83. [15] Perryman SV and Sylvester KG. Repair and regeneration: opportunities for carcinogenesis from tissue stem cells. J Cell Mol Med 2006; 10: 292-308. [16] Baxter RJ, Sykes MF and Watts MG. Magnetization of the three-spin triangular Ising model. Journal of Physics A: Mathematical and General 1975; 8: 245-251. [17] Yao DX, Loh YL, Carlson EW and Ma M. XXZ and ising spins on the triangular kagome lattice. Phys Rev B 2008; 78. [18] Brilliantov NV, Abutuqayqah H, Tyukin IY and Matveev SA. Swirlonic state of active matter. Sci Rep 2020; 10: 16783. [19] Cairns-Smith AG. The origin of life and the nature of the primitive gene. J Theor Biol 1966; 10: 53-88. [20] Díaz JA, Murillo MF and Barrero A. Intercellular cancer collisions generate an ejected crystal comet tail effect with fractal interface embryoid body reassembly transformation. Cancer Manag Res 2011; 3: 143-55. [21] Diaz JA, Murillo MF, Mendoza JA, Barreto AM, Poveda LS, Sanchez LK, Poveda LC and Mora KT. Human somatic cells acquire the plasticity to generate embryoid-like metamorphosis via the actin cytoskeleton in injured tissues. Am J Stem Cells 2016; 5: 53-73. [22] Poplawski GHD, Kawaguchi R, Van Niekerk E, Lu P, Mehta N, Canete P, Lie R, Dragatsis I, Meves JM, Zheng B, Coppola G and Tuszynski MH. Injured adult neurons regress to an embryonic transcriptional growth state. Nature 2020; 581: 77-82. [23] Cohnheim J. (1889). Lectures on general pathology. A Handbook for practitioners and students. (A. B. McKee, Trans.; T. N. S. Society, Ed. 2 ed., Vol. 126). [24] Brinster RL. The effect of cells transferred into the mouse blastocyst on subsequent development. J Exp Med 1974; 140: 1049-56.PublicationORIGINALEmbryoblast -like cancer.pdfEmbryoblast -like cancer.pdfapplication/pdf3782778https://repository.ucc.edu.co/bitstreams/b36a84ad-f4be-4ab2-b016-58ff5b20e2c6/download2f5458de53d33d529596abadda2be511MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.ucc.edu.co/bitstreams/f69f2f90-ffa6-4899-a98b-1a3fae91c85b/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILEmbryoblast -like cancer.pdf.jpgEmbryoblast -like cancer.pdf.jpgGenerated Thumbnailimage/jpeg5262https://repository.ucc.edu.co/bitstreams/21dc00fc-e853-4267-8327-3d48336bc967/download0222ff160910ee8843b800a40f4d9d62MD53TEXTEmbryoblast -like cancer.pdf.txtEmbryoblast -like cancer.pdf.txtExtracted texttext/plain55392https://repository.ucc.edu.co/bitstreams/e5550a3d-98c5-467d-9d36-2f98dca98c67/download166ca1925e952fc5e480c69806d09167MD5420.500.12494/46843oai:repository.ucc.edu.co:20.500.12494/468432024-08-20 16:24:13.806open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |