Solubility of Hydroxytyrosol in binary mixture of ethanol + water from (293.15 to 318.15) K: Measurement, correlation, dissolution thermodynamics and preferential solvation

Hydroxytyrosol (HXT) (also known as 3,4-dihydroxyphényléthanol,) is a biophenol extracted from olive. HXT is known for its high antioxidant significance effect. In this work, we focused on the study of the behavior of the solubility of HXT in binary solvent mixtures (ethanol + water) as well as the...

Full description

Autores:
Aydi, Abdelkarim
Dali, Imen
Ghachem, Kaouther
Al-Khazaal, Abdulaal Z.
Delgado, Daniel Ricardo
Kolsi, Lioua
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/28274
Acceso en línea:
https://doi.org/10.1016/j.aej.2020.10.019
https://hdl.handle.net/20.500.12494/28274
Palabra clave:
Hydroxytyrosol
DSC
Van’t Hoff
Gibbs equation
Perlovich method
Inverse Kirkwood–Buff integral
Hydroxytyrosol
DSC
Van’t Hoff
Gibbs equation
Perlovich method
Inverse Kirkwood–Buff integral
Rights
openAccess
License
Atribución – No comercial – Sin Derivar
id COOPER2_582685d1f494f730e786b9a1912a15c3
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/28274
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Solubility of Hydroxytyrosol in binary mixture of ethanol + water from (293.15 to 318.15) K: Measurement, correlation, dissolution thermodynamics and preferential solvation
title Solubility of Hydroxytyrosol in binary mixture of ethanol + water from (293.15 to 318.15) K: Measurement, correlation, dissolution thermodynamics and preferential solvation
spellingShingle Solubility of Hydroxytyrosol in binary mixture of ethanol + water from (293.15 to 318.15) K: Measurement, correlation, dissolution thermodynamics and preferential solvation
Hydroxytyrosol
DSC
Van’t Hoff
Gibbs equation
Perlovich method
Inverse Kirkwood–Buff integral
Hydroxytyrosol
DSC
Van’t Hoff
Gibbs equation
Perlovich method
Inverse Kirkwood–Buff integral
title_short Solubility of Hydroxytyrosol in binary mixture of ethanol + water from (293.15 to 318.15) K: Measurement, correlation, dissolution thermodynamics and preferential solvation
title_full Solubility of Hydroxytyrosol in binary mixture of ethanol + water from (293.15 to 318.15) K: Measurement, correlation, dissolution thermodynamics and preferential solvation
title_fullStr Solubility of Hydroxytyrosol in binary mixture of ethanol + water from (293.15 to 318.15) K: Measurement, correlation, dissolution thermodynamics and preferential solvation
title_full_unstemmed Solubility of Hydroxytyrosol in binary mixture of ethanol + water from (293.15 to 318.15) K: Measurement, correlation, dissolution thermodynamics and preferential solvation
title_sort Solubility of Hydroxytyrosol in binary mixture of ethanol + water from (293.15 to 318.15) K: Measurement, correlation, dissolution thermodynamics and preferential solvation
dc.creator.fl_str_mv Aydi, Abdelkarim
Dali, Imen
Ghachem, Kaouther
Al-Khazaal, Abdulaal Z.
Delgado, Daniel Ricardo
Kolsi, Lioua
dc.contributor.author.none.fl_str_mv Aydi, Abdelkarim
Dali, Imen
Ghachem, Kaouther
Al-Khazaal, Abdulaal Z.
Delgado, Daniel Ricardo
Kolsi, Lioua
dc.subject.spa.fl_str_mv Hydroxytyrosol
DSC
Van’t Hoff
Gibbs equation
Perlovich method
Inverse Kirkwood–Buff integral
topic Hydroxytyrosol
DSC
Van’t Hoff
Gibbs equation
Perlovich method
Inverse Kirkwood–Buff integral
Hydroxytyrosol
DSC
Van’t Hoff
Gibbs equation
Perlovich method
Inverse Kirkwood–Buff integral
dc.subject.other.spa.fl_str_mv Hydroxytyrosol
DSC
Van’t Hoff
Gibbs equation
Perlovich method
Inverse Kirkwood–Buff integral
description Hydroxytyrosol (HXT) (also known as 3,4-dihydroxyphényléthanol,) is a biophenol extracted from olive. HXT is known for its high antioxidant significance effect. In this work, we focused on the study of the behavior of the solubility of HXT in binary solvent mixtures (ethanol + water) as well as the thermodynamic proprieties. The solubility of HXT in water, ethanol and in binary solvent mixtures (ethanol + water) was measured at five different temperatures from (293.15 to 318.15) K. The enthalpy of fusion and the melting point of HXT were experimentally determined since they are essential for the study of the of solubility and crystallization process. Thermodynamic properties of dissolution of the HXT (Gibbs energy (ΔsolG°), molar enthalpy of dissolution (ΔsolH°), and molar entropy of dissolution (ΔsolS°)) are predicted using the van’t Hoff analysis, the Gibbs equation, and the measured solubilities data. The preferential solvation has been determined using the inverse Kirkwood–Buff integral (IKBI) theory.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-11-25T20:24:06Z
dc.date.available.none.fl_str_mv 2020-11-25T20:24:06Z
2020-11-01
dc.date.issued.none.fl_str_mv 2020-10-24
dc.type.none.fl_str_mv Artículo
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 11100168
dc.identifier.uri.spa.fl_str_mv https://doi.org/10.1016/j.aej.2020.10.019
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/28274
dc.identifier.bibliographicCitation.spa.fl_str_mv Abdelkarim Aydi, Imen Dali, Kaouther Ghachem, Abdulaal Z. Al-Khazaal, Daniel R. Delgado, Lioua Kolsi. (2020). Solubility of Hydroxytyrosol in binary mixture of ethanol + water from (293.15 to 318.15) K: Measurement, correlation, dissolution thermodynamics and preferential solvation, Alexandria Engineering Journal, https://doi.org/10.1016/j.aej.2020.10.019.
identifier_str_mv 11100168
Abdelkarim Aydi, Imen Dali, Kaouther Ghachem, Abdulaal Z. Al-Khazaal, Daniel R. Delgado, Lioua Kolsi. (2020). Solubility of Hydroxytyrosol in binary mixture of ethanol + water from (293.15 to 318.15) K: Measurement, correlation, dissolution thermodynamics and preferential solvation, Alexandria Engineering Journal, https://doi.org/10.1016/j.aej.2020.10.019.
url https://doi.org/10.1016/j.aej.2020.10.019
https://hdl.handle.net/20.500.12494/28274
dc.relation.isversionof.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S1110016820305342#!
dc.relation.ispartofjournal.spa.fl_str_mv Alexandria Engineering Journal
dc.relation.references.spa.fl_str_mv S. Simone, W. Roland, W. Manfred, S. Christiane Absorption of hydroxytyrosol from different sources and its impact on lipid status in human subjects J Nutr. Med Diet Care., 4 (2018), 10.23937/2572-3278.1510025
L. Martínez, G. Ros, G. Nieto Hydroxytyrosol: health benefits and use as functional ingredient in meat Medicines., 5 (2018), p. 13, 10.3390/medicines5010013
F. Echeverría, M. Ortiz, R. Valenzuela, L.A. Videla Hydroxytyrosol and cytoprotection: a projection for clinical interventions Int. J. Mol. Sci., 18 (2017), 10.3390/ijms18050930
N. Kalogerakis, M. Politi, S. Foteinis, E. Chatzisymeon, D. Mantzavinos Recovery of antioxidants from olive mill wastewaters: a viable solution that promotes their overall sustainable management J. Env. Manag., 128 (2013), pp. 749-758, 10.1016/j.jenvman.2013.06.027
A. Fathi-Azarjbayjani, A. Mabhoot, F. Martínez, A. Jouyban Modeling, solubility, and thermodynamic aspects of sodium phenytoin in propylene glycol-water mixtures J. Mol. Liq., 219 (2016), pp. 68-73, 10.1016/j.molliq.2016.02.089
X. Hao, X. Wu, G. Shen, L. Wen, H. Li, Q. Huang Thermodynamic models for determination of the solubility of (-)-shikimic acid in different pure solvents and in (H2O + ethanol) binary solvent mixtures J. Chem. Thermodyn., 88 (2015), pp. 8-14, 10.1016/j.jct.2015.04.009
A. Jouyban Handbook of Solubility Data for Pharmaceuticals CRC Press (2009) doi: 10.1201/9781439804889
A. Liang, S. Wang, Y. Qu Determination and correlation of solubility of phenylbutazone in monosolvents and binary solvent mixtures J. Chem. Eng. Data., 62 (2017), pp. 864-871, 10.1021/acs.jced.6b00911
S.D. Clas, C.R. Dalton, B.C. Hancock Differential scanning calorimetry: applications in drug development Pharm. Sci. Technol. Today., 2 (1999), pp. 311-320, 10.1016/S1461-5347(99)00181-9
B. Karthikeyan, S. Ramanathan, V. Ramakrishnan A calorimetric study of 7075 Al/SiCp composites Mater. Des., 31 (2010), pp. S92-S95, 10.1016/j.matdes.2009.10.066
A. Ben-Naim Theory of preferential solvation of nonelectrolytes Cell Biophys., 12 (1988), pp. 255-269, 10.1007/BF02918361
A. Ben-Naim Preferential solvation in two- and in three-component systems Pure Appl. Chern., 62 (1990), pp. 25-34
Y. Marcus Solubility and solvation in mixed solvent systems Pure Appl. Chern., 62 (1990), pp. 2069-2076
Y. Marcus Solvent Mixtures: Properties and Selective Solvation (first ed.), Marcel Dekker Inc, New York (2002)
Y. Marcus On the preferential solvation of drugs and PAHs in binary solvent mixtures J. Mol. Liq., 140 (2008), pp. 61-67, 10.1016/j.molliq.2008.01.005
Q. Zhang, Y. Yang, C. Cao, L. Cheng, Y. Shi, W. Yang, Y. Hu Thermodynamic models for determination of the solubility of dibenzothiophene in (methanol + acetonitrile) binary solvent mixtures J. Chem. Thermodyn., 80 (2015), pp. 7-12, 10.1016/j.jct.2014.08.012
D.R. Delgado, M.A. Peña, F. Martínez Preferential solvation of some sulfonamides in propylene glycol + water solvent mixtures according to the IKBI and QLQC methods J Solut. Chem., 43 (2014), pp. 360-374, 10.1007/s10953-014-0130-2
A. Noubigh Stearic acid solubility in mixed solvents of (water + ethanol) and (ethanol + ethyl acetate): experimental data and comparison among different thermodynamic models J. Mol. Liq., 296 (2019), Article 112101, 10.1016/j.molliq.2019.112101
A. Noubigh, A. Aydi, M. Abderrabba Experimental measurement and correlation of solubility data and thermodynamic properties of protocatechuic acid in four organic solvents J. Chem. Eng. Data., 60 (2015), pp. 514-518, 10.1021/je500519y
A. Noubigh, A. Akremi Solution thermodynamics of trans-Cinnamic acid in (methanol + water) and (ethanol + water) mixtures at different temperatures J. Mol. Liq., 274 (2019), pp. 752-758, 10.1016/j.molliq.2018.09.131
A.A.S. Araújo, M.D.S. Bezerra, S. Storpirtis, J.D.R. Matos Determination of the melting temperature, heat of fusion, and purity analysis of different samples of zidovudine (AZT) using DSC Braz. J. Pharm. Sci., 46 (2010), pp. 37-43, 10.1590/S1984-82502010000100005
A. Aydi, C.A. Claumann, A. Wüst Zibetti, M. Abderrabba Differential scanning calorimetry data and solubility of rosmarinic acid in different pure solvents and in binary mixtures (methyl acetate + water) and (ethyl acetate + water) from 293.2 to 313.2 K J. Chem. Eng. Data., 61 (2016), pp. 3718-3723, 10.1021/acs.jced.6b00008
R.F. Fedors A method for estimating both the solubility parameters and molar volumes of liquids Polym. Eng. Sci., 14 (1974), pp. 147-154, 10.1002/pen.760140211
A.F.M. Barton CRC Handbook of Solubility Parameters and Other Cohesion Parameters (second ed.), CRC Press, New York (2014)
D.R. Delgado, A.R. Holguín, O.A. Almanza, F. Martínez, Y. Marcus Solubility and preferential solvation of meloxicam in ethanol+water mixtures Fluid Phase Equilib., 305 (2011), pp. 88-95, 10.1016/j.fluid.2011.03.012
A. Kristl Thermodynamic investigation of the effect of the mutual miscibility of some higher alkanols and water on the partitioning and solubility of some guanine derivatives J. Chem. Soc., Faraday Trans., 92 (1996), pp. 1721-1724, 10.1039/ft9969201721
R.R. Krug, W.G. Hunter, R.A. Grieger Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van’t hoff and arrhenius data J. Phys. Chem., 80 (1976), pp. 2335-2341, 10.1021/j100562a006
R.R. Krug, W.G. Hunter, R.A. Grieger Enthalpy-entropy compensation. 2. Separation of the chemical from the statistical effect J. Phys. Chem., 80 (1976), pp. 2341-2351, 10.1021/j100562a007
G.L. Perlovich, S.V. Kurkov, A.N. Kinchin, A. Bauer-Brandl Thermodynamics of solutions III: comparison of the solvation of (+)-naproxen with other NSAIDs Eur. J. Pharm. Biopharm., 57 (2004), pp. 411-420, 10.1016/j.ejpb.2003.10.021
D.R. Delgado, F. Martínez R Thermodynamic study of the solubility of sodium sulfadiazine in some ethanol + water cosolvent mixtures Vitae., 17 (2010), pp. 191-198
G.L. Perlovich, N.N. Strakhova, V.P. Kazachenko, T.V. Volkova, V.V. Tkachev, K.J. Schaper, O.A. Raevsky Sulfonamides as a subject to study molecular interactions in crystals and solutions: sublimation, solubility, solvation, distribution and crystal structure Int. J. Pharm., 349 (2008), pp. 300-313, 10.1016/j.ijpharm.2007.07.034
D.R. Delgado, F. Martínez Solution thermodynamics of sulfadiazine in some ethanol + water mixtures J. Mol. Liq., 187 (2013), pp. 99-105, 10.1016/j.molliq.2013.06.011
G.L. Perlovich, V.V. Tkachev, N.N. Strakhova, V.P. Kazachenko, T.V. Volkova, O.V. Surov, K.J. Schaper, O.A. Raevsky Thermodynamic and structural aspects of sulfonamide crystals and solutions J. Pharm. Sci., 98 (2009), pp. 4738-4755, 10.1002/jps.21784
G.L. Perlovich, A.M. Ryzhakov, N.N. Strakhova, V.P. Kazachenko, K.J. Schaper, O.A. Raevsky Thermodynamic aspects of solubility and partitioning processes of some sulfonamides in the solvents modeling biological media J. Chem. Thermodyn., 69 (2014), pp. 56-65, 10.1016/j.jct.2013.09.027
E.A. Cantillo, D.R. Delgado, F. Martinez Solution thermodynamics of indomethacin in ethanol + propylene glycol mixtures J. Mol. Liq., 181 (2013), pp. 62-67, 10.1016/j.molliq.2013.02.008
C.P. Mora, F. Martínez Thermodynamic quantities relative to solution processes of Naproxen in aqueous media at pH 1.2 and 7.4 Phys. Chem. Liq., 44 (2006), pp. 585-596, 10.1080/00319100600889715
P. Bustamante, S. Romero, A. Peña, P. Peña, B. Escalera, A. Reillo Enthalpy−entropy compensation for the solubility of drugs in solvent mixtures: paracetamol, acetanilide, and nalidixic acid in dioxane−water J. Pharm. Sci., 87 (1998), 10.1021/js980149x
E. Tomlinson Enthalpy-entropy compensation analysis of pharmaceutical, biochemical and biological systems Int. J. Pharm., 13 (1983), pp. 115-144, 10.1016/0378-5173(83)90001-7
R. Lumry, S. Rajender Enthalpy–entropy compensation phenomena in water solutions of proteins and small molecules: a ubiquitous properly of water Biopolymers., 9 (1970), pp. 1125-1227, 10.1002/bip.1970.360091002
D.R. Delgado, F. Martínez Solubility and preferential solvation of sulfadiazine in methanol+water mixtures at several temperatures Fluid Phase Equilib., 379 (2014), pp. 128-138, 10.1016/j.fluid.2014.07.013
R.W. Taft, M.J. Kamlet The solvatochromic comparison method. 2. The α-scale of solvent hydrogen-bond donor (HBD) acidities J. Am. Chem. Soc., 98 (1976), pp. 2886-2894, 10.1021/ja00426a036
M.J. Kamlet, R.W. Taft The solvatochromic comparison method. I. The β-scale of solvent hydrogen-bond acceptor (HBA) basicities J. Am. Chem. Soc., 98 (1976), pp. 377-383, 10.1021/ja00418a009
dc.rights.license.none.fl_str_mv Atribución – No comercial – Sin Derivar
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Sin Derivar
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 14 P.
dc.coverage.temporal.spa.fl_str_mv 1
dc.publisher.spa.fl_str_mv Elsevier B.V.
Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, Neiva
dc.publisher.program.spa.fl_str_mv Ingeniería Industrial
dc.publisher.place.spa.fl_str_mv Neiva
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/4343cb9b-cd24-4494-b933-49ec19c93e5f/download
https://repository.ucc.edu.co/bitstreams/91f09d83-7a06-4795-ab0c-7b1af2375412/download
https://repository.ucc.edu.co/bitstreams/5c658eec-8cf7-413e-ad20-44aebc566575/download
https://repository.ucc.edu.co/bitstreams/1dec78fb-03e0-4143-958e-ca7b23fd63cc/download
bitstream.checksum.fl_str_mv ca4ca0c28635c4fd3d8cd7cd83b75da1
3bce4f7ab09dfc588f126e1e36e98a45
fd832fffcfab54d025fe341580181b34
bd31037ba60035ea43e64558ba724f96
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814246584647417856
spelling Aydi, AbdelkarimDali, ImenGhachem, KaoutherAl-Khazaal, Abdulaal Z.Delgado, Daniel RicardoKolsi, Lioua12020-11-25T20:24:06Z2020-11-25T20:24:06Z2020-11-012020-10-2411100168https://doi.org/10.1016/j.aej.2020.10.019https://hdl.handle.net/20.500.12494/28274Abdelkarim Aydi, Imen Dali, Kaouther Ghachem, Abdulaal Z. Al-Khazaal, Daniel R. Delgado, Lioua Kolsi. (2020). Solubility of Hydroxytyrosol in binary mixture of ethanol + water from (293.15 to 318.15) K: Measurement, correlation, dissolution thermodynamics and preferential solvation, Alexandria Engineering Journal, https://doi.org/10.1016/j.aej.2020.10.019.Hydroxytyrosol (HXT) (also known as 3,4-dihydroxyphényléthanol,) is a biophenol extracted from olive. HXT is known for its high antioxidant significance effect. In this work, we focused on the study of the behavior of the solubility of HXT in binary solvent mixtures (ethanol + water) as well as the thermodynamic proprieties. The solubility of HXT in water, ethanol and in binary solvent mixtures (ethanol + water) was measured at five different temperatures from (293.15 to 318.15) K. The enthalpy of fusion and the melting point of HXT were experimentally determined since they are essential for the study of the of solubility and crystallization process. Thermodynamic properties of dissolution of the HXT (Gibbs energy (ΔsolG°), molar enthalpy of dissolution (ΔsolH°), and molar entropy of dissolution (ΔsolS°)) are predicted using the van’t Hoff analysis, the Gibbs equation, and the measured solubilities data. The preferential solvation has been determined using the inverse Kirkwood–Buff integral (IKBI) theory.Hydroxytyrosol (HXT) (also known as 3,4-dihydroxyphényléthanol,) is a biophenol extracted from olive. HXT is known for its high antioxidant significance effect. In this work, we focused on the study of the behavior of the solubility of HXT in binary solvent mixtures (ethanol + water) as well as the thermodynamic proprieties. The solubility of HXT in water, ethanol and in binary solvent mixtures (ethanol + water) was measured at five different temperatures from (293.15 to 318.15) K. The enthalpy of fusion and the melting point of HXT were experimentally determined since they are essential for the study of the of solubility and crystallization process. Thermodynamic properties of dissolution of the HXT (Gibbs energy (ΔsolG°), molar enthalpy of dissolution (ΔsolH°), and molar entropy of dissolution (ΔsolS°)) are predicted using the van’t Hoff analysis, the Gibbs equation, and the measured solubilities data. The preferential solvation has been determined using the inverse Kirkwood–Buff integral (IKBI) theory.Abstract. -- Keywords. -- Nomenclature. -- 1. Introduction. -- 2. Experimental. -- 3. Results and discussion. -- 4. Conclusions. -- Declaration of Competing Interest. -- Acknowledgement. -- References.http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001402116https://orcid.org/0000-0002-4835-9739https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000004151danielr.delgado@campusucc.edu.cohttps://scholar.google.es/citations?user=OW0mejcAAAAJ&hl=es14 P.Elsevier B.V.Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, NeivaIngeniería IndustrialNeivahttps://www.sciencedirect.com/science/article/pii/S1110016820305342#!Alexandria Engineering JournalS. Simone, W. Roland, W. Manfred, S. Christiane Absorption of hydroxytyrosol from different sources and its impact on lipid status in human subjects J Nutr. Med Diet Care., 4 (2018), 10.23937/2572-3278.1510025L. Martínez, G. Ros, G. Nieto Hydroxytyrosol: health benefits and use as functional ingredient in meat Medicines., 5 (2018), p. 13, 10.3390/medicines5010013F. Echeverría, M. Ortiz, R. Valenzuela, L.A. Videla Hydroxytyrosol and cytoprotection: a projection for clinical interventions Int. J. Mol. Sci., 18 (2017), 10.3390/ijms18050930N. Kalogerakis, M. Politi, S. Foteinis, E. Chatzisymeon, D. Mantzavinos Recovery of antioxidants from olive mill wastewaters: a viable solution that promotes their overall sustainable management J. Env. Manag., 128 (2013), pp. 749-758, 10.1016/j.jenvman.2013.06.027A. Fathi-Azarjbayjani, A. Mabhoot, F. Martínez, A. Jouyban Modeling, solubility, and thermodynamic aspects of sodium phenytoin in propylene glycol-water mixtures J. Mol. Liq., 219 (2016), pp. 68-73, 10.1016/j.molliq.2016.02.089X. Hao, X. Wu, G. Shen, L. Wen, H. Li, Q. Huang Thermodynamic models for determination of the solubility of (-)-shikimic acid in different pure solvents and in (H2O + ethanol) binary solvent mixtures J. Chem. Thermodyn., 88 (2015), pp. 8-14, 10.1016/j.jct.2015.04.009A. Jouyban Handbook of Solubility Data for Pharmaceuticals CRC Press (2009) doi: 10.1201/9781439804889A. Liang, S. Wang, Y. Qu Determination and correlation of solubility of phenylbutazone in monosolvents and binary solvent mixtures J. Chem. Eng. Data., 62 (2017), pp. 864-871, 10.1021/acs.jced.6b00911S.D. Clas, C.R. Dalton, B.C. Hancock Differential scanning calorimetry: applications in drug development Pharm. Sci. Technol. Today., 2 (1999), pp. 311-320, 10.1016/S1461-5347(99)00181-9B. Karthikeyan, S. Ramanathan, V. Ramakrishnan A calorimetric study of 7075 Al/SiCp composites Mater. Des., 31 (2010), pp. S92-S95, 10.1016/j.matdes.2009.10.066A. Ben-Naim Theory of preferential solvation of nonelectrolytes Cell Biophys., 12 (1988), pp. 255-269, 10.1007/BF02918361A. Ben-Naim Preferential solvation in two- and in three-component systems Pure Appl. Chern., 62 (1990), pp. 25-34Y. Marcus Solubility and solvation in mixed solvent systems Pure Appl. Chern., 62 (1990), pp. 2069-2076Y. Marcus Solvent Mixtures: Properties and Selective Solvation (first ed.), Marcel Dekker Inc, New York (2002)Y. Marcus On the preferential solvation of drugs and PAHs in binary solvent mixtures J. Mol. Liq., 140 (2008), pp. 61-67, 10.1016/j.molliq.2008.01.005Q. Zhang, Y. Yang, C. Cao, L. Cheng, Y. Shi, W. Yang, Y. Hu Thermodynamic models for determination of the solubility of dibenzothiophene in (methanol + acetonitrile) binary solvent mixtures J. Chem. Thermodyn., 80 (2015), pp. 7-12, 10.1016/j.jct.2014.08.012D.R. Delgado, M.A. Peña, F. Martínez Preferential solvation of some sulfonamides in propylene glycol + water solvent mixtures according to the IKBI and QLQC methods J Solut. Chem., 43 (2014), pp. 360-374, 10.1007/s10953-014-0130-2A. Noubigh Stearic acid solubility in mixed solvents of (water + ethanol) and (ethanol + ethyl acetate): experimental data and comparison among different thermodynamic models J. Mol. Liq., 296 (2019), Article 112101, 10.1016/j.molliq.2019.112101A. Noubigh, A. Aydi, M. Abderrabba Experimental measurement and correlation of solubility data and thermodynamic properties of protocatechuic acid in four organic solvents J. Chem. Eng. Data., 60 (2015), pp. 514-518, 10.1021/je500519yA. Noubigh, A. Akremi Solution thermodynamics of trans-Cinnamic acid in (methanol + water) and (ethanol + water) mixtures at different temperatures J. Mol. Liq., 274 (2019), pp. 752-758, 10.1016/j.molliq.2018.09.131A.A.S. Araújo, M.D.S. Bezerra, S. Storpirtis, J.D.R. Matos Determination of the melting temperature, heat of fusion, and purity analysis of different samples of zidovudine (AZT) using DSC Braz. J. Pharm. Sci., 46 (2010), pp. 37-43, 10.1590/S1984-82502010000100005A. Aydi, C.A. Claumann, A. Wüst Zibetti, M. Abderrabba Differential scanning calorimetry data and solubility of rosmarinic acid in different pure solvents and in binary mixtures (methyl acetate + water) and (ethyl acetate + water) from 293.2 to 313.2 K J. Chem. Eng. Data., 61 (2016), pp. 3718-3723, 10.1021/acs.jced.6b00008R.F. Fedors A method for estimating both the solubility parameters and molar volumes of liquids Polym. Eng. Sci., 14 (1974), pp. 147-154, 10.1002/pen.760140211A.F.M. Barton CRC Handbook of Solubility Parameters and Other Cohesion Parameters (second ed.), CRC Press, New York (2014)D.R. Delgado, A.R. Holguín, O.A. Almanza, F. Martínez, Y. Marcus Solubility and preferential solvation of meloxicam in ethanol+water mixtures Fluid Phase Equilib., 305 (2011), pp. 88-95, 10.1016/j.fluid.2011.03.012A. Kristl Thermodynamic investigation of the effect of the mutual miscibility of some higher alkanols and water on the partitioning and solubility of some guanine derivatives J. Chem. Soc., Faraday Trans., 92 (1996), pp. 1721-1724, 10.1039/ft9969201721R.R. Krug, W.G. Hunter, R.A. Grieger Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van’t hoff and arrhenius data J. Phys. Chem., 80 (1976), pp. 2335-2341, 10.1021/j100562a006R.R. Krug, W.G. Hunter, R.A. Grieger Enthalpy-entropy compensation. 2. Separation of the chemical from the statistical effect J. Phys. Chem., 80 (1976), pp. 2341-2351, 10.1021/j100562a007G.L. Perlovich, S.V. Kurkov, A.N. Kinchin, A. Bauer-Brandl Thermodynamics of solutions III: comparison of the solvation of (+)-naproxen with other NSAIDs Eur. J. Pharm. Biopharm., 57 (2004), pp. 411-420, 10.1016/j.ejpb.2003.10.021D.R. Delgado, F. Martínez R Thermodynamic study of the solubility of sodium sulfadiazine in some ethanol + water cosolvent mixtures Vitae., 17 (2010), pp. 191-198G.L. Perlovich, N.N. Strakhova, V.P. Kazachenko, T.V. Volkova, V.V. Tkachev, K.J. Schaper, O.A. Raevsky Sulfonamides as a subject to study molecular interactions in crystals and solutions: sublimation, solubility, solvation, distribution and crystal structure Int. J. Pharm., 349 (2008), pp. 300-313, 10.1016/j.ijpharm.2007.07.034D.R. Delgado, F. Martínez Solution thermodynamics of sulfadiazine in some ethanol + water mixtures J. Mol. Liq., 187 (2013), pp. 99-105, 10.1016/j.molliq.2013.06.011G.L. Perlovich, V.V. Tkachev, N.N. Strakhova, V.P. Kazachenko, T.V. Volkova, O.V. Surov, K.J. Schaper, O.A. Raevsky Thermodynamic and structural aspects of sulfonamide crystals and solutions J. Pharm. Sci., 98 (2009), pp. 4738-4755, 10.1002/jps.21784G.L. Perlovich, A.M. Ryzhakov, N.N. Strakhova, V.P. Kazachenko, K.J. Schaper, O.A. Raevsky Thermodynamic aspects of solubility and partitioning processes of some sulfonamides in the solvents modeling biological media J. Chem. Thermodyn., 69 (2014), pp. 56-65, 10.1016/j.jct.2013.09.027E.A. Cantillo, D.R. Delgado, F. Martinez Solution thermodynamics of indomethacin in ethanol + propylene glycol mixtures J. Mol. Liq., 181 (2013), pp. 62-67, 10.1016/j.molliq.2013.02.008C.P. Mora, F. Martínez Thermodynamic quantities relative to solution processes of Naproxen in aqueous media at pH 1.2 and 7.4 Phys. Chem. Liq., 44 (2006), pp. 585-596, 10.1080/00319100600889715P. Bustamante, S. Romero, A. Peña, P. Peña, B. Escalera, A. Reillo Enthalpy−entropy compensation for the solubility of drugs in solvent mixtures: paracetamol, acetanilide, and nalidixic acid in dioxane−water J. Pharm. Sci., 87 (1998), 10.1021/js980149xE. Tomlinson Enthalpy-entropy compensation analysis of pharmaceutical, biochemical and biological systems Int. J. Pharm., 13 (1983), pp. 115-144, 10.1016/0378-5173(83)90001-7R. Lumry, S. Rajender Enthalpy–entropy compensation phenomena in water solutions of proteins and small molecules: a ubiquitous properly of water Biopolymers., 9 (1970), pp. 1125-1227, 10.1002/bip.1970.360091002D.R. Delgado, F. Martínez Solubility and preferential solvation of sulfadiazine in methanol+water mixtures at several temperatures Fluid Phase Equilib., 379 (2014), pp. 128-138, 10.1016/j.fluid.2014.07.013R.W. Taft, M.J. Kamlet The solvatochromic comparison method. 2. The α-scale of solvent hydrogen-bond donor (HBD) acidities J. Am. Chem. Soc., 98 (1976), pp. 2886-2894, 10.1021/ja00426a036M.J. Kamlet, R.W. Taft The solvatochromic comparison method. I. The β-scale of solvent hydrogen-bond acceptor (HBA) basicities J. Am. Chem. Soc., 98 (1976), pp. 377-383, 10.1021/ja00418a009HydroxytyrosolDSCVan’t HoffGibbs equationPerlovich methodInverse Kirkwood–Buff integralHydroxytyrosolDSCVan’t HoffGibbs equationPerlovich methodInverse Kirkwood–Buff integralSolubility of Hydroxytyrosol in binary mixture of ethanol + water from (293.15 to 318.15) K: Measurement, correlation, dissolution thermodynamics and preferential solvationArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribución – No comercial – Sin Derivarinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINAL2020_Solubility_Hydroxytyrosol_ethanol.pdf2020_Solubility_Hydroxytyrosol_ethanol.pdfArtículo científico Q1application/pdf1244913https://repository.ucc.edu.co/bitstreams/4343cb9b-cd24-4494-b933-49ec19c93e5f/downloadca4ca0c28635c4fd3d8cd7cd83b75da1MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/91f09d83-7a06-4795-ab0c-7b1af2375412/download3bce4f7ab09dfc588f126e1e36e98a45MD52THUMBNAIL2020_Solubility_Hydroxytyrosol_ethanol.pdf.jpg2020_Solubility_Hydroxytyrosol_ethanol.pdf.jpgGenerated Thumbnailimage/jpeg6091https://repository.ucc.edu.co/bitstreams/5c658eec-8cf7-413e-ad20-44aebc566575/downloadfd832fffcfab54d025fe341580181b34MD53TEXT2020_Solubility_Hydroxytyrosol_ethanol.pdf.txt2020_Solubility_Hydroxytyrosol_ethanol.pdf.txtExtracted texttext/plain42415https://repository.ucc.edu.co/bitstreams/1dec78fb-03e0-4143-958e-ca7b23fd63cc/downloadbd31037ba60035ea43e64558ba724f96MD5420.500.12494/28274oai:repository.ucc.edu.co:20.500.12494/282742024-08-10 21:01:59.932restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=