Solubility of Hydroxytyrosol in binary mixture of ethanol + water from (293.15 to 318.15) K: Measurement, correlation, dissolution thermodynamics and preferential solvation
Hydroxytyrosol (HXT) (also known as 3,4-dihydroxyphényléthanol,) is a biophenol extracted from olive. HXT is known for its high antioxidant significance effect. In this work, we focused on the study of the behavior of the solubility of HXT in binary solvent mixtures (ethanol + water) as well as the...
- Autores:
-
Aydi, Abdelkarim
Dali, Imen
Ghachem, Kaouther
Al-Khazaal, Abdulaal Z.
Delgado, Daniel Ricardo
Kolsi, Lioua
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/28274
- Acceso en línea:
- https://doi.org/10.1016/j.aej.2020.10.019
https://hdl.handle.net/20.500.12494/28274
- Palabra clave:
- Hydroxytyrosol
DSC
Van’t Hoff
Gibbs equation
Perlovich method
Inverse Kirkwood–Buff integral
Hydroxytyrosol
DSC
Van’t Hoff
Gibbs equation
Perlovich method
Inverse Kirkwood–Buff integral
- Rights
- openAccess
- License
- Atribución – No comercial – Sin Derivar
id |
COOPER2_582685d1f494f730e786b9a1912a15c3 |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/28274 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Solubility of Hydroxytyrosol in binary mixture of ethanol + water from (293.15 to 318.15) K: Measurement, correlation, dissolution thermodynamics and preferential solvation |
title |
Solubility of Hydroxytyrosol in binary mixture of ethanol + water from (293.15 to 318.15) K: Measurement, correlation, dissolution thermodynamics and preferential solvation |
spellingShingle |
Solubility of Hydroxytyrosol in binary mixture of ethanol + water from (293.15 to 318.15) K: Measurement, correlation, dissolution thermodynamics and preferential solvation Hydroxytyrosol DSC Van’t Hoff Gibbs equation Perlovich method Inverse Kirkwood–Buff integral Hydroxytyrosol DSC Van’t Hoff Gibbs equation Perlovich method Inverse Kirkwood–Buff integral |
title_short |
Solubility of Hydroxytyrosol in binary mixture of ethanol + water from (293.15 to 318.15) K: Measurement, correlation, dissolution thermodynamics and preferential solvation |
title_full |
Solubility of Hydroxytyrosol in binary mixture of ethanol + water from (293.15 to 318.15) K: Measurement, correlation, dissolution thermodynamics and preferential solvation |
title_fullStr |
Solubility of Hydroxytyrosol in binary mixture of ethanol + water from (293.15 to 318.15) K: Measurement, correlation, dissolution thermodynamics and preferential solvation |
title_full_unstemmed |
Solubility of Hydroxytyrosol in binary mixture of ethanol + water from (293.15 to 318.15) K: Measurement, correlation, dissolution thermodynamics and preferential solvation |
title_sort |
Solubility of Hydroxytyrosol in binary mixture of ethanol + water from (293.15 to 318.15) K: Measurement, correlation, dissolution thermodynamics and preferential solvation |
dc.creator.fl_str_mv |
Aydi, Abdelkarim Dali, Imen Ghachem, Kaouther Al-Khazaal, Abdulaal Z. Delgado, Daniel Ricardo Kolsi, Lioua |
dc.contributor.author.none.fl_str_mv |
Aydi, Abdelkarim Dali, Imen Ghachem, Kaouther Al-Khazaal, Abdulaal Z. Delgado, Daniel Ricardo Kolsi, Lioua |
dc.subject.spa.fl_str_mv |
Hydroxytyrosol DSC Van’t Hoff Gibbs equation Perlovich method Inverse Kirkwood–Buff integral |
topic |
Hydroxytyrosol DSC Van’t Hoff Gibbs equation Perlovich method Inverse Kirkwood–Buff integral Hydroxytyrosol DSC Van’t Hoff Gibbs equation Perlovich method Inverse Kirkwood–Buff integral |
dc.subject.other.spa.fl_str_mv |
Hydroxytyrosol DSC Van’t Hoff Gibbs equation Perlovich method Inverse Kirkwood–Buff integral |
description |
Hydroxytyrosol (HXT) (also known as 3,4-dihydroxyphényléthanol,) is a biophenol extracted from olive. HXT is known for its high antioxidant significance effect. In this work, we focused on the study of the behavior of the solubility of HXT in binary solvent mixtures (ethanol + water) as well as the thermodynamic proprieties. The solubility of HXT in water, ethanol and in binary solvent mixtures (ethanol + water) was measured at five different temperatures from (293.15 to 318.15) K. The enthalpy of fusion and the melting point of HXT were experimentally determined since they are essential for the study of the of solubility and crystallization process. Thermodynamic properties of dissolution of the HXT (Gibbs energy (ΔsolG°), molar enthalpy of dissolution (ΔsolH°), and molar entropy of dissolution (ΔsolS°)) are predicted using the van’t Hoff analysis, the Gibbs equation, and the measured solubilities data. The preferential solvation has been determined using the inverse Kirkwood–Buff integral (IKBI) theory. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-11-25T20:24:06Z |
dc.date.available.none.fl_str_mv |
2020-11-25T20:24:06Z 2020-11-01 |
dc.date.issued.none.fl_str_mv |
2020-10-24 |
dc.type.none.fl_str_mv |
Artículo |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
11100168 |
dc.identifier.uri.spa.fl_str_mv |
https://doi.org/10.1016/j.aej.2020.10.019 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/28274 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Abdelkarim Aydi, Imen Dali, Kaouther Ghachem, Abdulaal Z. Al-Khazaal, Daniel R. Delgado, Lioua Kolsi. (2020). Solubility of Hydroxytyrosol in binary mixture of ethanol + water from (293.15 to 318.15) K: Measurement, correlation, dissolution thermodynamics and preferential solvation, Alexandria Engineering Journal, https://doi.org/10.1016/j.aej.2020.10.019. |
identifier_str_mv |
11100168 Abdelkarim Aydi, Imen Dali, Kaouther Ghachem, Abdulaal Z. Al-Khazaal, Daniel R. Delgado, Lioua Kolsi. (2020). Solubility of Hydroxytyrosol in binary mixture of ethanol + water from (293.15 to 318.15) K: Measurement, correlation, dissolution thermodynamics and preferential solvation, Alexandria Engineering Journal, https://doi.org/10.1016/j.aej.2020.10.019. |
url |
https://doi.org/10.1016/j.aej.2020.10.019 https://hdl.handle.net/20.500.12494/28274 |
dc.relation.isversionof.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S1110016820305342#! |
dc.relation.ispartofjournal.spa.fl_str_mv |
Alexandria Engineering Journal |
dc.relation.references.spa.fl_str_mv |
S. Simone, W. Roland, W. Manfred, S. Christiane Absorption of hydroxytyrosol from different sources and its impact on lipid status in human subjects J Nutr. Med Diet Care., 4 (2018), 10.23937/2572-3278.1510025 L. Martínez, G. Ros, G. Nieto Hydroxytyrosol: health benefits and use as functional ingredient in meat Medicines., 5 (2018), p. 13, 10.3390/medicines5010013 F. Echeverría, M. Ortiz, R. Valenzuela, L.A. Videla Hydroxytyrosol and cytoprotection: a projection for clinical interventions Int. J. Mol. Sci., 18 (2017), 10.3390/ijms18050930 N. Kalogerakis, M. Politi, S. Foteinis, E. Chatzisymeon, D. Mantzavinos Recovery of antioxidants from olive mill wastewaters: a viable solution that promotes their overall sustainable management J. Env. Manag., 128 (2013), pp. 749-758, 10.1016/j.jenvman.2013.06.027 A. Fathi-Azarjbayjani, A. Mabhoot, F. Martínez, A. Jouyban Modeling, solubility, and thermodynamic aspects of sodium phenytoin in propylene glycol-water mixtures J. Mol. Liq., 219 (2016), pp. 68-73, 10.1016/j.molliq.2016.02.089 X. Hao, X. Wu, G. Shen, L. Wen, H. Li, Q. Huang Thermodynamic models for determination of the solubility of (-)-shikimic acid in different pure solvents and in (H2O + ethanol) binary solvent mixtures J. Chem. Thermodyn., 88 (2015), pp. 8-14, 10.1016/j.jct.2015.04.009 A. Jouyban Handbook of Solubility Data for Pharmaceuticals CRC Press (2009) doi: 10.1201/9781439804889 A. Liang, S. Wang, Y. Qu Determination and correlation of solubility of phenylbutazone in monosolvents and binary solvent mixtures J. Chem. Eng. Data., 62 (2017), pp. 864-871, 10.1021/acs.jced.6b00911 S.D. Clas, C.R. Dalton, B.C. Hancock Differential scanning calorimetry: applications in drug development Pharm. Sci. Technol. Today., 2 (1999), pp. 311-320, 10.1016/S1461-5347(99)00181-9 B. Karthikeyan, S. Ramanathan, V. Ramakrishnan A calorimetric study of 7075 Al/SiCp composites Mater. Des., 31 (2010), pp. S92-S95, 10.1016/j.matdes.2009.10.066 A. Ben-Naim Theory of preferential solvation of nonelectrolytes Cell Biophys., 12 (1988), pp. 255-269, 10.1007/BF02918361 A. Ben-Naim Preferential solvation in two- and in three-component systems Pure Appl. Chern., 62 (1990), pp. 25-34 Y. Marcus Solubility and solvation in mixed solvent systems Pure Appl. Chern., 62 (1990), pp. 2069-2076 Y. Marcus Solvent Mixtures: Properties and Selective Solvation (first ed.), Marcel Dekker Inc, New York (2002) Y. Marcus On the preferential solvation of drugs and PAHs in binary solvent mixtures J. Mol. Liq., 140 (2008), pp. 61-67, 10.1016/j.molliq.2008.01.005 Q. Zhang, Y. Yang, C. Cao, L. Cheng, Y. Shi, W. Yang, Y. Hu Thermodynamic models for determination of the solubility of dibenzothiophene in (methanol + acetonitrile) binary solvent mixtures J. Chem. Thermodyn., 80 (2015), pp. 7-12, 10.1016/j.jct.2014.08.012 D.R. Delgado, M.A. Peña, F. Martínez Preferential solvation of some sulfonamides in propylene glycol + water solvent mixtures according to the IKBI and QLQC methods J Solut. Chem., 43 (2014), pp. 360-374, 10.1007/s10953-014-0130-2 A. Noubigh Stearic acid solubility in mixed solvents of (water + ethanol) and (ethanol + ethyl acetate): experimental data and comparison among different thermodynamic models J. Mol. Liq., 296 (2019), Article 112101, 10.1016/j.molliq.2019.112101 A. Noubigh, A. Aydi, M. Abderrabba Experimental measurement and correlation of solubility data and thermodynamic properties of protocatechuic acid in four organic solvents J. Chem. Eng. Data., 60 (2015), pp. 514-518, 10.1021/je500519y A. Noubigh, A. Akremi Solution thermodynamics of trans-Cinnamic acid in (methanol + water) and (ethanol + water) mixtures at different temperatures J. Mol. Liq., 274 (2019), pp. 752-758, 10.1016/j.molliq.2018.09.131 A.A.S. Araújo, M.D.S. Bezerra, S. Storpirtis, J.D.R. Matos Determination of the melting temperature, heat of fusion, and purity analysis of different samples of zidovudine (AZT) using DSC Braz. J. Pharm. Sci., 46 (2010), pp. 37-43, 10.1590/S1984-82502010000100005 A. Aydi, C.A. Claumann, A. Wüst Zibetti, M. Abderrabba Differential scanning calorimetry data and solubility of rosmarinic acid in different pure solvents and in binary mixtures (methyl acetate + water) and (ethyl acetate + water) from 293.2 to 313.2 K J. Chem. Eng. Data., 61 (2016), pp. 3718-3723, 10.1021/acs.jced.6b00008 R.F. Fedors A method for estimating both the solubility parameters and molar volumes of liquids Polym. Eng. Sci., 14 (1974), pp. 147-154, 10.1002/pen.760140211 A.F.M. Barton CRC Handbook of Solubility Parameters and Other Cohesion Parameters (second ed.), CRC Press, New York (2014) D.R. Delgado, A.R. Holguín, O.A. Almanza, F. Martínez, Y. Marcus Solubility and preferential solvation of meloxicam in ethanol+water mixtures Fluid Phase Equilib., 305 (2011), pp. 88-95, 10.1016/j.fluid.2011.03.012 A. Kristl Thermodynamic investigation of the effect of the mutual miscibility of some higher alkanols and water on the partitioning and solubility of some guanine derivatives J. Chem. Soc., Faraday Trans., 92 (1996), pp. 1721-1724, 10.1039/ft9969201721 R.R. Krug, W.G. Hunter, R.A. Grieger Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van’t hoff and arrhenius data J. Phys. Chem., 80 (1976), pp. 2335-2341, 10.1021/j100562a006 R.R. Krug, W.G. Hunter, R.A. Grieger Enthalpy-entropy compensation. 2. Separation of the chemical from the statistical effect J. Phys. Chem., 80 (1976), pp. 2341-2351, 10.1021/j100562a007 G.L. Perlovich, S.V. Kurkov, A.N. Kinchin, A. Bauer-Brandl Thermodynamics of solutions III: comparison of the solvation of (+)-naproxen with other NSAIDs Eur. J. Pharm. Biopharm., 57 (2004), pp. 411-420, 10.1016/j.ejpb.2003.10.021 D.R. Delgado, F. Martínez R Thermodynamic study of the solubility of sodium sulfadiazine in some ethanol + water cosolvent mixtures Vitae., 17 (2010), pp. 191-198 G.L. Perlovich, N.N. Strakhova, V.P. Kazachenko, T.V. Volkova, V.V. Tkachev, K.J. Schaper, O.A. Raevsky Sulfonamides as a subject to study molecular interactions in crystals and solutions: sublimation, solubility, solvation, distribution and crystal structure Int. J. Pharm., 349 (2008), pp. 300-313, 10.1016/j.ijpharm.2007.07.034 D.R. Delgado, F. Martínez Solution thermodynamics of sulfadiazine in some ethanol + water mixtures J. Mol. Liq., 187 (2013), pp. 99-105, 10.1016/j.molliq.2013.06.011 G.L. Perlovich, V.V. Tkachev, N.N. Strakhova, V.P. Kazachenko, T.V. Volkova, O.V. Surov, K.J. Schaper, O.A. Raevsky Thermodynamic and structural aspects of sulfonamide crystals and solutions J. Pharm. Sci., 98 (2009), pp. 4738-4755, 10.1002/jps.21784 G.L. Perlovich, A.M. Ryzhakov, N.N. Strakhova, V.P. Kazachenko, K.J. Schaper, O.A. Raevsky Thermodynamic aspects of solubility and partitioning processes of some sulfonamides in the solvents modeling biological media J. Chem. Thermodyn., 69 (2014), pp. 56-65, 10.1016/j.jct.2013.09.027 E.A. Cantillo, D.R. Delgado, F. Martinez Solution thermodynamics of indomethacin in ethanol + propylene glycol mixtures J. Mol. Liq., 181 (2013), pp. 62-67, 10.1016/j.molliq.2013.02.008 C.P. Mora, F. Martínez Thermodynamic quantities relative to solution processes of Naproxen in aqueous media at pH 1.2 and 7.4 Phys. Chem. Liq., 44 (2006), pp. 585-596, 10.1080/00319100600889715 P. Bustamante, S. Romero, A. Peña, P. Peña, B. Escalera, A. Reillo Enthalpy−entropy compensation for the solubility of drugs in solvent mixtures: paracetamol, acetanilide, and nalidixic acid in dioxane−water J. Pharm. Sci., 87 (1998), 10.1021/js980149x E. Tomlinson Enthalpy-entropy compensation analysis of pharmaceutical, biochemical and biological systems Int. J. Pharm., 13 (1983), pp. 115-144, 10.1016/0378-5173(83)90001-7 R. Lumry, S. Rajender Enthalpy–entropy compensation phenomena in water solutions of proteins and small molecules: a ubiquitous properly of water Biopolymers., 9 (1970), pp. 1125-1227, 10.1002/bip.1970.360091002 D.R. Delgado, F. Martínez Solubility and preferential solvation of sulfadiazine in methanol+water mixtures at several temperatures Fluid Phase Equilib., 379 (2014), pp. 128-138, 10.1016/j.fluid.2014.07.013 R.W. Taft, M.J. Kamlet The solvatochromic comparison method. 2. The α-scale of solvent hydrogen-bond donor (HBD) acidities J. Am. Chem. Soc., 98 (1976), pp. 2886-2894, 10.1021/ja00426a036 M.J. Kamlet, R.W. Taft The solvatochromic comparison method. I. The β-scale of solvent hydrogen-bond acceptor (HBA) basicities J. Am. Chem. Soc., 98 (1976), pp. 377-383, 10.1021/ja00418a009 |
dc.rights.license.none.fl_str_mv |
Atribución – No comercial – Sin Derivar |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución – No comercial – Sin Derivar http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
14 P. |
dc.coverage.temporal.spa.fl_str_mv |
1 |
dc.publisher.spa.fl_str_mv |
Elsevier B.V. Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, Neiva |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Industrial |
dc.publisher.place.spa.fl_str_mv |
Neiva |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/4343cb9b-cd24-4494-b933-49ec19c93e5f/download https://repository.ucc.edu.co/bitstreams/91f09d83-7a06-4795-ab0c-7b1af2375412/download https://repository.ucc.edu.co/bitstreams/5c658eec-8cf7-413e-ad20-44aebc566575/download https://repository.ucc.edu.co/bitstreams/1dec78fb-03e0-4143-958e-ca7b23fd63cc/download |
bitstream.checksum.fl_str_mv |
ca4ca0c28635c4fd3d8cd7cd83b75da1 3bce4f7ab09dfc588f126e1e36e98a45 fd832fffcfab54d025fe341580181b34 bd31037ba60035ea43e64558ba724f96 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814246584647417856 |
spelling |
Aydi, AbdelkarimDali, ImenGhachem, KaoutherAl-Khazaal, Abdulaal Z.Delgado, Daniel RicardoKolsi, Lioua12020-11-25T20:24:06Z2020-11-25T20:24:06Z2020-11-012020-10-2411100168https://doi.org/10.1016/j.aej.2020.10.019https://hdl.handle.net/20.500.12494/28274Abdelkarim Aydi, Imen Dali, Kaouther Ghachem, Abdulaal Z. Al-Khazaal, Daniel R. Delgado, Lioua Kolsi. (2020). Solubility of Hydroxytyrosol in binary mixture of ethanol + water from (293.15 to 318.15) K: Measurement, correlation, dissolution thermodynamics and preferential solvation, Alexandria Engineering Journal, https://doi.org/10.1016/j.aej.2020.10.019.Hydroxytyrosol (HXT) (also known as 3,4-dihydroxyphényléthanol,) is a biophenol extracted from olive. HXT is known for its high antioxidant significance effect. In this work, we focused on the study of the behavior of the solubility of HXT in binary solvent mixtures (ethanol + water) as well as the thermodynamic proprieties. The solubility of HXT in water, ethanol and in binary solvent mixtures (ethanol + water) was measured at five different temperatures from (293.15 to 318.15) K. The enthalpy of fusion and the melting point of HXT were experimentally determined since they are essential for the study of the of solubility and crystallization process. Thermodynamic properties of dissolution of the HXT (Gibbs energy (ΔsolG°), molar enthalpy of dissolution (ΔsolH°), and molar entropy of dissolution (ΔsolS°)) are predicted using the van’t Hoff analysis, the Gibbs equation, and the measured solubilities data. The preferential solvation has been determined using the inverse Kirkwood–Buff integral (IKBI) theory.Hydroxytyrosol (HXT) (also known as 3,4-dihydroxyphényléthanol,) is a biophenol extracted from olive. HXT is known for its high antioxidant significance effect. In this work, we focused on the study of the behavior of the solubility of HXT in binary solvent mixtures (ethanol + water) as well as the thermodynamic proprieties. The solubility of HXT in water, ethanol and in binary solvent mixtures (ethanol + water) was measured at five different temperatures from (293.15 to 318.15) K. The enthalpy of fusion and the melting point of HXT were experimentally determined since they are essential for the study of the of solubility and crystallization process. Thermodynamic properties of dissolution of the HXT (Gibbs energy (ΔsolG°), molar enthalpy of dissolution (ΔsolH°), and molar entropy of dissolution (ΔsolS°)) are predicted using the van’t Hoff analysis, the Gibbs equation, and the measured solubilities data. The preferential solvation has been determined using the inverse Kirkwood–Buff integral (IKBI) theory.Abstract. -- Keywords. -- Nomenclature. -- 1. Introduction. -- 2. Experimental. -- 3. Results and discussion. -- 4. Conclusions. -- Declaration of Competing Interest. -- Acknowledgement. -- References.http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001402116https://orcid.org/0000-0002-4835-9739https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000004151danielr.delgado@campusucc.edu.cohttps://scholar.google.es/citations?user=OW0mejcAAAAJ&hl=es14 P.Elsevier B.V.Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, NeivaIngeniería IndustrialNeivahttps://www.sciencedirect.com/science/article/pii/S1110016820305342#!Alexandria Engineering JournalS. Simone, W. Roland, W. Manfred, S. Christiane Absorption of hydroxytyrosol from different sources and its impact on lipid status in human subjects J Nutr. Med Diet Care., 4 (2018), 10.23937/2572-3278.1510025L. Martínez, G. Ros, G. Nieto Hydroxytyrosol: health benefits and use as functional ingredient in meat Medicines., 5 (2018), p. 13, 10.3390/medicines5010013F. Echeverría, M. Ortiz, R. Valenzuela, L.A. Videla Hydroxytyrosol and cytoprotection: a projection for clinical interventions Int. J. Mol. Sci., 18 (2017), 10.3390/ijms18050930N. Kalogerakis, M. Politi, S. Foteinis, E. Chatzisymeon, D. Mantzavinos Recovery of antioxidants from olive mill wastewaters: a viable solution that promotes their overall sustainable management J. Env. Manag., 128 (2013), pp. 749-758, 10.1016/j.jenvman.2013.06.027A. Fathi-Azarjbayjani, A. Mabhoot, F. Martínez, A. Jouyban Modeling, solubility, and thermodynamic aspects of sodium phenytoin in propylene glycol-water mixtures J. Mol. Liq., 219 (2016), pp. 68-73, 10.1016/j.molliq.2016.02.089X. Hao, X. Wu, G. Shen, L. Wen, H. Li, Q. Huang Thermodynamic models for determination of the solubility of (-)-shikimic acid in different pure solvents and in (H2O + ethanol) binary solvent mixtures J. Chem. Thermodyn., 88 (2015), pp. 8-14, 10.1016/j.jct.2015.04.009A. Jouyban Handbook of Solubility Data for Pharmaceuticals CRC Press (2009) doi: 10.1201/9781439804889A. Liang, S. Wang, Y. Qu Determination and correlation of solubility of phenylbutazone in monosolvents and binary solvent mixtures J. Chem. Eng. Data., 62 (2017), pp. 864-871, 10.1021/acs.jced.6b00911S.D. Clas, C.R. Dalton, B.C. Hancock Differential scanning calorimetry: applications in drug development Pharm. Sci. Technol. Today., 2 (1999), pp. 311-320, 10.1016/S1461-5347(99)00181-9B. Karthikeyan, S. Ramanathan, V. Ramakrishnan A calorimetric study of 7075 Al/SiCp composites Mater. Des., 31 (2010), pp. S92-S95, 10.1016/j.matdes.2009.10.066A. Ben-Naim Theory of preferential solvation of nonelectrolytes Cell Biophys., 12 (1988), pp. 255-269, 10.1007/BF02918361A. Ben-Naim Preferential solvation in two- and in three-component systems Pure Appl. Chern., 62 (1990), pp. 25-34Y. Marcus Solubility and solvation in mixed solvent systems Pure Appl. Chern., 62 (1990), pp. 2069-2076Y. Marcus Solvent Mixtures: Properties and Selective Solvation (first ed.), Marcel Dekker Inc, New York (2002)Y. Marcus On the preferential solvation of drugs and PAHs in binary solvent mixtures J. Mol. Liq., 140 (2008), pp. 61-67, 10.1016/j.molliq.2008.01.005Q. Zhang, Y. Yang, C. Cao, L. Cheng, Y. Shi, W. Yang, Y. Hu Thermodynamic models for determination of the solubility of dibenzothiophene in (methanol + acetonitrile) binary solvent mixtures J. Chem. Thermodyn., 80 (2015), pp. 7-12, 10.1016/j.jct.2014.08.012D.R. Delgado, M.A. Peña, F. Martínez Preferential solvation of some sulfonamides in propylene glycol + water solvent mixtures according to the IKBI and QLQC methods J Solut. Chem., 43 (2014), pp. 360-374, 10.1007/s10953-014-0130-2A. Noubigh Stearic acid solubility in mixed solvents of (water + ethanol) and (ethanol + ethyl acetate): experimental data and comparison among different thermodynamic models J. Mol. Liq., 296 (2019), Article 112101, 10.1016/j.molliq.2019.112101A. Noubigh, A. Aydi, M. Abderrabba Experimental measurement and correlation of solubility data and thermodynamic properties of protocatechuic acid in four organic solvents J. Chem. Eng. Data., 60 (2015), pp. 514-518, 10.1021/je500519yA. Noubigh, A. Akremi Solution thermodynamics of trans-Cinnamic acid in (methanol + water) and (ethanol + water) mixtures at different temperatures J. Mol. Liq., 274 (2019), pp. 752-758, 10.1016/j.molliq.2018.09.131A.A.S. Araújo, M.D.S. Bezerra, S. Storpirtis, J.D.R. Matos Determination of the melting temperature, heat of fusion, and purity analysis of different samples of zidovudine (AZT) using DSC Braz. J. Pharm. Sci., 46 (2010), pp. 37-43, 10.1590/S1984-82502010000100005A. Aydi, C.A. Claumann, A. Wüst Zibetti, M. Abderrabba Differential scanning calorimetry data and solubility of rosmarinic acid in different pure solvents and in binary mixtures (methyl acetate + water) and (ethyl acetate + water) from 293.2 to 313.2 K J. Chem. Eng. Data., 61 (2016), pp. 3718-3723, 10.1021/acs.jced.6b00008R.F. Fedors A method for estimating both the solubility parameters and molar volumes of liquids Polym. Eng. Sci., 14 (1974), pp. 147-154, 10.1002/pen.760140211A.F.M. Barton CRC Handbook of Solubility Parameters and Other Cohesion Parameters (second ed.), CRC Press, New York (2014)D.R. Delgado, A.R. Holguín, O.A. Almanza, F. Martínez, Y. Marcus Solubility and preferential solvation of meloxicam in ethanol+water mixtures Fluid Phase Equilib., 305 (2011), pp. 88-95, 10.1016/j.fluid.2011.03.012A. Kristl Thermodynamic investigation of the effect of the mutual miscibility of some higher alkanols and water on the partitioning and solubility of some guanine derivatives J. Chem. Soc., Faraday Trans., 92 (1996), pp. 1721-1724, 10.1039/ft9969201721R.R. Krug, W.G. Hunter, R.A. Grieger Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van’t hoff and arrhenius data J. Phys. Chem., 80 (1976), pp. 2335-2341, 10.1021/j100562a006R.R. Krug, W.G. Hunter, R.A. Grieger Enthalpy-entropy compensation. 2. Separation of the chemical from the statistical effect J. Phys. Chem., 80 (1976), pp. 2341-2351, 10.1021/j100562a007G.L. Perlovich, S.V. Kurkov, A.N. Kinchin, A. Bauer-Brandl Thermodynamics of solutions III: comparison of the solvation of (+)-naproxen with other NSAIDs Eur. J. Pharm. Biopharm., 57 (2004), pp. 411-420, 10.1016/j.ejpb.2003.10.021D.R. Delgado, F. Martínez R Thermodynamic study of the solubility of sodium sulfadiazine in some ethanol + water cosolvent mixtures Vitae., 17 (2010), pp. 191-198G.L. Perlovich, N.N. Strakhova, V.P. Kazachenko, T.V. Volkova, V.V. Tkachev, K.J. Schaper, O.A. Raevsky Sulfonamides as a subject to study molecular interactions in crystals and solutions: sublimation, solubility, solvation, distribution and crystal structure Int. J. Pharm., 349 (2008), pp. 300-313, 10.1016/j.ijpharm.2007.07.034D.R. Delgado, F. Martínez Solution thermodynamics of sulfadiazine in some ethanol + water mixtures J. Mol. Liq., 187 (2013), pp. 99-105, 10.1016/j.molliq.2013.06.011G.L. Perlovich, V.V. Tkachev, N.N. Strakhova, V.P. Kazachenko, T.V. Volkova, O.V. Surov, K.J. Schaper, O.A. Raevsky Thermodynamic and structural aspects of sulfonamide crystals and solutions J. Pharm. Sci., 98 (2009), pp. 4738-4755, 10.1002/jps.21784G.L. Perlovich, A.M. Ryzhakov, N.N. Strakhova, V.P. Kazachenko, K.J. Schaper, O.A. Raevsky Thermodynamic aspects of solubility and partitioning processes of some sulfonamides in the solvents modeling biological media J. Chem. Thermodyn., 69 (2014), pp. 56-65, 10.1016/j.jct.2013.09.027E.A. Cantillo, D.R. Delgado, F. Martinez Solution thermodynamics of indomethacin in ethanol + propylene glycol mixtures J. Mol. Liq., 181 (2013), pp. 62-67, 10.1016/j.molliq.2013.02.008C.P. Mora, F. Martínez Thermodynamic quantities relative to solution processes of Naproxen in aqueous media at pH 1.2 and 7.4 Phys. Chem. Liq., 44 (2006), pp. 585-596, 10.1080/00319100600889715P. Bustamante, S. Romero, A. Peña, P. Peña, B. Escalera, A. Reillo Enthalpy−entropy compensation for the solubility of drugs in solvent mixtures: paracetamol, acetanilide, and nalidixic acid in dioxane−water J. Pharm. Sci., 87 (1998), 10.1021/js980149xE. Tomlinson Enthalpy-entropy compensation analysis of pharmaceutical, biochemical and biological systems Int. J. Pharm., 13 (1983), pp. 115-144, 10.1016/0378-5173(83)90001-7R. Lumry, S. Rajender Enthalpy–entropy compensation phenomena in water solutions of proteins and small molecules: a ubiquitous properly of water Biopolymers., 9 (1970), pp. 1125-1227, 10.1002/bip.1970.360091002D.R. Delgado, F. Martínez Solubility and preferential solvation of sulfadiazine in methanol+water mixtures at several temperatures Fluid Phase Equilib., 379 (2014), pp. 128-138, 10.1016/j.fluid.2014.07.013R.W. Taft, M.J. Kamlet The solvatochromic comparison method. 2. The α-scale of solvent hydrogen-bond donor (HBD) acidities J. Am. Chem. Soc., 98 (1976), pp. 2886-2894, 10.1021/ja00426a036M.J. Kamlet, R.W. Taft The solvatochromic comparison method. I. The β-scale of solvent hydrogen-bond acceptor (HBA) basicities J. Am. Chem. Soc., 98 (1976), pp. 377-383, 10.1021/ja00418a009HydroxytyrosolDSCVan’t HoffGibbs equationPerlovich methodInverse Kirkwood–Buff integralHydroxytyrosolDSCVan’t HoffGibbs equationPerlovich methodInverse Kirkwood–Buff integralSolubility of Hydroxytyrosol in binary mixture of ethanol + water from (293.15 to 318.15) K: Measurement, correlation, dissolution thermodynamics and preferential solvationArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribución – No comercial – Sin Derivarinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINAL2020_Solubility_Hydroxytyrosol_ethanol.pdf2020_Solubility_Hydroxytyrosol_ethanol.pdfArtículo científico Q1application/pdf1244913https://repository.ucc.edu.co/bitstreams/4343cb9b-cd24-4494-b933-49ec19c93e5f/downloadca4ca0c28635c4fd3d8cd7cd83b75da1MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/91f09d83-7a06-4795-ab0c-7b1af2375412/download3bce4f7ab09dfc588f126e1e36e98a45MD52THUMBNAIL2020_Solubility_Hydroxytyrosol_ethanol.pdf.jpg2020_Solubility_Hydroxytyrosol_ethanol.pdf.jpgGenerated Thumbnailimage/jpeg6091https://repository.ucc.edu.co/bitstreams/5c658eec-8cf7-413e-ad20-44aebc566575/downloadfd832fffcfab54d025fe341580181b34MD53TEXT2020_Solubility_Hydroxytyrosol_ethanol.pdf.txt2020_Solubility_Hydroxytyrosol_ethanol.pdf.txtExtracted texttext/plain42415https://repository.ucc.edu.co/bitstreams/1dec78fb-03e0-4143-958e-ca7b23fd63cc/downloadbd31037ba60035ea43e64558ba724f96MD5420.500.12494/28274oai:repository.ucc.edu.co:20.500.12494/282742024-08-10 21:01:59.932restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo= |