Antiviral profiling of c-18- or c-19-functionalized semisynthetic abietane diterpenoids

Viral infections affect several million patients annually. Although hundreds of viruses are known to be pathogenic, only a few can be treated in the clinic with available antiviral drugs. Naturally based pharmacotherapy may be a proper alternative for treating viral diseases. Several natural and sem...

Full description

Autores:
González Cardenete, Miguel A.
Hamulić, Damir
Miquel Leal, Francisco J.
González Zapata, Natalia
Jiménez Jarava, Orlando J.
Brand, Yaneth M.
Restrepo Méndez, Laura C.
Martínez Gutiérrez, Marlén
Betancur Galvis, Liliana A.
Marín, Maria L.
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/52298
Acceso en línea:
https://hdl.handle.net/20.500.12494/52298
Palabra clave:
Assays,
Antimicrobial agents
Infectious diseases
Inhibition
Pharmaceuticals
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id COOPER2_5896b001e57c247bae79c49fdc52f7ed
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/52298
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.none.fl_str_mv Antiviral profiling of c-18- or c-19-functionalized semisynthetic abietane diterpenoids
title Antiviral profiling of c-18- or c-19-functionalized semisynthetic abietane diterpenoids
spellingShingle Antiviral profiling of c-18- or c-19-functionalized semisynthetic abietane diterpenoids
Assays,
Antimicrobial agents
Infectious diseases
Inhibition
Pharmaceuticals
title_short Antiviral profiling of c-18- or c-19-functionalized semisynthetic abietane diterpenoids
title_full Antiviral profiling of c-18- or c-19-functionalized semisynthetic abietane diterpenoids
title_fullStr Antiviral profiling of c-18- or c-19-functionalized semisynthetic abietane diterpenoids
title_full_unstemmed Antiviral profiling of c-18- or c-19-functionalized semisynthetic abietane diterpenoids
title_sort Antiviral profiling of c-18- or c-19-functionalized semisynthetic abietane diterpenoids
dc.creator.fl_str_mv González Cardenete, Miguel A.
Hamulić, Damir
Miquel Leal, Francisco J.
González Zapata, Natalia
Jiménez Jarava, Orlando J.
Brand, Yaneth M.
Restrepo Méndez, Laura C.
Martínez Gutiérrez, Marlén
Betancur Galvis, Liliana A.
Marín, Maria L.
dc.contributor.author.none.fl_str_mv González Cardenete, Miguel A.
Hamulić, Damir
Miquel Leal, Francisco J.
González Zapata, Natalia
Jiménez Jarava, Orlando J.
Brand, Yaneth M.
Restrepo Méndez, Laura C.
Martínez Gutiérrez, Marlén
Betancur Galvis, Liliana A.
Marín, Maria L.
dc.subject.none.fl_str_mv Assays,
Antimicrobial agents
Infectious diseases
Inhibition
Pharmaceuticals
topic Assays,
Antimicrobial agents
Infectious diseases
Inhibition
Pharmaceuticals
description Viral infections affect several million patients annually. Although hundreds of viruses are known to be pathogenic, only a few can be treated in the clinic with available antiviral drugs. Naturally based pharmacotherapy may be a proper alternative for treating viral diseases. Several natural and semisynthetic abietane-type diterpenoids have shown important antiviral activities. In this study, a biological evaluation of a number of either C-18- or C-19-functionalized known semisynthetic abietanes against Zika virus, Dengue virus, Herpes virus simplextype 1, and Chikungunya virus are reported. Semisynthetic abietane ferruginol and its analogue 18-(phthalimid-2-yl)ferruginol displayed broad-spectrum antiviral properties. The scale-up synthesis of this analogue has been optimized for further studies and development. This molecule displayed an EC50 between 5.0 and 10.0 μM against Colombian Zika virus strains and EC50 = 9.8 μM against Chikungunya virus. Knowing that this ferruginol analogue is also active against Dengue virus type 2 (EC50 = 1.4 μM, DENV-2), we can conclude that this compound is a promising broad-spectrum antiviral agent paving the way for the development of novel antivirals.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-07-15
dc.date.accessioned.none.fl_str_mv 2023-08-02T22:32:45Z
dc.date.available.none.fl_str_mv 2023-08-02T22:32:45Z
dc.type.none.fl_str_mv Artículos Científicos
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0163-3864
dc.identifier.uri.none.fl_str_mv doi: 10.1021/acs.jnatprod.2c00464.
https://hdl.handle.net/20.500.12494/52298
dc.identifier.bibliographicCitation.none.fl_str_mv González-Cardenete MA, Hamulić D, Miquel-Leal FJ, González-Zapata N, Jimenez-Jarava OJ, Brand YM, Restrepo-Mendez LC, Martinez-Gutierrez M, Betancur-Galvis LA, Marín ML. Antiviral Profiling of C-18- or C-19-Functionalized Semisynthetic Abietane Diterpenoids. J Nat Prod. 2022 Aug 26;85(8):2044-2051. doi: 10.1021/acs.jnatprod.2c00464.
identifier_str_mv 0163-3864
doi: 10.1021/acs.jnatprod.2c00464.
González-Cardenete MA, Hamulić D, Miquel-Leal FJ, González-Zapata N, Jimenez-Jarava OJ, Brand YM, Restrepo-Mendez LC, Martinez-Gutierrez M, Betancur-Galvis LA, Marín ML. Antiviral Profiling of C-18- or C-19-Functionalized Semisynthetic Abietane Diterpenoids. J Nat Prod. 2022 Aug 26;85(8):2044-2051. doi: 10.1021/acs.jnatprod.2c00464.
url https://hdl.handle.net/20.500.12494/52298
dc.relation.isversionof.none.fl_str_mv https://pubs.acs.org/doi/full/10.1021/acs.jnatprod.2c00464
dc.relation.ispartofjournal.none.fl_str_mv J. Nat. Prod.
dc.relation.references.none.fl_str_mv Ji, X.; Li, Z. Medicinal chemistry strategies toward host targeting antiviral agents. Med. Res. Rev. 2020, 40, 1519– 1557, DOI: 10.1002/med.21664
Ben-Shabat, S.; Yarmolinsky, L.; Porat, D.; Dahan, A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Delivery Trans. Res. 2020, 10, 354– 367, DOI: 10.1007/s13346-019-00691-6
Newman, D. J.; Cragg, G. M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770– 803, DOI: 10.1021/acs.jnatprod.9b01285
Pan American Health Organization. Tool for the diagnosis and care of patients with suspected arboviral diseases; Pan American Health Organization: Washington, D.C., 2017.
González, M. A. Aromatic abietane diterpenoids: their biological activity and synthesis. Nat. Prod. Rep. 2015, 32, 684– 704, DOI: 10.1039/C4NP00110A
González, M. A. Synthetic derivatives of aromatic abietane diterpenoids and their biological activities. Eur. J. Med. Chem. 2014, 87, 834– 842, DOI: 10.1016/j.ejmech.2014.10.023
Wen, C.-C.; Kuo, Y.-H.; Jan, J.-T.; Lian, P.-H.; Wang, S.-Y.; Liu, H.-G.; Lee, C.-K.; Chang, S.-T.; Kuo, C.-J.; Lee, S.-S.; Hou, C.-C.; Hsiao, P.-W.; Chien, S.-C.; Shyur, L.-F.; Yang, N.-S. Specific Plant Terpenoids and Lignoids Possess Potent Antiviral Activities against Severe Acute Respiratory Syndrome Coronavirus. J. Med. Chem. 2007, 50, 4087– 4095, DOI: 10.1021/jm070295s
Roa-Linares, V. C.; Brand, Y. M.; Agudelo-Gomez, L. S.; Tangarife-Castaño, V.; Betancur-Galvis, L. A.; Gallego-Gomez, J. C.; González, M. A. Anti-herpetic and anti-dengue activity of abietane ferruginol analogues synthesized from (+)-dehydroabietylamine. Eur. J. Med. Chem. 2016, 108, 79– 88, DOI: 10.1016/j.ejmech.2015.11.009
González-Cardenete, M. A.; Betancur-Galvis, L. A. Spanish Patent ES 2586505, 2016.
González-Cardenete, M. A.; Betancur-Galvis, L. A. PCT Patent WO 2016142568, 2016.
González, M. A.; Clark, J.; Connelly, M.; Rivas, F. Antimalarial activity of abietane ferruginol analogues posssessing a phthalimide group. Bioorg. Med. Chem. Lett. 2014, 24, 5232– 5237, DOI: 10.1016/j.bmcl.2014.09.061
Pariš, A.; Štrukelj, B.; Renko, M.; Turk, V.; Pukl, M.; Umek, A.; Korant, B. D. Inhibitory effect of carnosolic acid on HIV-1 protease in cell-free assays. J. Nat. Prod. 1993, 56, 1426– 1430, DOI: 10.1021/np50098a031
Shin, H.-B.; Choi, M.-S.; Ryu, B.; Lee, N.-R.; Kim, H.-I.; Choi, H.-E.; Chang, J.; Lee, K.-T.; Jang, D. S.; Inn, K.-S. Antiviral activity of carnosic acid against respiratory syncytial virus. Virol. J. 2013, 10, 303, DOI: 10.1186/1743-422X-10-303
Fonseca, T.; Gigante, B.; Marques, M. M.; Gilchrist, T. L.; De Clercq, E. Synthesis and antiviral evaluation of benzimidazoles, quinoxalines and indoles from dehydroabietic acid. Bioorg. Med. Chem. 2004, 12, 103– 112, DOI: 10.1016/j.bmc.2003.10.013
González, M. A.; Pérez-Guiata, D.; Correa-Royero, J.; Zapata, B.; Agudelo, L.; Mesa-Arango, A.; Betancur-Galvis, L. Synthesis and biological evaluation of dehydroabietic acid derivatives. Eur. J. Med. Chem. 2010, 45, 811– 816, DOI: 10.1016/j.ejmech.2009.10.010
Wang, Y.-D.; Zhang, G.-J.; Qu, J.; Li, Y.-H.; Jiang, J.-D.; Liu, Y.-B.; Ma, S.-G.; Li, Y.; Lv, H.-N.; Yu, S.-S. Diterpenoids and Sesquiterpenoids from the roots of Illicium majus. J. Nat. Prod. 2013, 76, 1976– 1983, DOI: 10.1021/np400638r
Zhao, J.-X.; Liu, C.-P.; Qi, W.-Y.; Han, M.-L.; Han, Y.-S.; Wainberg, M. A.; Yue, J.-M. Eurifoloids A-R, structurally diverse diterpenoids from Euphorbia neriifolia. J. Nat. Prod. 2014, 77, 2224– 2233, DOI: 10.1021/np5004752
Byler, K. G.; Collins, J. T.; Ogungbe, I. V.; Setzer, W. N. Alphavirus protease inhibitors from natural sources: A homology modeling and molecular docking investigation. Comput. Biol. Chem. 2016, 64, 163– 184, DOI: 10.1016/j.compbiolchem.2016.06.005
Wichit, S.; Hamel, R.; Bernard, E.; Talignani, L.; Diop, F.; Ferraris, P.; Liegeois, F.; Ekchariyawat, P.; Luplertlop, N.; Surasombatpattana, P.; Thomas, F.; Merits, A.; Choumet, V.; Roques, P.; Yssel, H.; Briant, L.; Missé, D. Imipramine Inhibits Chikungunya Virus Replication in Human Skin Fibroblasts through Interference with Intracellular Cholesterol Trafficking. Sci. Rep. 2017, 7, 3145, DOI: 10.1038/s41598-017-03316-5
Kuzu, O. F.; Gowda, R.; Sharma, A.; Robertson, G. P. Leelamine mediates cancer cell death through inhibition of intracellular cholesterol transport. Mol. Cancer Ther. 2014, 13, 1690– 1703, DOI: 10.1158/1535-7163.MCT-13-0868
González, M. A.; Perez-Guaita, D. Short syntheses of (+)-ferruginol from (+)-dehydroabietylamine. Tetrahedron 2012, 68, 9612– 9615, DOI: 10.1016/j.tet.2012.09.055
Malkowsky, I. M.; Nieger, M.; Kataeva, O.; Waldvogel, S. R. Synthesis and properties of optically pure phenols derived from (+)-dehydroabietylamine. Synthesis 2007, 773– 778, DOI: 10.1055/s-2007-965895
Zapata, B.; Rojas, M.; Betancur-Galvis, L.; Mesa-Arango, A. C.; Pérez-Guaita, D.; González, M. A. Cytotoxic, immunomodulatory, antimycotic, and antiviral activities of Semisynthetic 14-Hydroxyabietane derivatives and Triptoquinone C-4 epimers. Med. Chem. Comm. 2013, 4, 1239– 1246, DOI: 10.1039/c3md00151b
Hamulić, D.; Stadler, M.; Hering, S.; Padrón, J. M.; Bassett, R.; Rivas, F.; Loza-Mejía, M. A.; Dea-Ayuela, M. A.; González-Cardenete, M. A. Synthesis and Biological studies of (+)-liquiditerpenoic acid A (abietopinoic acid) and representative analogs: SAR studies. J. Nat. Prod. 2019, 82, 823– 831, DOI: 10.1021/acs.jnatprod.8b00884
González-Cardenete, M. A.; Rivas, F.; Bassett, R.; Stadler, M.; Hering, S.; Padrón, J. M.; Zaragozá, R. J.; Dea-Ayuela, M. A. Biological Profiling of Semisynthetic C19-Functionalized Ferruginol and Sugiol Analogues. Antibiotics 2021, 10, 184, DOI: 10.3390/antibiotics10020184
Yuan, C.; Liang, Y.; Hernandez, T.; Berriochoa, A.; Houk, K. N.; Siegel, D. Metal-free oxidation of aromatic carbon-hydrogen bonds through a reverse-rebound mechanism. Nature 2013, 499, 192– 196, DOI: 10.1038/nature12284
Wiemann, J.; Loesche, A.; Csuk, R. Novel dehydroabietylamine derivatives as potent inhibitors of acetylcholinesterase. Bioorg. Chem. 2017, 74, 145– 157, DOI: 10.1016/j.bioorg.2017.07.013
Laaksonen, T.; Heikkinen, S.; Wähälä, K. Synthesis of Tertiary and Quaternary Amine Derivatives from Wood Resin as Chiral NMR Solvating Agents. Molecules 2015, 20, 20873– 20886, DOI: 10.3390/molecules201119732
Nguyen, T. A. H.; Hou, D.-R. Direct Acetoxylation of Arenes. Org. Lett. 2021, 23, 8127– 8131, DOI: 10.1021/acs.orglett.1c02183
Vlietinck, A. J.; Van Hoof, L.; Totté, J.; Lasure, A.; Vanden Berghe, D.; Rwangabo, P. C.; Mvukiyumwami, J. Screening of hundred Rwandese medicinal plants for antimicrobial and antiviral properties. J. Ethnopharmacol. 1995, 46, 31– 47, DOI: 10.1016/0378-8741(95)01226-4
Sousa, F. T. G.; Nunes, C.; Romano, C. M.; Sabino, E. C.; González-Cardenete, M. A. Anti-Zika virus activity of several abietane-type ferruginol analogues. Rev. Inst. Med. Trop. São Paulo 2020, 62, e97 DOI: 10.1590/s1678-9946202062097
Martinez-Gutierrez, M.; Castellanos, J. E.; Gallego-Gómez, J. C. Statins reduce dengue virus production via decreased virion assembly. Intervirology 2011, 54, 202– 216, DOI: 10.1159/000321892
Carrillo-Hernández, M. Y.; Ruiz-Saenz, J.; Villamizar, L. J.; Gómez-Rangel, S. Y.; Martínez-Gutierrez, M. Co-circulation and simultaneous co-infection of dengue, chikungunya, and zika viruses in patients with febrile syndrome at the Colombian-Venezuelan border. BMC Infect. Dis. 2018, 18, 61, DOI: 10.1186/s12879-018-2976-1
Monsalve-Escudero, L. M.; Loaiza-Cano, V.; Pájaro-González, Y.; Oliveros-Díaz, A. F.; Diaz-Castillo, F.; Quiñones, W.; Robledo, S.; Martinez-Gutierrez, M. Indole alkaloids inhibit zika and chikungunya virus infection in different cell lines. BMC Complement. Med. Ther. 2021, 21, 216, DOI: 10.1186/s12906-021-03386-z
Loaiza-Cano, V.; Monsalve-Escudero, L. M.; Pastrana-Restrepo, M.; Quintero-Gil, D. C.; Pulido-Muñoz, S. A.; Galeano, E.; Zapata, W.; Martinez-Gutierrez, M. In vitro and in silico anti-arboviral activities of dihalogenated phenolic derivates of L-tyrosine. Molecules 2021, 26, 3430, DOI: 10.3390/molecules26113430
Trott, O.; Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 2010, 31, 455– 461, DOI: 10.1002/jcc.21334
Zhang, Y.; Gao, W.; Li, J.; Wu, W.; Jiu, Y. The role of host cytoskeleton in Flavivirus infection. Virologica Sinica. 2019, 34, 30– 41, DOI: 10.1007/s12250-019-00086-4
Walsh, D.; Naghavi, M. H. Exploitation of Cytoskeletal Networks during Early Viral Infection. Trends Microbiol. 2019, 27, 39– 50, DOI: 10.1016/j.tim.2018.06.008
Wen, Z.; Zhang, Y.; Lin, Z.; Shi, K.; Jiu, Y. Cytoskeleton-a crucial key in host cell for coronavirus infection. J. Mol. Cell Biol. 2020, 12, 968– 979, DOI: 10.1093/jmcb/mjaa042
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.extent.none.fl_str_mv 2044–2051
dc.coverage.temporal.none.fl_str_mv 85(8) p.
dc.publisher.none.fl_str_mv ACS Publications
Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, 680001 Bucaramanga, Colombia
dc.publisher.program.none.fl_str_mv Medicina veterinaria y zootecnia
dc.publisher.place.none.fl_str_mv Bucaramanga
publisher.none.fl_str_mv ACS Publications
Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, 680001 Bucaramanga, Colombia
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/6771a809-5ed4-4563-98f6-a7952a10add5/download
https://repository.ucc.edu.co/bitstreams/a2156165-097e-46d9-82f6-7adcb3dc07c3/download
https://repository.ucc.edu.co/bitstreams/df03134b-4e5a-419f-bb6d-4eeff28a28df/download
https://repository.ucc.edu.co/bitstreams/3ed8a380-5875-4f37-a54a-25c578e344fd/download
https://repository.ucc.edu.co/bitstreams/95881439-cf18-42be-9215-b6a9ae9ede1a/download
https://repository.ucc.edu.co/bitstreams/385012b9-e58c-446e-aa22-563a0711bd68/download
https://repository.ucc.edu.co/bitstreams/fbfcb01d-59c9-464a-af28-0e712b04287a/download
bitstream.checksum.fl_str_mv 7613013c86dd5305b33ec54efba954fb
8f0fa2aa9a00e54164ed33b02524e257
3bce4f7ab09dfc588f126e1e36e98a45
7b4843dcb5dd2073683a976a67e21ce2
98bd6c7184c5523717f06a1941de25a5
37f698539cb9648fa7e27b217233aa13
7305b534d248046e68a22ec12c6955ae
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808789243831517184
spelling González Cardenete, Miguel A.Hamulić, DamirMiquel Leal, Francisco J.González Zapata, NataliaJiménez Jarava, Orlando J.Brand, Yaneth M.Restrepo Méndez, Laura C.Martínez Gutiérrez, Marlén Betancur Galvis, Liliana A.Marín, Maria L.85(8) p.2023-08-02T22:32:45Z2023-08-02T22:32:45Z2022-07-150163-3864doi: 10.1021/acs.jnatprod.2c00464.https://hdl.handle.net/20.500.12494/52298González-Cardenete MA, Hamulić D, Miquel-Leal FJ, González-Zapata N, Jimenez-Jarava OJ, Brand YM, Restrepo-Mendez LC, Martinez-Gutierrez M, Betancur-Galvis LA, Marín ML. Antiviral Profiling of C-18- or C-19-Functionalized Semisynthetic Abietane Diterpenoids. J Nat Prod. 2022 Aug 26;85(8):2044-2051. doi: 10.1021/acs.jnatprod.2c00464.Viral infections affect several million patients annually. Although hundreds of viruses are known to be pathogenic, only a few can be treated in the clinic with available antiviral drugs. Naturally based pharmacotherapy may be a proper alternative for treating viral diseases. Several natural and semisynthetic abietane-type diterpenoids have shown important antiviral activities. In this study, a biological evaluation of a number of either C-18- or C-19-functionalized known semisynthetic abietanes against Zika virus, Dengue virus, Herpes virus simplextype 1, and Chikungunya virus are reported. Semisynthetic abietane ferruginol and its analogue 18-(phthalimid-2-yl)ferruginol displayed broad-spectrum antiviral properties. The scale-up synthesis of this analogue has been optimized for further studies and development. This molecule displayed an EC50 between 5.0 and 10.0 μM against Colombian Zika virus strains and EC50 = 9.8 μM against Chikungunya virus. Knowing that this ferruginol analogue is also active against Dengue virus type 2 (EC50 = 1.4 μM, DENV-2), we can conclude that this compound is a promising broad-spectrum antiviral agent paving the way for the development of novel antivirals.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000213748https://orcid.org/0000-0002-9429-0058https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000000695marlen.martinezg@campusucc.edu.cohttps://scholar.google.com/citations?user=flSrsSIAAAAJ&hl=es2044–2051ACS PublicationsGrupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, 680001 Bucaramanga, ColombiaMedicina veterinaria y zootecniaBucaramangahttps://pubs.acs.org/doi/full/10.1021/acs.jnatprod.2c00464J. Nat. Prod.Ji, X.; Li, Z. Medicinal chemistry strategies toward host targeting antiviral agents. Med. Res. Rev. 2020, 40, 1519– 1557, DOI: 10.1002/med.21664Ben-Shabat, S.; Yarmolinsky, L.; Porat, D.; Dahan, A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Delivery Trans. Res. 2020, 10, 354– 367, DOI: 10.1007/s13346-019-00691-6Newman, D. J.; Cragg, G. M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770– 803, DOI: 10.1021/acs.jnatprod.9b01285Pan American Health Organization. Tool for the diagnosis and care of patients with suspected arboviral diseases; Pan American Health Organization: Washington, D.C., 2017.González, M. A. Aromatic abietane diterpenoids: their biological activity and synthesis. Nat. Prod. Rep. 2015, 32, 684– 704, DOI: 10.1039/C4NP00110AGonzález, M. A. Synthetic derivatives of aromatic abietane diterpenoids and their biological activities. Eur. J. Med. Chem. 2014, 87, 834– 842, DOI: 10.1016/j.ejmech.2014.10.023Wen, C.-C.; Kuo, Y.-H.; Jan, J.-T.; Lian, P.-H.; Wang, S.-Y.; Liu, H.-G.; Lee, C.-K.; Chang, S.-T.; Kuo, C.-J.; Lee, S.-S.; Hou, C.-C.; Hsiao, P.-W.; Chien, S.-C.; Shyur, L.-F.; Yang, N.-S. Specific Plant Terpenoids and Lignoids Possess Potent Antiviral Activities against Severe Acute Respiratory Syndrome Coronavirus. J. Med. Chem. 2007, 50, 4087– 4095, DOI: 10.1021/jm070295sRoa-Linares, V. C.; Brand, Y. M.; Agudelo-Gomez, L. S.; Tangarife-Castaño, V.; Betancur-Galvis, L. A.; Gallego-Gomez, J. C.; González, M. A. Anti-herpetic and anti-dengue activity of abietane ferruginol analogues synthesized from (+)-dehydroabietylamine. Eur. J. Med. Chem. 2016, 108, 79– 88, DOI: 10.1016/j.ejmech.2015.11.009González-Cardenete, M. A.; Betancur-Galvis, L. A. Spanish Patent ES 2586505, 2016.González-Cardenete, M. A.; Betancur-Galvis, L. A. PCT Patent WO 2016142568, 2016.González, M. A.; Clark, J.; Connelly, M.; Rivas, F. Antimalarial activity of abietane ferruginol analogues posssessing a phthalimide group. Bioorg. Med. Chem. Lett. 2014, 24, 5232– 5237, DOI: 10.1016/j.bmcl.2014.09.061Pariš, A.; Štrukelj, B.; Renko, M.; Turk, V.; Pukl, M.; Umek, A.; Korant, B. D. Inhibitory effect of carnosolic acid on HIV-1 protease in cell-free assays. J. Nat. Prod. 1993, 56, 1426– 1430, DOI: 10.1021/np50098a031Shin, H.-B.; Choi, M.-S.; Ryu, B.; Lee, N.-R.; Kim, H.-I.; Choi, H.-E.; Chang, J.; Lee, K.-T.; Jang, D. S.; Inn, K.-S. Antiviral activity of carnosic acid against respiratory syncytial virus. Virol. J. 2013, 10, 303, DOI: 10.1186/1743-422X-10-303Fonseca, T.; Gigante, B.; Marques, M. M.; Gilchrist, T. L.; De Clercq, E. Synthesis and antiviral evaluation of benzimidazoles, quinoxalines and indoles from dehydroabietic acid. Bioorg. Med. Chem. 2004, 12, 103– 112, DOI: 10.1016/j.bmc.2003.10.013González, M. A.; Pérez-Guiata, D.; Correa-Royero, J.; Zapata, B.; Agudelo, L.; Mesa-Arango, A.; Betancur-Galvis, L. Synthesis and biological evaluation of dehydroabietic acid derivatives. Eur. J. Med. Chem. 2010, 45, 811– 816, DOI: 10.1016/j.ejmech.2009.10.010Wang, Y.-D.; Zhang, G.-J.; Qu, J.; Li, Y.-H.; Jiang, J.-D.; Liu, Y.-B.; Ma, S.-G.; Li, Y.; Lv, H.-N.; Yu, S.-S. Diterpenoids and Sesquiterpenoids from the roots of Illicium majus. J. Nat. Prod. 2013, 76, 1976– 1983, DOI: 10.1021/np400638rZhao, J.-X.; Liu, C.-P.; Qi, W.-Y.; Han, M.-L.; Han, Y.-S.; Wainberg, M. A.; Yue, J.-M. Eurifoloids A-R, structurally diverse diterpenoids from Euphorbia neriifolia. J. Nat. Prod. 2014, 77, 2224– 2233, DOI: 10.1021/np5004752Byler, K. G.; Collins, J. T.; Ogungbe, I. V.; Setzer, W. N. Alphavirus protease inhibitors from natural sources: A homology modeling and molecular docking investigation. Comput. Biol. Chem. 2016, 64, 163– 184, DOI: 10.1016/j.compbiolchem.2016.06.005Wichit, S.; Hamel, R.; Bernard, E.; Talignani, L.; Diop, F.; Ferraris, P.; Liegeois, F.; Ekchariyawat, P.; Luplertlop, N.; Surasombatpattana, P.; Thomas, F.; Merits, A.; Choumet, V.; Roques, P.; Yssel, H.; Briant, L.; Missé, D. Imipramine Inhibits Chikungunya Virus Replication in Human Skin Fibroblasts through Interference with Intracellular Cholesterol Trafficking. Sci. Rep. 2017, 7, 3145, DOI: 10.1038/s41598-017-03316-5Kuzu, O. F.; Gowda, R.; Sharma, A.; Robertson, G. P. Leelamine mediates cancer cell death through inhibition of intracellular cholesterol transport. Mol. Cancer Ther. 2014, 13, 1690– 1703, DOI: 10.1158/1535-7163.MCT-13-0868González, M. A.; Perez-Guaita, D. Short syntheses of (+)-ferruginol from (+)-dehydroabietylamine. Tetrahedron 2012, 68, 9612– 9615, DOI: 10.1016/j.tet.2012.09.055Malkowsky, I. M.; Nieger, M.; Kataeva, O.; Waldvogel, S. R. Synthesis and properties of optically pure phenols derived from (+)-dehydroabietylamine. Synthesis 2007, 773– 778, DOI: 10.1055/s-2007-965895Zapata, B.; Rojas, M.; Betancur-Galvis, L.; Mesa-Arango, A. C.; Pérez-Guaita, D.; González, M. A. Cytotoxic, immunomodulatory, antimycotic, and antiviral activities of Semisynthetic 14-Hydroxyabietane derivatives and Triptoquinone C-4 epimers. Med. Chem. Comm. 2013, 4, 1239– 1246, DOI: 10.1039/c3md00151bHamulić, D.; Stadler, M.; Hering, S.; Padrón, J. M.; Bassett, R.; Rivas, F.; Loza-Mejía, M. A.; Dea-Ayuela, M. A.; González-Cardenete, M. A. Synthesis and Biological studies of (+)-liquiditerpenoic acid A (abietopinoic acid) and representative analogs: SAR studies. J. Nat. Prod. 2019, 82, 823– 831, DOI: 10.1021/acs.jnatprod.8b00884González-Cardenete, M. A.; Rivas, F.; Bassett, R.; Stadler, M.; Hering, S.; Padrón, J. M.; Zaragozá, R. J.; Dea-Ayuela, M. A. Biological Profiling of Semisynthetic C19-Functionalized Ferruginol and Sugiol Analogues. Antibiotics 2021, 10, 184, DOI: 10.3390/antibiotics10020184Yuan, C.; Liang, Y.; Hernandez, T.; Berriochoa, A.; Houk, K. N.; Siegel, D. Metal-free oxidation of aromatic carbon-hydrogen bonds through a reverse-rebound mechanism. Nature 2013, 499, 192– 196, DOI: 10.1038/nature12284Wiemann, J.; Loesche, A.; Csuk, R. Novel dehydroabietylamine derivatives as potent inhibitors of acetylcholinesterase. Bioorg. Chem. 2017, 74, 145– 157, DOI: 10.1016/j.bioorg.2017.07.013Laaksonen, T.; Heikkinen, S.; Wähälä, K. Synthesis of Tertiary and Quaternary Amine Derivatives from Wood Resin as Chiral NMR Solvating Agents. Molecules 2015, 20, 20873– 20886, DOI: 10.3390/molecules201119732Nguyen, T. A. H.; Hou, D.-R. Direct Acetoxylation of Arenes. Org. Lett. 2021, 23, 8127– 8131, DOI: 10.1021/acs.orglett.1c02183Vlietinck, A. J.; Van Hoof, L.; Totté, J.; Lasure, A.; Vanden Berghe, D.; Rwangabo, P. C.; Mvukiyumwami, J. Screening of hundred Rwandese medicinal plants for antimicrobial and antiviral properties. J. Ethnopharmacol. 1995, 46, 31– 47, DOI: 10.1016/0378-8741(95)01226-4Sousa, F. T. G.; Nunes, C.; Romano, C. M.; Sabino, E. C.; González-Cardenete, M. A. Anti-Zika virus activity of several abietane-type ferruginol analogues. Rev. Inst. Med. Trop. São Paulo 2020, 62, e97 DOI: 10.1590/s1678-9946202062097Martinez-Gutierrez, M.; Castellanos, J. E.; Gallego-Gómez, J. C. Statins reduce dengue virus production via decreased virion assembly. Intervirology 2011, 54, 202– 216, DOI: 10.1159/000321892Carrillo-Hernández, M. Y.; Ruiz-Saenz, J.; Villamizar, L. J.; Gómez-Rangel, S. Y.; Martínez-Gutierrez, M. Co-circulation and simultaneous co-infection of dengue, chikungunya, and zika viruses in patients with febrile syndrome at the Colombian-Venezuelan border. BMC Infect. Dis. 2018, 18, 61, DOI: 10.1186/s12879-018-2976-1Monsalve-Escudero, L. M.; Loaiza-Cano, V.; Pájaro-González, Y.; Oliveros-Díaz, A. F.; Diaz-Castillo, F.; Quiñones, W.; Robledo, S.; Martinez-Gutierrez, M. Indole alkaloids inhibit zika and chikungunya virus infection in different cell lines. BMC Complement. Med. Ther. 2021, 21, 216, DOI: 10.1186/s12906-021-03386-zLoaiza-Cano, V.; Monsalve-Escudero, L. M.; Pastrana-Restrepo, M.; Quintero-Gil, D. C.; Pulido-Muñoz, S. A.; Galeano, E.; Zapata, W.; Martinez-Gutierrez, M. In vitro and in silico anti-arboviral activities of dihalogenated phenolic derivates of L-tyrosine. Molecules 2021, 26, 3430, DOI: 10.3390/molecules26113430Trott, O.; Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 2010, 31, 455– 461, DOI: 10.1002/jcc.21334Zhang, Y.; Gao, W.; Li, J.; Wu, W.; Jiu, Y. The role of host cytoskeleton in Flavivirus infection. Virologica Sinica. 2019, 34, 30– 41, DOI: 10.1007/s12250-019-00086-4Walsh, D.; Naghavi, M. H. Exploitation of Cytoskeletal Networks during Early Viral Infection. Trends Microbiol. 2019, 27, 39– 50, DOI: 10.1016/j.tim.2018.06.008Wen, Z.; Zhang, Y.; Lin, Z.; Shi, K.; Jiu, Y. Cytoskeleton-a crucial key in host cell for coronavirus infection. J. Mol. Cell Biol. 2020, 12, 968– 979, DOI: 10.1093/jmcb/mjaa042Assays,Antimicrobial agentsInfectious diseasesInhibitionPharmaceuticalsAntiviral profiling of c-18- or c-19-functionalized semisynthetic abietane diterpenoidsArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINAL2023_antiviral_profiling_functionalized.pdf2023_antiviral_profiling_functionalized.pdfArticuloapplication/pdf3767667https://repository.ucc.edu.co/bitstreams/6771a809-5ed4-4563-98f6-a7952a10add5/download7613013c86dd5305b33ec54efba954fbMD512023_antiviral_profiling_functionalized-FormatoLicenciaUso.pdf2023_antiviral_profiling_functionalized-FormatoLicenciaUso.pdfLicencia de usoapplication/pdf260404https://repository.ucc.edu.co/bitstreams/a2156165-097e-46d9-82f6-7adcb3dc07c3/download8f0fa2aa9a00e54164ed33b02524e257MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/df03134b-4e5a-419f-bb6d-4eeff28a28df/download3bce4f7ab09dfc588f126e1e36e98a45MD53TEXT2023_antiviral_profiling_functionalized.pdf.txt2023_antiviral_profiling_functionalized.pdf.txtExtracted texttext/plain70174https://repository.ucc.edu.co/bitstreams/3ed8a380-5875-4f37-a54a-25c578e344fd/download7b4843dcb5dd2073683a976a67e21ce2MD542023_antiviral_profiling_functionalized-FormatoLicenciaUso.pdf.txt2023_antiviral_profiling_functionalized-FormatoLicenciaUso.pdf.txtExtracted texttext/plain6081https://repository.ucc.edu.co/bitstreams/95881439-cf18-42be-9215-b6a9ae9ede1a/download98bd6c7184c5523717f06a1941de25a5MD56THUMBNAIL2023_antiviral_profiling_functionalized.pdf.jpg2023_antiviral_profiling_functionalized.pdf.jpgGenerated Thumbnailimage/jpeg18585https://repository.ucc.edu.co/bitstreams/385012b9-e58c-446e-aa22-563a0711bd68/download37f698539cb9648fa7e27b217233aa13MD552023_antiviral_profiling_functionalized-FormatoLicenciaUso.pdf.jpg2023_antiviral_profiling_functionalized-FormatoLicenciaUso.pdf.jpgGenerated Thumbnailimage/jpeg13214https://repository.ucc.edu.co/bitstreams/fbfcb01d-59c9-464a-af28-0e712b04287a/download7305b534d248046e68a22ec12c6955aeMD5720.500.12494/52298oai:repository.ucc.edu.co:20.500.12494/522982024-08-09 12:27:24.659open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=