Engineering Students´ Academic Performance Prediction using ICFES Test Scores and Demo-graphic Data

Introduction: This paper is part of a research project that aims to construct a predictive model for students’ academic performance, as result of an iterative process of experimentation and evaluation of the pertinence of some data mining techniques. Methodology: This paper was written in 2016 in th...

Full description

Autores:
Merchán Rubiano, Sandra
Beltrán Gómez, Adán
Duarte García, Jorge
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
eng
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/9405
Acceso en línea:
https://revistas.ucc.edu.co/index.php/in/article/view/1729
https://hdl.handle.net/20.500.12494/9405
Palabra clave:
Rights
openAccess
License
Copyright (c) 2017 Journal of Engineering and Education
Description
Summary:Introduction: This paper is part of a research project that aims to construct a predictive model for students’ academic performance, as result of an iterative process of experimentation and evaluation of the pertinence of some data mining techniques. Methodology: This paper was written in 2016 in the Universidad El Bosque, Bogotá, Colombia, and presents a comparative analysis of the performance and relevance of the J48 and Random Forest algorithms, in order to identify the most influential demographic and icfes score variables, as well as the classification rules, to predict the first year academic performance of the Engineering Faculty students, in Universidad El Bosque, Bogotá, Colombia. Results: The analysis process was carried out on 7,644 students’ records, and it was developed in two phases. Firstly, the data needed to feed the mining process was extracted and prepared. Secondly, the data mining process itself was implemented through preprocessing data and executing the classification algorithms available in Weka. Some significant variables and rules to predict academic performance are found, according to the studied population characteristics. Conclusions: The academic risk seen as the cause of the desertion phenomenon must be studied as a phenomenon itself. Establishing its causes facilitates the creation of preventive strategies for the accompaniment of students through their process, aimed to mitigate the risk of both phenomena.