Antiviral profiling of c-18- or c-19-functionalized semisynthetic abietane diterpenoids
Viral infections affect several million patients annually. Although hundreds of viruses are known to be pathogenic, only a few can be treated in the clinic with available antiviral drugs. Naturally based pharmacotherapy may be a proper alternative for treating viral diseases. Several natural and sem...
- Autores:
-
González Cardenete, Miguel A.
Hamulić, Damir
Miquel Leal, Francisco J.
González Zapata, Natalia
Jiménez Jarava, Orlando J.
Brand, Yaneth M.
Restrepo Méndez, Laura C.
Martínez Gutiérrez, Marlén
Betancur Galvis, Liliana A.
Marín, Maria L.
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2022
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/52298
- Acceso en línea:
- https://hdl.handle.net/20.500.12494/52298
- Palabra clave:
- Assays,
Antimicrobial agents
Infectious diseases
Inhibition
Pharmaceuticals
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
id |
COOPER2_5896b001e57c247bae79c49fdc52f7ed |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/52298 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.none.fl_str_mv |
Antiviral profiling of c-18- or c-19-functionalized semisynthetic abietane diterpenoids |
title |
Antiviral profiling of c-18- or c-19-functionalized semisynthetic abietane diterpenoids |
spellingShingle |
Antiviral profiling of c-18- or c-19-functionalized semisynthetic abietane diterpenoids Assays, Antimicrobial agents Infectious diseases Inhibition Pharmaceuticals |
title_short |
Antiviral profiling of c-18- or c-19-functionalized semisynthetic abietane diterpenoids |
title_full |
Antiviral profiling of c-18- or c-19-functionalized semisynthetic abietane diterpenoids |
title_fullStr |
Antiviral profiling of c-18- or c-19-functionalized semisynthetic abietane diterpenoids |
title_full_unstemmed |
Antiviral profiling of c-18- or c-19-functionalized semisynthetic abietane diterpenoids |
title_sort |
Antiviral profiling of c-18- or c-19-functionalized semisynthetic abietane diterpenoids |
dc.creator.fl_str_mv |
González Cardenete, Miguel A. Hamulić, Damir Miquel Leal, Francisco J. González Zapata, Natalia Jiménez Jarava, Orlando J. Brand, Yaneth M. Restrepo Méndez, Laura C. Martínez Gutiérrez, Marlén Betancur Galvis, Liliana A. Marín, Maria L. |
dc.contributor.author.none.fl_str_mv |
González Cardenete, Miguel A. Hamulić, Damir Miquel Leal, Francisco J. González Zapata, Natalia Jiménez Jarava, Orlando J. Brand, Yaneth M. Restrepo Méndez, Laura C. Martínez Gutiérrez, Marlén Betancur Galvis, Liliana A. Marín, Maria L. |
dc.subject.none.fl_str_mv |
Assays, Antimicrobial agents Infectious diseases Inhibition Pharmaceuticals |
topic |
Assays, Antimicrobial agents Infectious diseases Inhibition Pharmaceuticals |
description |
Viral infections affect several million patients annually. Although hundreds of viruses are known to be pathogenic, only a few can be treated in the clinic with available antiviral drugs. Naturally based pharmacotherapy may be a proper alternative for treating viral diseases. Several natural and semisynthetic abietane-type diterpenoids have shown important antiviral activities. In this study, a biological evaluation of a number of either C-18- or C-19-functionalized known semisynthetic abietanes against Zika virus, Dengue virus, Herpes virus simplextype 1, and Chikungunya virus are reported. Semisynthetic abietane ferruginol and its analogue 18-(phthalimid-2-yl)ferruginol displayed broad-spectrum antiviral properties. The scale-up synthesis of this analogue has been optimized for further studies and development. This molecule displayed an EC50 between 5.0 and 10.0 μM against Colombian Zika virus strains and EC50 = 9.8 μM against Chikungunya virus. Knowing that this ferruginol analogue is also active against Dengue virus type 2 (EC50 = 1.4 μM, DENV-2), we can conclude that this compound is a promising broad-spectrum antiviral agent paving the way for the development of novel antivirals. |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-07-15 |
dc.date.accessioned.none.fl_str_mv |
2023-08-02T22:32:45Z |
dc.date.available.none.fl_str_mv |
2023-08-02T22:32:45Z |
dc.type.none.fl_str_mv |
Artículos Científicos |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
0163-3864 |
dc.identifier.uri.none.fl_str_mv |
doi: 10.1021/acs.jnatprod.2c00464. https://hdl.handle.net/20.500.12494/52298 |
dc.identifier.bibliographicCitation.none.fl_str_mv |
González-Cardenete MA, Hamulić D, Miquel-Leal FJ, González-Zapata N, Jimenez-Jarava OJ, Brand YM, Restrepo-Mendez LC, Martinez-Gutierrez M, Betancur-Galvis LA, Marín ML. Antiviral Profiling of C-18- or C-19-Functionalized Semisynthetic Abietane Diterpenoids. J Nat Prod. 2022 Aug 26;85(8):2044-2051. doi: 10.1021/acs.jnatprod.2c00464. |
identifier_str_mv |
0163-3864 doi: 10.1021/acs.jnatprod.2c00464. González-Cardenete MA, Hamulić D, Miquel-Leal FJ, González-Zapata N, Jimenez-Jarava OJ, Brand YM, Restrepo-Mendez LC, Martinez-Gutierrez M, Betancur-Galvis LA, Marín ML. Antiviral Profiling of C-18- or C-19-Functionalized Semisynthetic Abietane Diterpenoids. J Nat Prod. 2022 Aug 26;85(8):2044-2051. doi: 10.1021/acs.jnatprod.2c00464. |
url |
https://hdl.handle.net/20.500.12494/52298 |
dc.relation.isversionof.none.fl_str_mv |
https://pubs.acs.org/doi/full/10.1021/acs.jnatprod.2c00464 |
dc.relation.ispartofjournal.none.fl_str_mv |
J. Nat. Prod. |
dc.relation.references.none.fl_str_mv |
Ji, X.; Li, Z. Medicinal chemistry strategies toward host targeting antiviral agents. Med. Res. Rev. 2020, 40, 1519– 1557, DOI: 10.1002/med.21664 Ben-Shabat, S.; Yarmolinsky, L.; Porat, D.; Dahan, A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Delivery Trans. Res. 2020, 10, 354– 367, DOI: 10.1007/s13346-019-00691-6 Newman, D. J.; Cragg, G. M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770– 803, DOI: 10.1021/acs.jnatprod.9b01285 Pan American Health Organization. Tool for the diagnosis and care of patients with suspected arboviral diseases; Pan American Health Organization: Washington, D.C., 2017. González, M. A. Aromatic abietane diterpenoids: their biological activity and synthesis. Nat. Prod. Rep. 2015, 32, 684– 704, DOI: 10.1039/C4NP00110A González, M. A. Synthetic derivatives of aromatic abietane diterpenoids and their biological activities. Eur. J. Med. Chem. 2014, 87, 834– 842, DOI: 10.1016/j.ejmech.2014.10.023 Wen, C.-C.; Kuo, Y.-H.; Jan, J.-T.; Lian, P.-H.; Wang, S.-Y.; Liu, H.-G.; Lee, C.-K.; Chang, S.-T.; Kuo, C.-J.; Lee, S.-S.; Hou, C.-C.; Hsiao, P.-W.; Chien, S.-C.; Shyur, L.-F.; Yang, N.-S. Specific Plant Terpenoids and Lignoids Possess Potent Antiviral Activities against Severe Acute Respiratory Syndrome Coronavirus. J. Med. Chem. 2007, 50, 4087– 4095, DOI: 10.1021/jm070295s Roa-Linares, V. C.; Brand, Y. M.; Agudelo-Gomez, L. S.; Tangarife-Castaño, V.; Betancur-Galvis, L. A.; Gallego-Gomez, J. C.; González, M. A. Anti-herpetic and anti-dengue activity of abietane ferruginol analogues synthesized from (+)-dehydroabietylamine. Eur. J. Med. Chem. 2016, 108, 79– 88, DOI: 10.1016/j.ejmech.2015.11.009 González-Cardenete, M. A.; Betancur-Galvis, L. A. Spanish Patent ES 2586505, 2016. González-Cardenete, M. A.; Betancur-Galvis, L. A. PCT Patent WO 2016142568, 2016. González, M. A.; Clark, J.; Connelly, M.; Rivas, F. Antimalarial activity of abietane ferruginol analogues posssessing a phthalimide group. Bioorg. Med. Chem. Lett. 2014, 24, 5232– 5237, DOI: 10.1016/j.bmcl.2014.09.061 Pariš, A.; Štrukelj, B.; Renko, M.; Turk, V.; Pukl, M.; Umek, A.; Korant, B. D. Inhibitory effect of carnosolic acid on HIV-1 protease in cell-free assays. J. Nat. Prod. 1993, 56, 1426– 1430, DOI: 10.1021/np50098a031 Shin, H.-B.; Choi, M.-S.; Ryu, B.; Lee, N.-R.; Kim, H.-I.; Choi, H.-E.; Chang, J.; Lee, K.-T.; Jang, D. S.; Inn, K.-S. Antiviral activity of carnosic acid against respiratory syncytial virus. Virol. J. 2013, 10, 303, DOI: 10.1186/1743-422X-10-303 Fonseca, T.; Gigante, B.; Marques, M. M.; Gilchrist, T. L.; De Clercq, E. Synthesis and antiviral evaluation of benzimidazoles, quinoxalines and indoles from dehydroabietic acid. Bioorg. Med. Chem. 2004, 12, 103– 112, DOI: 10.1016/j.bmc.2003.10.013 González, M. A.; Pérez-Guiata, D.; Correa-Royero, J.; Zapata, B.; Agudelo, L.; Mesa-Arango, A.; Betancur-Galvis, L. Synthesis and biological evaluation of dehydroabietic acid derivatives. Eur. J. Med. Chem. 2010, 45, 811– 816, DOI: 10.1016/j.ejmech.2009.10.010 Wang, Y.-D.; Zhang, G.-J.; Qu, J.; Li, Y.-H.; Jiang, J.-D.; Liu, Y.-B.; Ma, S.-G.; Li, Y.; Lv, H.-N.; Yu, S.-S. Diterpenoids and Sesquiterpenoids from the roots of Illicium majus. J. Nat. Prod. 2013, 76, 1976– 1983, DOI: 10.1021/np400638r Zhao, J.-X.; Liu, C.-P.; Qi, W.-Y.; Han, M.-L.; Han, Y.-S.; Wainberg, M. A.; Yue, J.-M. Eurifoloids A-R, structurally diverse diterpenoids from Euphorbia neriifolia. J. Nat. Prod. 2014, 77, 2224– 2233, DOI: 10.1021/np5004752 Byler, K. G.; Collins, J. T.; Ogungbe, I. V.; Setzer, W. N. Alphavirus protease inhibitors from natural sources: A homology modeling and molecular docking investigation. Comput. Biol. Chem. 2016, 64, 163– 184, DOI: 10.1016/j.compbiolchem.2016.06.005 Wichit, S.; Hamel, R.; Bernard, E.; Talignani, L.; Diop, F.; Ferraris, P.; Liegeois, F.; Ekchariyawat, P.; Luplertlop, N.; Surasombatpattana, P.; Thomas, F.; Merits, A.; Choumet, V.; Roques, P.; Yssel, H.; Briant, L.; Missé, D. Imipramine Inhibits Chikungunya Virus Replication in Human Skin Fibroblasts through Interference with Intracellular Cholesterol Trafficking. Sci. Rep. 2017, 7, 3145, DOI: 10.1038/s41598-017-03316-5 Kuzu, O. F.; Gowda, R.; Sharma, A.; Robertson, G. P. Leelamine mediates cancer cell death through inhibition of intracellular cholesterol transport. Mol. Cancer Ther. 2014, 13, 1690– 1703, DOI: 10.1158/1535-7163.MCT-13-0868 González, M. A.; Perez-Guaita, D. Short syntheses of (+)-ferruginol from (+)-dehydroabietylamine. Tetrahedron 2012, 68, 9612– 9615, DOI: 10.1016/j.tet.2012.09.055 Malkowsky, I. M.; Nieger, M.; Kataeva, O.; Waldvogel, S. R. Synthesis and properties of optically pure phenols derived from (+)-dehydroabietylamine. Synthesis 2007, 773– 778, DOI: 10.1055/s-2007-965895 Zapata, B.; Rojas, M.; Betancur-Galvis, L.; Mesa-Arango, A. C.; Pérez-Guaita, D.; González, M. A. Cytotoxic, immunomodulatory, antimycotic, and antiviral activities of Semisynthetic 14-Hydroxyabietane derivatives and Triptoquinone C-4 epimers. Med. Chem. Comm. 2013, 4, 1239– 1246, DOI: 10.1039/c3md00151b Hamulić, D.; Stadler, M.; Hering, S.; Padrón, J. M.; Bassett, R.; Rivas, F.; Loza-Mejía, M. A.; Dea-Ayuela, M. A.; González-Cardenete, M. A. Synthesis and Biological studies of (+)-liquiditerpenoic acid A (abietopinoic acid) and representative analogs: SAR studies. J. Nat. Prod. 2019, 82, 823– 831, DOI: 10.1021/acs.jnatprod.8b00884 González-Cardenete, M. A.; Rivas, F.; Bassett, R.; Stadler, M.; Hering, S.; Padrón, J. M.; Zaragozá, R. J.; Dea-Ayuela, M. A. Biological Profiling of Semisynthetic C19-Functionalized Ferruginol and Sugiol Analogues. Antibiotics 2021, 10, 184, DOI: 10.3390/antibiotics10020184 Yuan, C.; Liang, Y.; Hernandez, T.; Berriochoa, A.; Houk, K. N.; Siegel, D. Metal-free oxidation of aromatic carbon-hydrogen bonds through a reverse-rebound mechanism. Nature 2013, 499, 192– 196, DOI: 10.1038/nature12284 Wiemann, J.; Loesche, A.; Csuk, R. Novel dehydroabietylamine derivatives as potent inhibitors of acetylcholinesterase. Bioorg. Chem. 2017, 74, 145– 157, DOI: 10.1016/j.bioorg.2017.07.013 Laaksonen, T.; Heikkinen, S.; Wähälä, K. Synthesis of Tertiary and Quaternary Amine Derivatives from Wood Resin as Chiral NMR Solvating Agents. Molecules 2015, 20, 20873– 20886, DOI: 10.3390/molecules201119732 Nguyen, T. A. H.; Hou, D.-R. Direct Acetoxylation of Arenes. Org. Lett. 2021, 23, 8127– 8131, DOI: 10.1021/acs.orglett.1c02183 Vlietinck, A. J.; Van Hoof, L.; Totté, J.; Lasure, A.; Vanden Berghe, D.; Rwangabo, P. C.; Mvukiyumwami, J. Screening of hundred Rwandese medicinal plants for antimicrobial and antiviral properties. J. Ethnopharmacol. 1995, 46, 31– 47, DOI: 10.1016/0378-8741(95)01226-4 Sousa, F. T. G.; Nunes, C.; Romano, C. M.; Sabino, E. C.; González-Cardenete, M. A. Anti-Zika virus activity of several abietane-type ferruginol analogues. Rev. Inst. Med. Trop. São Paulo 2020, 62, e97 DOI: 10.1590/s1678-9946202062097 Martinez-Gutierrez, M.; Castellanos, J. E.; Gallego-Gómez, J. C. Statins reduce dengue virus production via decreased virion assembly. Intervirology 2011, 54, 202– 216, DOI: 10.1159/000321892 Carrillo-Hernández, M. Y.; Ruiz-Saenz, J.; Villamizar, L. J.; Gómez-Rangel, S. Y.; Martínez-Gutierrez, M. Co-circulation and simultaneous co-infection of dengue, chikungunya, and zika viruses in patients with febrile syndrome at the Colombian-Venezuelan border. BMC Infect. Dis. 2018, 18, 61, DOI: 10.1186/s12879-018-2976-1 Monsalve-Escudero, L. M.; Loaiza-Cano, V.; Pájaro-González, Y.; Oliveros-Díaz, A. F.; Diaz-Castillo, F.; Quiñones, W.; Robledo, S.; Martinez-Gutierrez, M. Indole alkaloids inhibit zika and chikungunya virus infection in different cell lines. BMC Complement. Med. Ther. 2021, 21, 216, DOI: 10.1186/s12906-021-03386-z Loaiza-Cano, V.; Monsalve-Escudero, L. M.; Pastrana-Restrepo, M.; Quintero-Gil, D. C.; Pulido-Muñoz, S. A.; Galeano, E.; Zapata, W.; Martinez-Gutierrez, M. In vitro and in silico anti-arboviral activities of dihalogenated phenolic derivates of L-tyrosine. Molecules 2021, 26, 3430, DOI: 10.3390/molecules26113430 Trott, O.; Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 2010, 31, 455– 461, DOI: 10.1002/jcc.21334 Zhang, Y.; Gao, W.; Li, J.; Wu, W.; Jiu, Y. The role of host cytoskeleton in Flavivirus infection. Virologica Sinica. 2019, 34, 30– 41, DOI: 10.1007/s12250-019-00086-4 Walsh, D.; Naghavi, M. H. Exploitation of Cytoskeletal Networks during Early Viral Infection. Trends Microbiol. 2019, 27, 39– 50, DOI: 10.1016/j.tim.2018.06.008 Wen, Z.; Zhang, Y.; Lin, Z.; Shi, K.; Jiu, Y. Cytoskeleton-a crucial key in host cell for coronavirus infection. J. Mol. Cell Biol. 2020, 12, 968– 979, DOI: 10.1093/jmcb/mjaa042 |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.none.fl_str_mv |
2044–2051 |
dc.coverage.temporal.none.fl_str_mv |
85(8) p. |
dc.publisher.none.fl_str_mv |
ACS Publications Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, 680001 Bucaramanga, Colombia |
dc.publisher.program.none.fl_str_mv |
Medicina veterinaria y zootecnia |
dc.publisher.place.none.fl_str_mv |
Bucaramanga |
publisher.none.fl_str_mv |
ACS Publications Grupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, 680001 Bucaramanga, Colombia |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/6771a809-5ed4-4563-98f6-a7952a10add5/download https://repository.ucc.edu.co/bitstreams/a2156165-097e-46d9-82f6-7adcb3dc07c3/download https://repository.ucc.edu.co/bitstreams/df03134b-4e5a-419f-bb6d-4eeff28a28df/download https://repository.ucc.edu.co/bitstreams/3ed8a380-5875-4f37-a54a-25c578e344fd/download https://repository.ucc.edu.co/bitstreams/95881439-cf18-42be-9215-b6a9ae9ede1a/download https://repository.ucc.edu.co/bitstreams/385012b9-e58c-446e-aa22-563a0711bd68/download https://repository.ucc.edu.co/bitstreams/fbfcb01d-59c9-464a-af28-0e712b04287a/download |
bitstream.checksum.fl_str_mv |
7613013c86dd5305b33ec54efba954fb 8f0fa2aa9a00e54164ed33b02524e257 3bce4f7ab09dfc588f126e1e36e98a45 7b4843dcb5dd2073683a976a67e21ce2 98bd6c7184c5523717f06a1941de25a5 37f698539cb9648fa7e27b217233aa13 7305b534d248046e68a22ec12c6955ae |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1811565472475250688 |
spelling |
González Cardenete, Miguel A.Hamulić, DamirMiquel Leal, Francisco J.González Zapata, NataliaJiménez Jarava, Orlando J.Brand, Yaneth M.Restrepo Méndez, Laura C.Martínez Gutiérrez, Marlén Betancur Galvis, Liliana A.Marín, Maria L.85(8) p.2023-08-02T22:32:45Z2023-08-02T22:32:45Z2022-07-150163-3864doi: 10.1021/acs.jnatprod.2c00464.https://hdl.handle.net/20.500.12494/52298González-Cardenete MA, Hamulić D, Miquel-Leal FJ, González-Zapata N, Jimenez-Jarava OJ, Brand YM, Restrepo-Mendez LC, Martinez-Gutierrez M, Betancur-Galvis LA, Marín ML. Antiviral Profiling of C-18- or C-19-Functionalized Semisynthetic Abietane Diterpenoids. J Nat Prod. 2022 Aug 26;85(8):2044-2051. doi: 10.1021/acs.jnatprod.2c00464.Viral infections affect several million patients annually. Although hundreds of viruses are known to be pathogenic, only a few can be treated in the clinic with available antiviral drugs. Naturally based pharmacotherapy may be a proper alternative for treating viral diseases. Several natural and semisynthetic abietane-type diterpenoids have shown important antiviral activities. In this study, a biological evaluation of a number of either C-18- or C-19-functionalized known semisynthetic abietanes against Zika virus, Dengue virus, Herpes virus simplextype 1, and Chikungunya virus are reported. Semisynthetic abietane ferruginol and its analogue 18-(phthalimid-2-yl)ferruginol displayed broad-spectrum antiviral properties. The scale-up synthesis of this analogue has been optimized for further studies and development. This molecule displayed an EC50 between 5.0 and 10.0 μM against Colombian Zika virus strains and EC50 = 9.8 μM against Chikungunya virus. Knowing that this ferruginol analogue is also active against Dengue virus type 2 (EC50 = 1.4 μM, DENV-2), we can conclude that this compound is a promising broad-spectrum antiviral agent paving the way for the development of novel antivirals.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000213748https://orcid.org/0000-0002-9429-0058https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000000695marlen.martinezg@campusucc.edu.cohttps://scholar.google.com/citations?user=flSrsSIAAAAJ&hl=es2044–2051ACS PublicationsGrupo de Investigación en Ciencias Animales-GRICA, Universidad Cooperativa de Colombia, 680001 Bucaramanga, ColombiaMedicina veterinaria y zootecniaBucaramangahttps://pubs.acs.org/doi/full/10.1021/acs.jnatprod.2c00464J. Nat. Prod.Ji, X.; Li, Z. Medicinal chemistry strategies toward host targeting antiviral agents. Med. Res. Rev. 2020, 40, 1519– 1557, DOI: 10.1002/med.21664Ben-Shabat, S.; Yarmolinsky, L.; Porat, D.; Dahan, A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Delivery Trans. Res. 2020, 10, 354– 367, DOI: 10.1007/s13346-019-00691-6Newman, D. J.; Cragg, G. M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770– 803, DOI: 10.1021/acs.jnatprod.9b01285Pan American Health Organization. Tool for the diagnosis and care of patients with suspected arboviral diseases; Pan American Health Organization: Washington, D.C., 2017.González, M. A. Aromatic abietane diterpenoids: their biological activity and synthesis. Nat. Prod. Rep. 2015, 32, 684– 704, DOI: 10.1039/C4NP00110AGonzález, M. A. Synthetic derivatives of aromatic abietane diterpenoids and their biological activities. Eur. J. Med. Chem. 2014, 87, 834– 842, DOI: 10.1016/j.ejmech.2014.10.023Wen, C.-C.; Kuo, Y.-H.; Jan, J.-T.; Lian, P.-H.; Wang, S.-Y.; Liu, H.-G.; Lee, C.-K.; Chang, S.-T.; Kuo, C.-J.; Lee, S.-S.; Hou, C.-C.; Hsiao, P.-W.; Chien, S.-C.; Shyur, L.-F.; Yang, N.-S. Specific Plant Terpenoids and Lignoids Possess Potent Antiviral Activities against Severe Acute Respiratory Syndrome Coronavirus. J. Med. Chem. 2007, 50, 4087– 4095, DOI: 10.1021/jm070295sRoa-Linares, V. C.; Brand, Y. M.; Agudelo-Gomez, L. S.; Tangarife-Castaño, V.; Betancur-Galvis, L. A.; Gallego-Gomez, J. C.; González, M. A. Anti-herpetic and anti-dengue activity of abietane ferruginol analogues synthesized from (+)-dehydroabietylamine. Eur. J. Med. Chem. 2016, 108, 79– 88, DOI: 10.1016/j.ejmech.2015.11.009González-Cardenete, M. A.; Betancur-Galvis, L. A. Spanish Patent ES 2586505, 2016.González-Cardenete, M. A.; Betancur-Galvis, L. A. PCT Patent WO 2016142568, 2016.González, M. A.; Clark, J.; Connelly, M.; Rivas, F. Antimalarial activity of abietane ferruginol analogues posssessing a phthalimide group. Bioorg. Med. Chem. Lett. 2014, 24, 5232– 5237, DOI: 10.1016/j.bmcl.2014.09.061Pariš, A.; Štrukelj, B.; Renko, M.; Turk, V.; Pukl, M.; Umek, A.; Korant, B. D. Inhibitory effect of carnosolic acid on HIV-1 protease in cell-free assays. J. Nat. Prod. 1993, 56, 1426– 1430, DOI: 10.1021/np50098a031Shin, H.-B.; Choi, M.-S.; Ryu, B.; Lee, N.-R.; Kim, H.-I.; Choi, H.-E.; Chang, J.; Lee, K.-T.; Jang, D. S.; Inn, K.-S. Antiviral activity of carnosic acid against respiratory syncytial virus. Virol. J. 2013, 10, 303, DOI: 10.1186/1743-422X-10-303Fonseca, T.; Gigante, B.; Marques, M. M.; Gilchrist, T. L.; De Clercq, E. Synthesis and antiviral evaluation of benzimidazoles, quinoxalines and indoles from dehydroabietic acid. Bioorg. Med. Chem. 2004, 12, 103– 112, DOI: 10.1016/j.bmc.2003.10.013González, M. A.; Pérez-Guiata, D.; Correa-Royero, J.; Zapata, B.; Agudelo, L.; Mesa-Arango, A.; Betancur-Galvis, L. Synthesis and biological evaluation of dehydroabietic acid derivatives. Eur. J. Med. Chem. 2010, 45, 811– 816, DOI: 10.1016/j.ejmech.2009.10.010Wang, Y.-D.; Zhang, G.-J.; Qu, J.; Li, Y.-H.; Jiang, J.-D.; Liu, Y.-B.; Ma, S.-G.; Li, Y.; Lv, H.-N.; Yu, S.-S. Diterpenoids and Sesquiterpenoids from the roots of Illicium majus. J. Nat. Prod. 2013, 76, 1976– 1983, DOI: 10.1021/np400638rZhao, J.-X.; Liu, C.-P.; Qi, W.-Y.; Han, M.-L.; Han, Y.-S.; Wainberg, M. A.; Yue, J.-M. Eurifoloids A-R, structurally diverse diterpenoids from Euphorbia neriifolia. J. Nat. Prod. 2014, 77, 2224– 2233, DOI: 10.1021/np5004752Byler, K. G.; Collins, J. T.; Ogungbe, I. V.; Setzer, W. N. Alphavirus protease inhibitors from natural sources: A homology modeling and molecular docking investigation. Comput. Biol. Chem. 2016, 64, 163– 184, DOI: 10.1016/j.compbiolchem.2016.06.005Wichit, S.; Hamel, R.; Bernard, E.; Talignani, L.; Diop, F.; Ferraris, P.; Liegeois, F.; Ekchariyawat, P.; Luplertlop, N.; Surasombatpattana, P.; Thomas, F.; Merits, A.; Choumet, V.; Roques, P.; Yssel, H.; Briant, L.; Missé, D. Imipramine Inhibits Chikungunya Virus Replication in Human Skin Fibroblasts through Interference with Intracellular Cholesterol Trafficking. Sci. Rep. 2017, 7, 3145, DOI: 10.1038/s41598-017-03316-5Kuzu, O. F.; Gowda, R.; Sharma, A.; Robertson, G. P. Leelamine mediates cancer cell death through inhibition of intracellular cholesterol transport. Mol. Cancer Ther. 2014, 13, 1690– 1703, DOI: 10.1158/1535-7163.MCT-13-0868González, M. A.; Perez-Guaita, D. Short syntheses of (+)-ferruginol from (+)-dehydroabietylamine. Tetrahedron 2012, 68, 9612– 9615, DOI: 10.1016/j.tet.2012.09.055Malkowsky, I. M.; Nieger, M.; Kataeva, O.; Waldvogel, S. R. Synthesis and properties of optically pure phenols derived from (+)-dehydroabietylamine. Synthesis 2007, 773– 778, DOI: 10.1055/s-2007-965895Zapata, B.; Rojas, M.; Betancur-Galvis, L.; Mesa-Arango, A. C.; Pérez-Guaita, D.; González, M. A. Cytotoxic, immunomodulatory, antimycotic, and antiviral activities of Semisynthetic 14-Hydroxyabietane derivatives and Triptoquinone C-4 epimers. Med. Chem. Comm. 2013, 4, 1239– 1246, DOI: 10.1039/c3md00151bHamulić, D.; Stadler, M.; Hering, S.; Padrón, J. M.; Bassett, R.; Rivas, F.; Loza-Mejía, M. A.; Dea-Ayuela, M. A.; González-Cardenete, M. A. Synthesis and Biological studies of (+)-liquiditerpenoic acid A (abietopinoic acid) and representative analogs: SAR studies. J. Nat. Prod. 2019, 82, 823– 831, DOI: 10.1021/acs.jnatprod.8b00884González-Cardenete, M. A.; Rivas, F.; Bassett, R.; Stadler, M.; Hering, S.; Padrón, J. M.; Zaragozá, R. J.; Dea-Ayuela, M. A. Biological Profiling of Semisynthetic C19-Functionalized Ferruginol and Sugiol Analogues. Antibiotics 2021, 10, 184, DOI: 10.3390/antibiotics10020184Yuan, C.; Liang, Y.; Hernandez, T.; Berriochoa, A.; Houk, K. N.; Siegel, D. Metal-free oxidation of aromatic carbon-hydrogen bonds through a reverse-rebound mechanism. Nature 2013, 499, 192– 196, DOI: 10.1038/nature12284Wiemann, J.; Loesche, A.; Csuk, R. Novel dehydroabietylamine derivatives as potent inhibitors of acetylcholinesterase. Bioorg. Chem. 2017, 74, 145– 157, DOI: 10.1016/j.bioorg.2017.07.013Laaksonen, T.; Heikkinen, S.; Wähälä, K. Synthesis of Tertiary and Quaternary Amine Derivatives from Wood Resin as Chiral NMR Solvating Agents. Molecules 2015, 20, 20873– 20886, DOI: 10.3390/molecules201119732Nguyen, T. A. H.; Hou, D.-R. Direct Acetoxylation of Arenes. Org. Lett. 2021, 23, 8127– 8131, DOI: 10.1021/acs.orglett.1c02183Vlietinck, A. J.; Van Hoof, L.; Totté, J.; Lasure, A.; Vanden Berghe, D.; Rwangabo, P. C.; Mvukiyumwami, J. Screening of hundred Rwandese medicinal plants for antimicrobial and antiviral properties. J. Ethnopharmacol. 1995, 46, 31– 47, DOI: 10.1016/0378-8741(95)01226-4Sousa, F. T. G.; Nunes, C.; Romano, C. M.; Sabino, E. C.; González-Cardenete, M. A. Anti-Zika virus activity of several abietane-type ferruginol analogues. Rev. Inst. Med. Trop. São Paulo 2020, 62, e97 DOI: 10.1590/s1678-9946202062097Martinez-Gutierrez, M.; Castellanos, J. E.; Gallego-Gómez, J. C. Statins reduce dengue virus production via decreased virion assembly. Intervirology 2011, 54, 202– 216, DOI: 10.1159/000321892Carrillo-Hernández, M. Y.; Ruiz-Saenz, J.; Villamizar, L. J.; Gómez-Rangel, S. Y.; Martínez-Gutierrez, M. Co-circulation and simultaneous co-infection of dengue, chikungunya, and zika viruses in patients with febrile syndrome at the Colombian-Venezuelan border. BMC Infect. Dis. 2018, 18, 61, DOI: 10.1186/s12879-018-2976-1Monsalve-Escudero, L. M.; Loaiza-Cano, V.; Pájaro-González, Y.; Oliveros-Díaz, A. F.; Diaz-Castillo, F.; Quiñones, W.; Robledo, S.; Martinez-Gutierrez, M. Indole alkaloids inhibit zika and chikungunya virus infection in different cell lines. BMC Complement. Med. Ther. 2021, 21, 216, DOI: 10.1186/s12906-021-03386-zLoaiza-Cano, V.; Monsalve-Escudero, L. M.; Pastrana-Restrepo, M.; Quintero-Gil, D. C.; Pulido-Muñoz, S. A.; Galeano, E.; Zapata, W.; Martinez-Gutierrez, M. In vitro and in silico anti-arboviral activities of dihalogenated phenolic derivates of L-tyrosine. Molecules 2021, 26, 3430, DOI: 10.3390/molecules26113430Trott, O.; Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 2010, 31, 455– 461, DOI: 10.1002/jcc.21334Zhang, Y.; Gao, W.; Li, J.; Wu, W.; Jiu, Y. The role of host cytoskeleton in Flavivirus infection. Virologica Sinica. 2019, 34, 30– 41, DOI: 10.1007/s12250-019-00086-4Walsh, D.; Naghavi, M. H. Exploitation of Cytoskeletal Networks during Early Viral Infection. Trends Microbiol. 2019, 27, 39– 50, DOI: 10.1016/j.tim.2018.06.008Wen, Z.; Zhang, Y.; Lin, Z.; Shi, K.; Jiu, Y. Cytoskeleton-a crucial key in host cell for coronavirus infection. J. Mol. Cell Biol. 2020, 12, 968– 979, DOI: 10.1093/jmcb/mjaa042Assays,Antimicrobial agentsInfectious diseasesInhibitionPharmaceuticalsAntiviral profiling of c-18- or c-19-functionalized semisynthetic abietane diterpenoidsArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINAL2023_antiviral_profiling_functionalized.pdf2023_antiviral_profiling_functionalized.pdfArticuloapplication/pdf3767667https://repository.ucc.edu.co/bitstreams/6771a809-5ed4-4563-98f6-a7952a10add5/download7613013c86dd5305b33ec54efba954fbMD512023_antiviral_profiling_functionalized-FormatoLicenciaUso.pdf2023_antiviral_profiling_functionalized-FormatoLicenciaUso.pdfLicencia de usoapplication/pdf260404https://repository.ucc.edu.co/bitstreams/a2156165-097e-46d9-82f6-7adcb3dc07c3/download8f0fa2aa9a00e54164ed33b02524e257MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/df03134b-4e5a-419f-bb6d-4eeff28a28df/download3bce4f7ab09dfc588f126e1e36e98a45MD53TEXT2023_antiviral_profiling_functionalized.pdf.txt2023_antiviral_profiling_functionalized.pdf.txtExtracted texttext/plain70174https://repository.ucc.edu.co/bitstreams/3ed8a380-5875-4f37-a54a-25c578e344fd/download7b4843dcb5dd2073683a976a67e21ce2MD542023_antiviral_profiling_functionalized-FormatoLicenciaUso.pdf.txt2023_antiviral_profiling_functionalized-FormatoLicenciaUso.pdf.txtExtracted texttext/plain6081https://repository.ucc.edu.co/bitstreams/95881439-cf18-42be-9215-b6a9ae9ede1a/download98bd6c7184c5523717f06a1941de25a5MD56THUMBNAIL2023_antiviral_profiling_functionalized.pdf.jpg2023_antiviral_profiling_functionalized.pdf.jpgGenerated Thumbnailimage/jpeg18585https://repository.ucc.edu.co/bitstreams/385012b9-e58c-446e-aa22-563a0711bd68/download37f698539cb9648fa7e27b217233aa13MD552023_antiviral_profiling_functionalized-FormatoLicenciaUso.pdf.jpg2023_antiviral_profiling_functionalized-FormatoLicenciaUso.pdf.jpgGenerated Thumbnailimage/jpeg13214https://repository.ucc.edu.co/bitstreams/fbfcb01d-59c9-464a-af28-0e712b04287a/download7305b534d248046e68a22ec12c6955aeMD5720.500.12494/52298oai:repository.ucc.edu.co:20.500.12494/522982024-08-09 12:27:24.659open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo= |