Chemical, structural and mechanical characterization of bovine enamel

Objective: The purpose of this investigation was to establish microstructure, microhardness, fracture toughness, chemical composition, and crack repair of bovine enamel and to compare these features with their human counterparts. Design: Bovine enamel fragments were prepared and optical microscopy a...

Full description

Autores:
Arango Santander, Santiago
Peláez Vargas, Alejandro
Montoya, Carolina
Ossa, Edgar Alexander
Tipo de recurso:
http://purl.org/coar/resource_type/c_f744
Fecha de publicación:
2019
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/15133
Acceso en línea:
https://doi.org/10.1016/j.archoralbio.2019.104573
https://hdl.handle.net/20.500.12494/15133
Palabra clave:
Bovine enamel
Hardness
Fracture toughness
Crack repair
Raman spectroscopy
Chemical composition
Bovine enamel
Hardness
Fracture toughness
Crack repair
Raman spectroscopy
Chemical composition
Rights
openAccess
License
Atribución – No comercial – Sin Derivar
id COOPER2_587f1a0124c7fb53aa93606781ecfa54
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/15133
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Chemical, structural and mechanical characterization of bovine enamel
title Chemical, structural and mechanical characterization of bovine enamel
spellingShingle Chemical, structural and mechanical characterization of bovine enamel
Bovine enamel
Hardness
Fracture toughness
Crack repair
Raman spectroscopy
Chemical composition
Bovine enamel
Hardness
Fracture toughness
Crack repair
Raman spectroscopy
Chemical composition
title_short Chemical, structural and mechanical characterization of bovine enamel
title_full Chemical, structural and mechanical characterization of bovine enamel
title_fullStr Chemical, structural and mechanical characterization of bovine enamel
title_full_unstemmed Chemical, structural and mechanical characterization of bovine enamel
title_sort Chemical, structural and mechanical characterization of bovine enamel
dc.creator.fl_str_mv Arango Santander, Santiago
Peláez Vargas, Alejandro
Montoya, Carolina
Ossa, Edgar Alexander
dc.contributor.advisor.none.fl_str_mv Arango Santander, Santiago
dc.contributor.author.none.fl_str_mv Arango Santander, Santiago
Peláez Vargas, Alejandro
Montoya, Carolina
Ossa, Edgar Alexander
dc.subject.spa.fl_str_mv Bovine enamel
Hardness
Fracture toughness
Crack repair
Raman spectroscopy
Chemical composition
topic Bovine enamel
Hardness
Fracture toughness
Crack repair
Raman spectroscopy
Chemical composition
Bovine enamel
Hardness
Fracture toughness
Crack repair
Raman spectroscopy
Chemical composition
dc.subject.other.spa.fl_str_mv Bovine enamel
Hardness
Fracture toughness
Crack repair
Raman spectroscopy
Chemical composition
description Objective: The purpose of this investigation was to establish microstructure, microhardness, fracture toughness, chemical composition, and crack repair of bovine enamel and to compare these features with their human counterparts. Design: Bovine enamel fragments were prepared and optical microscopy and atomic force microscopy were used to establish microstructure; Raman spectroscopy was used to estimate composition and microindentation using Vickers testing was performed to evaluate hardness. Results: A strong dependence between indentation load and microhardness values was observed, as was the case in human enamel. Similar microstructure and chemical composition between bovine and human enamel, 7.89% lower microhardness and 40% higher fracture toughness values for bovine enamel were found. Conclusion: From a structural and mechanical standpoint, bovine enamel is a suitable alternative to human enamel for in vitro testing of dental products.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-11-19T19:19:41Z
dc.date.available.none.fl_str_mv 2019-11-19T19:19:41Z
2020-09-27
dc.date.issued.none.fl_str_mv 2019-09-27
dc.type.none.fl_str_mv Acta de memorias
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_8042
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_f744
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/workingPaper
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_f744
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 0003-9969
dc.identifier.uri.spa.fl_str_mv https://doi.org/10.1016/j.archoralbio.2019.104573
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/15133
dc.identifier.bibliographicCitation.spa.fl_str_mv Santiago Arango-Santander, Alejandro Pelaez-Vargas, Montoya, C. and Ossa, E. A. “Chemical, structural and mechanical characterization of bovine enamel” Archives of Oral Biology, vol. 109, Article ID 104573, 6 pages, 2020.
identifier_str_mv 0003-9969
Santiago Arango-Santander, Alejandro Pelaez-Vargas, Montoya, C. and Ossa, E. A. “Chemical, structural and mechanical characterization of bovine enamel” Archives of Oral Biology, vol. 109, Article ID 104573, 6 pages, 2020.
url https://doi.org/10.1016/j.archoralbio.2019.104573
https://hdl.handle.net/20.500.12494/15133
dc.relation.isversionof.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0003996919305643?via%3Dihub
dc.relation.ispartofjournal.spa.fl_str_mv Archives of Oral Biology
dc.relation.references.spa.fl_str_mv Ahiropoulos, V., Helvatjoglu-Antoniades, M., & Papadogiannis, Y. (2008). In vitro fluoride uptake by bovine enamel from aesthetic restorative materials. International Journal of Paediatric Dentistry, 18(4), 291–299.
Al-Jobair, A. (2010). The effect of repeated applications of enamel surface treatment on in-vitro bovine enamel hardness after multiple exposures to cola drink. Pakistan Oral & Dental Journal, 30(1), 154–158.
Ameri, H., Ghavamnasiri, M., & Abed, A. (2011). Effects of different bleaching time intervals on fracture toughness of enamel. Journal of Conservative Dentistry, 14(1), 73–75.
Atash, R., & Van den Abbeele, A. (2005). Bond strengths of eight contemporary adhesives to enamel and to dentine: An in vitro study on bovine primary teeth. International Journal of Paediatric Dentistry, 15(4), 264–273.
Attin, T., Muller, T., Patyk, A., & Lennon, A. M. (2004). Influence of different bleaching systems on fracture toughness and hardness of enamel. Operative Dentistry, 29(2), 188–195.
Bechtle, S., Habelitz, S., Klocke, A., Fett, T., & Schneider, G. A. (2010). The fracture behaviour of dental enamel. Biomaterials, 31(2), 375–384.
Camargo, S. E., Valera, M. C., Camargo, C. H., Gasparoto Mancini, M. N., & Menezes, M. M. (2007). Penetration of 38% hydrogen peroxide into the pulp chamber in bovine and human teeth submitted to office bleach technique. Journal of Endodontics, 33(9), 1074–1077.
Cesar, I. C., Silva, L. E., Alves, L. P., Martin, A. A., Munin, E., & Liporoni, P. C. (2009). Fourier transform–Raman and reflectance studies on dental enamel bleached with hydrogen peroxide activated using a light-emitting diode–laser system. Photomedicine and Laser Surgery, 27(6), 913–919.
Comar, L. P., Gomes, M. F., Ito, N., Salomão, P. A., Grizzo, L. T., & Magalhães, A. C. (2012). Effect of NaF, SnF(2), and TiF(4) toothpastes on bovine enamel and dentin erosion-abrasion in vitro. International Journal of Dentistry, 2012 134350.
Constantino, P. J., Wood, B., & Lawn, B. (2008). Dental enamel as a dietary indicator in mammals. BioEssays, 30, 374–385.
Cox, C. F., Hafez, A. A., Akimoto, N., Otsuki, M., Suzuki, S., & Tarim, B. (1998). Biocompatibility of primer, adhesive and resin composite systems on non-exposed and exposed pulps of non-human primate teeth. American Journal of Dentistry, 11 Spec No: S55–S63.
Chen, H. P., Chang, C. H., Liu, J. K., Chuang, S. F., & Yang, J. Y. (2008). Effect of fluoride containing bleaching agents on enamel surface properties. Journal of Dentistry, 36(9), 718–725.
de Medeiros, C. L., Gonzalez-Lopez, S., Bolanos-Carmona, M. V., Sanchez-Sanchez, P., & Bolanos-Carmona, J. (2008). Effects of phosphoric acid on bovine enamel bleached with carbamide peroxide. European Journal of Oral Sciences, 116(1), 66–71.
Edmunds, D. H., Whittaker, D. K., & Green, R. M. (1988). Suitability of human, bovine, equine, and ovine tooth enamel for studies of artificial bacterial carious lesions. Caries Research, 22(6), 327–336.
Fernández, E., Abbiati, N., Cabrera, J., & Martínez, R. (2011). Microdureza del esmalte dental en incisivos centrales permanentes de dos genotipos bovinos. Revista MVZ Córdoba, 16(1), 2310–2316.
Fonseca, R. B., Haiter-Neto, F., Carlo, H. L., Soares, C. J., Sinhoreti, M. A., Puppin- Rontani, R. M., et al. (2008). Radiodensity and hardness of enamel and dentin of human and bovine teeth, varying bovine teeth age. Archives of Oral Biology, 53(11), 1023–1029.
Giraldez de Luis, I., Garrido, M. A., Gómez-del Rio, T., Ceballos, L., & Rodriguez, J. (2010). Comparison of the mechanical properties of dentin and enamel determined by different nanoindentation techniques: Conventional method and continuous stiffness measurement. Boletín de la Sociedad Española de Cerámica y Vidrio, 49(3), 177–182.
Horcas, I., Fernandez, R., Colchero, J., Gómez-Herrero, J., & Baro, A. M. (2007). WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Review of Scientific Instruments, 78, 1–8.
Isidor, F., Brondum, K., & Ravnholt, G. (1999). The influence of post length and crown ferrule length on the resistance to cyclic loading of bovine teeth with prefabricated titanium posts. International Journal of Prosthodontics, 12(1), 78–82.
Kato, M. T., Lancia, M., Sales-Peres, S. H., & Buzalaf, M. A. (2010). Preventive effect of commercial desensitizing toothpastes on bovine enamel erosion in vitro. Caries Research, 44(2), 85–89.
Kielbassa, A. M., Gillmann, L., Zantner, C., Meyer-Lueckel, H., Hellwig, E., & Schulte- Mönting, J. (2005). Profilometric and microradiographic studies on the effects of toothpaste and acidic gel abrasivity on sound and demineralized bovine dental enamel. Caries Research, 39(5), 380–386.
Kwon, Y. H., Huo, M. S., Kim, K. H., Kim, S. K., & Kim, Y. J. (2002). Effects of hydrogen peroxide on the light reflectance and morphology of bovine enamel. Journal of Oral Rehabilitation, 29(5), 473–477.
Laurance-Young, P., Bozec, L., Gracia, L., Rees, G., Lippert, F., Lynch, R. J., et al. (2011). A review of the structure of human and bovine dental hard tissues and their physicochemical behaviour in relation to erosive challenge and remineralisation. Journal of Dentistry, 39(4), 266–272.
Lopes, F. M., Markarian, R. A., Sendyk, C. L., Duarte, C. P., & Arana-Chavez, V. E. (2006). Swine teeth as potential substitutes for in vitro studies in tooth adhesion: A SEM observation. Archives of Oral Biology, 51(7), 548–551.
Montoya, C., Arango-Santander, S., Pelaez-Vargas, A., Arola, D., & Ossa, E. A. (2015). Effect of aging on the microstructure, hardness and chemical composition of dentin. Archives of Oral Biology, 60, 1811–1820.
Nakamichi, I., Iwaku, M., & Fusayama, T. (1983). Bovine teeth as possible substitutes in the adhesion test. Journal of Dental Research, 62(10), 1076–1081.
Oliveira, M. R. C., Oliveira, P. H. C., Oliveira, L. H. C., Horliana, A. C. R. T., César, P. F., Moura, S. K., et al. (2018). Microhardness of bovine enamel after different fluoride application protocols. Dental Materials Journal, 5, 1–7.
Oliveira, M. R. C., Oliveira, P. H. C., Oliveira, L. H. C., Sfalcin, R. A., Prates, R. A., Navarro, R. S., et al. (2018). Influence of ultrapulsed CO2 laser, before application of different types of fluoride, on the increase of microhardness of enamel in vitro. BioMed Research International, 6, 5852948.
Ortiz-Ruiz, A. J., Teruel-Fernández, J. D., Teruel-Fernández, J. D., Alcolea-Rubio, L. A., Hernández-Fernández, A., Martínez-Beneyto, Y., et al. (2018). Structural differences in enamel and dentin in human, bovine, porcine, and ovine teeth. Annals of Anatomy, 218, 7–17.
Oskoee, P. A., Navimipour, E. J., Oskoee, S. S., & Moosavi, N. (2010). Effect of 10% sodium ascorbate on bleached bovine enamel surface morphology and microhardness. Open Dentistry Journal, 4, 207–210.
Park, H. J., Kwon, T. Y., Nam, S. H., Kim, H. J., & Kim, K. H. (2004). Changes in bovine enamel after treatment with a 30% hydrogen peroxide bleaching agent. Dental Materials Journal, 23(4), 517–521.
Park, S., Quinn, J. B., Romberg, E., & Arola, D. (2008). On the brittleness of enamel and selected dental materials. Dental Materials, 24(11), 1477–1485.
Pizarro Sanchez, R., Otani, C., Damião, A. J., & Miyakawa, W. (2009). AFM characterization of bovine enamel and dentine after acid-etching. Micron, 40, 502–506.
Reeves, G. W., Fitchie, J. G., Hembree, J. H., & Puckett, A. D. (1995). Microleakage of new dentin bonding systems using human and bovine teeth. Operative Dentistry, 20(6), 230–235.
Rivera, C., Arola, D., & Ossa, A. (2013). Indentation damage and crack repair in human enamel. Journal of the Mechanical Behavior of Biomedical Materials, 21, 178–184.
Sanches, R. P., Otani, C., Damiao, A. J., & Miyakawa, W. (2009). AFM characterization of bovine enamel and dentine after acid-etching. Micron, 40(4), 502–506.
Teruel, J.deD., Alcolea, A., Hernández, A., & Ruiz, A. J. (2015). Comparison of chemical composition of enamel and dentine in human, bovine, porcine and ovine teeth. Archives of Oral Biology, 60(5), 768–775.
Turssi, C. P., Messias, D. F., Corona, S. M., & Serra, M. C. (2010). Viability of using enamel and dentin from bovine origin as a substitute for human counterparts in an intraoral erosion model. Brazilian Dental Journal, 21(4), 332–336.
Vieira, A., Lugtenborg, M., Ruben, J. L., & Huysmans, M. C. (2006). Brushing abrasion of eroded bovine enamel pretreated with topical fluorides. Caries Research, 40(3), 224–230.
Warren, H. E., Scollan, N. D., Enser, M., Hughes, S. I., Richardson, R. I., & Wood, J. D. (2008). Effects of breed and a concentrate or grass silage diet on beef quality in cattle of 3 ages. I: Animal performance, carcass quality and muscle fatty acid composition. Meat Science, 78, 256–269.
White, A. J., Yorath, C., ten Hengel, V., Leary, S. D., Huysmans, M. C., & Barbour, M. E. (2010). Human and bovine enamel erosion under’ single-drink’ conditions. European Journal of Oral Sciences, 118(6), 604–609.
Wiegand, A., Vollmer, D., Foitzik, M., Attin, R., & Attin, T. (2005). Efficacy of different whitening modalities on bovine enamel and dentin. Clinical Oral Investigations, 9(2), 91–97.
Yassen, G. H., Platt, J. A., & Hara, A. T. (2011). Bovine teeth as substitute for human teeth in dental research: A review of literature. Journal of Oral Science, 53(3), 273–282.
Zanet, C. G., Fava, M., & Alves, L. A. (2011). In vitro evaluation of the microhardness of bovine enamel exposed to acid solutions after bleaching. Brazilian Oral Research, 25(6), 562–567.
dc.rights.license.none.fl_str_mv Atribución – No comercial – Sin Derivar
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Sin Derivar
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 6
dc.coverage.temporal.spa.fl_str_mv 109
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Odontología, Medellín y Envigado
dc.publisher.program.spa.fl_str_mv Odontología
dc.publisher.place.spa.fl_str_mv Medellín
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/3f5855fa-d3bb-4716-9b85-84750f86b95b/download
https://repository.ucc.edu.co/bitstreams/d141e28d-321f-4584-8b7c-0298bacf0496/download
https://repository.ucc.edu.co/bitstreams/e71074e8-d609-442e-961d-c12f9cda7507/download
https://repository.ucc.edu.co/bitstreams/b04219b5-1a90-4b39-94ed-5c6ebf5cbf06/download
https://repository.ucc.edu.co/bitstreams/662c683c-bd6e-4b05-9dc8-42116395e2c2/download
https://repository.ucc.edu.co/bitstreams/4781932f-10d6-4120-b55b-20d89880f0bb/download
https://repository.ucc.edu.co/bitstreams/1f4e841d-710e-4091-b63c-97974c940fa8/download
bitstream.checksum.fl_str_mv 3ea9d2b3289f1ac52b8a3d81b6918c5c
89471673c418d02893532216c0466e8c
3bce4f7ab09dfc588f126e1e36e98a45
81fec11a42346d1c77bccd0fb2f92615
0f76e59f7c0527448995041f37e5ad47
a8fd45622d3bfe333a41be9d5e743c64
9cd2164fb9df4ab3df60dfe7fefed5fc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814246801116495872
spelling Arango Santander, SantiagoArango Santander, SantiagoPeláez Vargas, AlejandroMontoya, CarolinaOssa, Edgar Alexander1092019-11-19T19:19:41Z2019-11-19T19:19:41Z2020-09-272019-09-270003-9969https://doi.org/10.1016/j.archoralbio.2019.104573https://hdl.handle.net/20.500.12494/15133Santiago Arango-Santander, Alejandro Pelaez-Vargas, Montoya, C. and Ossa, E. A. “Chemical, structural and mechanical characterization of bovine enamel” Archives of Oral Biology, vol. 109, Article ID 104573, 6 pages, 2020.Objective: The purpose of this investigation was to establish microstructure, microhardness, fracture toughness, chemical composition, and crack repair of bovine enamel and to compare these features with their human counterparts. Design: Bovine enamel fragments were prepared and optical microscopy and atomic force microscopy were used to establish microstructure; Raman spectroscopy was used to estimate composition and microindentation using Vickers testing was performed to evaluate hardness. Results: A strong dependence between indentation load and microhardness values was observed, as was the case in human enamel. Similar microstructure and chemical composition between bovine and human enamel, 7.89% lower microhardness and 40% higher fracture toughness values for bovine enamel were found. Conclusion: From a structural and mechanical standpoint, bovine enamel is a suitable alternative to human enamel for in vitro testing of dental products.https://scienti.colciencias.gov.co/cvlac/EnRecursoHumano/inicio.do0000-0002-3113-9895GIOMsantiago.arango@campusucc.edu.coalejandro.pelaezv@campusucc.edu.cocmonto18@eafit.edu.coeossa@eafit.edu.co6Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Odontología, Medellín y EnvigadoOdontologíaMedellínhttps://www.sciencedirect.com/science/article/pii/S0003996919305643?via%3DihubArchives of Oral BiologyAhiropoulos, V., Helvatjoglu-Antoniades, M., & Papadogiannis, Y. (2008). In vitro fluoride uptake by bovine enamel from aesthetic restorative materials. International Journal of Paediatric Dentistry, 18(4), 291–299.Al-Jobair, A. (2010). The effect of repeated applications of enamel surface treatment on in-vitro bovine enamel hardness after multiple exposures to cola drink. Pakistan Oral & Dental Journal, 30(1), 154–158.Ameri, H., Ghavamnasiri, M., & Abed, A. (2011). Effects of different bleaching time intervals on fracture toughness of enamel. Journal of Conservative Dentistry, 14(1), 73–75.Atash, R., & Van den Abbeele, A. (2005). Bond strengths of eight contemporary adhesives to enamel and to dentine: An in vitro study on bovine primary teeth. International Journal of Paediatric Dentistry, 15(4), 264–273.Attin, T., Muller, T., Patyk, A., & Lennon, A. M. (2004). Influence of different bleaching systems on fracture toughness and hardness of enamel. Operative Dentistry, 29(2), 188–195.Bechtle, S., Habelitz, S., Klocke, A., Fett, T., & Schneider, G. A. (2010). The fracture behaviour of dental enamel. Biomaterials, 31(2), 375–384.Camargo, S. E., Valera, M. C., Camargo, C. H., Gasparoto Mancini, M. N., & Menezes, M. M. (2007). Penetration of 38% hydrogen peroxide into the pulp chamber in bovine and human teeth submitted to office bleach technique. Journal of Endodontics, 33(9), 1074–1077.Cesar, I. C., Silva, L. E., Alves, L. P., Martin, A. A., Munin, E., & Liporoni, P. C. (2009). Fourier transform–Raman and reflectance studies on dental enamel bleached with hydrogen peroxide activated using a light-emitting diode–laser system. Photomedicine and Laser Surgery, 27(6), 913–919.Comar, L. P., Gomes, M. F., Ito, N., Salomão, P. A., Grizzo, L. T., & Magalhães, A. C. (2012). Effect of NaF, SnF(2), and TiF(4) toothpastes on bovine enamel and dentin erosion-abrasion in vitro. International Journal of Dentistry, 2012 134350.Constantino, P. J., Wood, B., & Lawn, B. (2008). Dental enamel as a dietary indicator in mammals. BioEssays, 30, 374–385.Cox, C. F., Hafez, A. A., Akimoto, N., Otsuki, M., Suzuki, S., & Tarim, B. (1998). Biocompatibility of primer, adhesive and resin composite systems on non-exposed and exposed pulps of non-human primate teeth. American Journal of Dentistry, 11 Spec No: S55–S63.Chen, H. P., Chang, C. H., Liu, J. K., Chuang, S. F., & Yang, J. Y. (2008). Effect of fluoride containing bleaching agents on enamel surface properties. Journal of Dentistry, 36(9), 718–725.de Medeiros, C. L., Gonzalez-Lopez, S., Bolanos-Carmona, M. V., Sanchez-Sanchez, P., & Bolanos-Carmona, J. (2008). Effects of phosphoric acid on bovine enamel bleached with carbamide peroxide. European Journal of Oral Sciences, 116(1), 66–71.Edmunds, D. H., Whittaker, D. K., & Green, R. M. (1988). Suitability of human, bovine, equine, and ovine tooth enamel for studies of artificial bacterial carious lesions. Caries Research, 22(6), 327–336.Fernández, E., Abbiati, N., Cabrera, J., & Martínez, R. (2011). Microdureza del esmalte dental en incisivos centrales permanentes de dos genotipos bovinos. Revista MVZ Córdoba, 16(1), 2310–2316.Fonseca, R. B., Haiter-Neto, F., Carlo, H. L., Soares, C. J., Sinhoreti, M. A., Puppin- Rontani, R. M., et al. (2008). Radiodensity and hardness of enamel and dentin of human and bovine teeth, varying bovine teeth age. Archives of Oral Biology, 53(11), 1023–1029.Giraldez de Luis, I., Garrido, M. A., Gómez-del Rio, T., Ceballos, L., & Rodriguez, J. (2010). Comparison of the mechanical properties of dentin and enamel determined by different nanoindentation techniques: Conventional method and continuous stiffness measurement. Boletín de la Sociedad Española de Cerámica y Vidrio, 49(3), 177–182.Horcas, I., Fernandez, R., Colchero, J., Gómez-Herrero, J., & Baro, A. M. (2007). WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Review of Scientific Instruments, 78, 1–8.Isidor, F., Brondum, K., & Ravnholt, G. (1999). The influence of post length and crown ferrule length on the resistance to cyclic loading of bovine teeth with prefabricated titanium posts. International Journal of Prosthodontics, 12(1), 78–82.Kato, M. T., Lancia, M., Sales-Peres, S. H., & Buzalaf, M. A. (2010). Preventive effect of commercial desensitizing toothpastes on bovine enamel erosion in vitro. Caries Research, 44(2), 85–89.Kielbassa, A. M., Gillmann, L., Zantner, C., Meyer-Lueckel, H., Hellwig, E., & Schulte- Mönting, J. (2005). Profilometric and microradiographic studies on the effects of toothpaste and acidic gel abrasivity on sound and demineralized bovine dental enamel. Caries Research, 39(5), 380–386.Kwon, Y. H., Huo, M. S., Kim, K. H., Kim, S. K., & Kim, Y. J. (2002). Effects of hydrogen peroxide on the light reflectance and morphology of bovine enamel. Journal of Oral Rehabilitation, 29(5), 473–477.Laurance-Young, P., Bozec, L., Gracia, L., Rees, G., Lippert, F., Lynch, R. J., et al. (2011). A review of the structure of human and bovine dental hard tissues and their physicochemical behaviour in relation to erosive challenge and remineralisation. Journal of Dentistry, 39(4), 266–272.Lopes, F. M., Markarian, R. A., Sendyk, C. L., Duarte, C. P., & Arana-Chavez, V. E. (2006). Swine teeth as potential substitutes for in vitro studies in tooth adhesion: A SEM observation. Archives of Oral Biology, 51(7), 548–551.Montoya, C., Arango-Santander, S., Pelaez-Vargas, A., Arola, D., & Ossa, E. A. (2015). Effect of aging on the microstructure, hardness and chemical composition of dentin. Archives of Oral Biology, 60, 1811–1820.Nakamichi, I., Iwaku, M., & Fusayama, T. (1983). Bovine teeth as possible substitutes in the adhesion test. Journal of Dental Research, 62(10), 1076–1081.Oliveira, M. R. C., Oliveira, P. H. C., Oliveira, L. H. C., Horliana, A. C. R. T., César, P. F., Moura, S. K., et al. (2018). Microhardness of bovine enamel after different fluoride application protocols. Dental Materials Journal, 5, 1–7.Oliveira, M. R. C., Oliveira, P. H. C., Oliveira, L. H. C., Sfalcin, R. A., Prates, R. A., Navarro, R. S., et al. (2018). Influence of ultrapulsed CO2 laser, before application of different types of fluoride, on the increase of microhardness of enamel in vitro. BioMed Research International, 6, 5852948.Ortiz-Ruiz, A. J., Teruel-Fernández, J. D., Teruel-Fernández, J. D., Alcolea-Rubio, L. A., Hernández-Fernández, A., Martínez-Beneyto, Y., et al. (2018). Structural differences in enamel and dentin in human, bovine, porcine, and ovine teeth. Annals of Anatomy, 218, 7–17.Oskoee, P. A., Navimipour, E. J., Oskoee, S. S., & Moosavi, N. (2010). Effect of 10% sodium ascorbate on bleached bovine enamel surface morphology and microhardness. Open Dentistry Journal, 4, 207–210.Park, H. J., Kwon, T. Y., Nam, S. H., Kim, H. J., & Kim, K. H. (2004). Changes in bovine enamel after treatment with a 30% hydrogen peroxide bleaching agent. Dental Materials Journal, 23(4), 517–521.Park, S., Quinn, J. B., Romberg, E., & Arola, D. (2008). On the brittleness of enamel and selected dental materials. Dental Materials, 24(11), 1477–1485.Pizarro Sanchez, R., Otani, C., Damião, A. J., & Miyakawa, W. (2009). AFM characterization of bovine enamel and dentine after acid-etching. Micron, 40, 502–506.Reeves, G. W., Fitchie, J. G., Hembree, J. H., & Puckett, A. D. (1995). Microleakage of new dentin bonding systems using human and bovine teeth. Operative Dentistry, 20(6), 230–235.Rivera, C., Arola, D., & Ossa, A. (2013). Indentation damage and crack repair in human enamel. Journal of the Mechanical Behavior of Biomedical Materials, 21, 178–184.Sanches, R. P., Otani, C., Damiao, A. J., & Miyakawa, W. (2009). AFM characterization of bovine enamel and dentine after acid-etching. Micron, 40(4), 502–506.Teruel, J.deD., Alcolea, A., Hernández, A., & Ruiz, A. J. (2015). Comparison of chemical composition of enamel and dentine in human, bovine, porcine and ovine teeth. Archives of Oral Biology, 60(5), 768–775.Turssi, C. P., Messias, D. F., Corona, S. M., & Serra, M. C. (2010). Viability of using enamel and dentin from bovine origin as a substitute for human counterparts in an intraoral erosion model. Brazilian Dental Journal, 21(4), 332–336.Vieira, A., Lugtenborg, M., Ruben, J. L., & Huysmans, M. C. (2006). Brushing abrasion of eroded bovine enamel pretreated with topical fluorides. Caries Research, 40(3), 224–230.Warren, H. E., Scollan, N. D., Enser, M., Hughes, S. I., Richardson, R. I., & Wood, J. D. (2008). Effects of breed and a concentrate or grass silage diet on beef quality in cattle of 3 ages. I: Animal performance, carcass quality and muscle fatty acid composition. Meat Science, 78, 256–269.White, A. J., Yorath, C., ten Hengel, V., Leary, S. D., Huysmans, M. C., & Barbour, M. E. (2010). Human and bovine enamel erosion under’ single-drink’ conditions. European Journal of Oral Sciences, 118(6), 604–609.Wiegand, A., Vollmer, D., Foitzik, M., Attin, R., & Attin, T. (2005). Efficacy of different whitening modalities on bovine enamel and dentin. Clinical Oral Investigations, 9(2), 91–97.Yassen, G. H., Platt, J. A., & Hara, A. T. (2011). Bovine teeth as substitute for human teeth in dental research: A review of literature. Journal of Oral Science, 53(3), 273–282.Zanet, C. G., Fava, M., & Alves, L. A. (2011). In vitro evaluation of the microhardness of bovine enamel exposed to acid solutions after bleaching. Brazilian Oral Research, 25(6), 562–567.Bovine enamelHardnessFracture toughnessCrack repairRaman spectroscopyChemical compositionBovine enamelHardnessFracture toughnessCrack repairRaman spectroscopyChemical compositionChemical, structural and mechanical characterization of bovine enamelActa de memoriashttp://purl.org/coar/resource_type/c_f744http://purl.org/coar/resource_type/c_8042info:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/acceptedVersionAtribución – No comercial – Sin Derivarinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINAL2019_chemical_structural_and_mechanical_characterization-Formatolicenciadeuso.pdf2019_chemical_structural_and_mechanical_characterization-Formatolicenciadeuso.pdfLicencia de usoapplication/pdf491341https://repository.ucc.edu.co/bitstreams/3f5855fa-d3bb-4716-9b85-84750f86b95b/download3ea9d2b3289f1ac52b8a3d81b6918c5cMD542019_chemical_structural_and_mechanical_characterization_of_bovine_enamel.pdf2019_chemical_structural_and_mechanical_characterization_of_bovine_enamel.pdfArticuloapplication/pdf1512891https://repository.ucc.edu.co/bitstreams/d141e28d-321f-4584-8b7c-0298bacf0496/download89471673c418d02893532216c0466e8cMD55LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/e71074e8-d609-442e-961d-c12f9cda7507/download3bce4f7ab09dfc588f126e1e36e98a45MD56THUMBNAIL2019_chemical_structural_and_mechanical_characterization-Formatolicenciadeuso.pdf.jpg2019_chemical_structural_and_mechanical_characterization-Formatolicenciadeuso.pdf.jpgGenerated Thumbnailimage/jpeg5179https://repository.ucc.edu.co/bitstreams/b04219b5-1a90-4b39-94ed-5c6ebf5cbf06/download81fec11a42346d1c77bccd0fb2f92615MD572019_chemical_structural_and_mechanical_characterization_of_bovine_enamel.pdf.jpg2019_chemical_structural_and_mechanical_characterization_of_bovine_enamel.pdf.jpgGenerated Thumbnailimage/jpeg5685https://repository.ucc.edu.co/bitstreams/662c683c-bd6e-4b05-9dc8-42116395e2c2/download0f76e59f7c0527448995041f37e5ad47MD58TEXT2019_chemical_structural_and_mechanical_characterization-Formatolicenciadeuso.pdf.txt2019_chemical_structural_and_mechanical_characterization-Formatolicenciadeuso.pdf.txtExtracted texttext/plain5497https://repository.ucc.edu.co/bitstreams/4781932f-10d6-4120-b55b-20d89880f0bb/downloada8fd45622d3bfe333a41be9d5e743c64MD592019_chemical_structural_and_mechanical_characterization_of_bovine_enamel.pdf.txt2019_chemical_structural_and_mechanical_characterization_of_bovine_enamel.pdf.txtExtracted texttext/plain41585https://repository.ucc.edu.co/bitstreams/1f4e841d-710e-4091-b63c-97974c940fa8/download9cd2164fb9df4ab3df60dfe7fefed5fcMD51020.500.12494/15133oai:repository.ucc.edu.co:20.500.12494/151332024-08-10 22:39:50.873restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=