Effects of Propolis Impregnation on Polylactic Acid (PLA) Scaffolds Loaded withWollastonite Particles against Staphylococcus aureus, Staphylococcus epidermidis, and Their Coculture for Potential Medical Devices

Several diseases and injuries cause irreversible damage to bone tissues, which may require partial or total regeneration or replacement. Tissue engineering suggests developing substitutes that may contribute to the repair or regeneration process by using three-dimensional lattices (scaffolds) to cre...

Full description

Autores:
Moreno, Ana Isabel
Orozco, Yeison
Ocampo, Sebastian
Malagon, Sarita
Ossa, Edgar Alexander
Peláez Vargas, Alejandro
Paucar, Carlos
Lopera, Alex
García, Claudia
Tipo de recurso:
Article of journal
Fecha de publicación:
2023
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
eng
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/55127
Acceso en línea:
https://hdl.handle.net/20.500.12494/55127
https://doi.org/ 10.3390/polym15122629
Palabra clave:
610 - Medicina y salud
Scaffolds
Propolis
Antibacterial activity
TPMS
Additive manufacturing
Rights
openAccess
License
http://creativecommons.org/publicdomain/zero/1.0/
id COOPER2_5561c4110bfae636cc7076b5f00c1f2b
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/55127
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.none.fl_str_mv Effects of Propolis Impregnation on Polylactic Acid (PLA) Scaffolds Loaded withWollastonite Particles against Staphylococcus aureus, Staphylococcus epidermidis, and Their Coculture for Potential Medical Devices
title Effects of Propolis Impregnation on Polylactic Acid (PLA) Scaffolds Loaded withWollastonite Particles against Staphylococcus aureus, Staphylococcus epidermidis, and Their Coculture for Potential Medical Devices
spellingShingle Effects of Propolis Impregnation on Polylactic Acid (PLA) Scaffolds Loaded withWollastonite Particles against Staphylococcus aureus, Staphylococcus epidermidis, and Their Coculture for Potential Medical Devices
610 - Medicina y salud
Scaffolds
Propolis
Antibacterial activity
TPMS
Additive manufacturing
title_short Effects of Propolis Impregnation on Polylactic Acid (PLA) Scaffolds Loaded withWollastonite Particles against Staphylococcus aureus, Staphylococcus epidermidis, and Their Coculture for Potential Medical Devices
title_full Effects of Propolis Impregnation on Polylactic Acid (PLA) Scaffolds Loaded withWollastonite Particles against Staphylococcus aureus, Staphylococcus epidermidis, and Their Coculture for Potential Medical Devices
title_fullStr Effects of Propolis Impregnation on Polylactic Acid (PLA) Scaffolds Loaded withWollastonite Particles against Staphylococcus aureus, Staphylococcus epidermidis, and Their Coculture for Potential Medical Devices
title_full_unstemmed Effects of Propolis Impregnation on Polylactic Acid (PLA) Scaffolds Loaded withWollastonite Particles against Staphylococcus aureus, Staphylococcus epidermidis, and Their Coculture for Potential Medical Devices
title_sort Effects of Propolis Impregnation on Polylactic Acid (PLA) Scaffolds Loaded withWollastonite Particles against Staphylococcus aureus, Staphylococcus epidermidis, and Their Coculture for Potential Medical Devices
dc.creator.fl_str_mv Moreno, Ana Isabel
Orozco, Yeison
Ocampo, Sebastian
Malagon, Sarita
Ossa, Edgar Alexander
Peláez Vargas, Alejandro
Paucar, Carlos
Lopera, Alex
García, Claudia
dc.contributor.author.none.fl_str_mv Moreno, Ana Isabel
Orozco, Yeison
Ocampo, Sebastian
Malagon, Sarita
Ossa, Edgar Alexander
Peláez Vargas, Alejandro
Paucar, Carlos
Lopera, Alex
García, Claudia
dc.contributor.researchgroup.none.fl_str_mv GIOM
dc.subject.ddc.none.fl_str_mv 610 - Medicina y salud
topic 610 - Medicina y salud
Scaffolds
Propolis
Antibacterial activity
TPMS
Additive manufacturing
dc.subject.proposal.none.fl_str_mv Scaffolds
Propolis
Antibacterial activity
TPMS
Additive manufacturing
description Several diseases and injuries cause irreversible damage to bone tissues, which may require partial or total regeneration or replacement. Tissue engineering suggests developing substitutes that may contribute to the repair or regeneration process by using three-dimensional lattices (scaffolds) to create functional bone tissues. Herein, scaffolds comprising polylactic acid and wollastonite particles enriched with propolis extracts from the Arauca region of Colombia were developed as gyroid triply periodic minimal surfaces using fused deposition modeling. The propolis extracts exhibited antibacterial activity against Staphylococcus aureus (ATCC 25175) and Staphylococcus epidermidis (ATCC 12228), which cause osteomyelitis. The scaffolds were characterized using scanning electron microscopy, Fourier-transform infrared spectroscopy, differential scanning calorimetry, contact angle, swelling, and degradation. Their mechanical properties were assessed using static and dynamic tests. Cell viability/proliferation assay was conducted using hDP-MSC cultures, while their bactericidal properties against monospecies cultures (S. aureus and S. epidermidis) and cocultures were evaluated. The wollastonite particles did not affect the physical, mechanical, or thermal properties of the scaffolds. The contact angle results showed that there were no substantial differences in the hydrophobicity between scaffolds with and without particles. Scaffolds containing wollastonite particles suffered less degradation than those produced using PLA alone. A representative result of the cyclic tests at Fmax = 450 N showed that the maximum strain reached after 8000 cycles is well below the yield strain (i.e., <7.5%), thereby indicating that even under these stringent conditions, these scaffolds will be able to work properly. The scaffolds impregnated with propolis showed a lower % of cell viability using hDP-MSCs on the 3rd day, but these values increased on the 7th day. These scaffolds exhibited antibacterial activity against the monospecies cultures of S. aureus and S. epidermidis and their cocultures. The samples without propolis loads did not show inhibition halos, whereas those loaded with EEP exhibited halos of 17.42 0.2 mm against S. aureus and 12.9 0.5 mm against S. epidermidis. These results made the scaffolds possible bone substitutes that exert control over species with a proliferative capacity for the biofilm-formation processes required for typical severe infectious processes.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-06-09
dc.date.accessioned.none.fl_str_mv 2024-03-04T22:53:20Z
dc.date.available.none.fl_str_mv 2024-03-04T22:53:20Z
dc.type.none.fl_str_mv Artículo
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Moreno AI, Orozco Y, Ocampo S, Malagón S, Ossa A, Peláez-Vargas A, Paucar C, Lopera A, Garcia C. Effects of Propolis Impregnation on Polylactic Acid (PLA) Scaffolds Loaded with Wollastonite Particles against Staphylococcus aureus, Staphylococcus epidermidis, and Their Coculture for Potential Medical Devices. Polymers. 2023 Jun 9;15(12):2629.https://hdl.handle.net/20.500.12494/55127
dc.identifier.issn.none.fl_str_mv 2073-4360
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/55127
dc.identifier.doi.none.fl_str_mv https://doi.org/ 10.3390/polym15122629
identifier_str_mv Moreno AI, Orozco Y, Ocampo S, Malagón S, Ossa A, Peláez-Vargas A, Paucar C, Lopera A, Garcia C. Effects of Propolis Impregnation on Polylactic Acid (PLA) Scaffolds Loaded with Wollastonite Particles against Staphylococcus aureus, Staphylococcus epidermidis, and Their Coculture for Potential Medical Devices. Polymers. 2023 Jun 9;15(12):2629.https://hdl.handle.net/20.500.12494/55127
2073-4360
url https://hdl.handle.net/20.500.12494/55127
https://doi.org/ 10.3390/polym15122629
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationendpage.none.fl_str_mv 21 p.
dc.relation.citationissue.none.fl_str_mv 2629
dc.relation.citationstartpage.none.fl_str_mv 1
dc.relation.citationvolume.none.fl_str_mv 15
dc.relation.ispartofjournal.none.fl_str_mv Polymers
dc.relation.references.none.fl_str_mv Ba, X.; Hadjiargyrou, M.; Di Masi, E.; Meng, Y.; Simon, M.; Tan, Z.; Rafailovich, M.H. The Role of Moderate Static Magnetic Fields on Biomineralization of Osteoblasts on Sulfonated Polystyrene Films. Biomaterials 2011, 32, 7831–7838.
Martin-Piedra, A.; Martin-Piedra, L. Matrices para Ingeniería del tejido óseo. Actual. Med. 2019, 104, 36–45. [CrossRef]
Amini, A.R.; Laurencin, C.T.; Nukavarapu, S.P. Bone Tissue Engineering: Recent Advances and Challenges. Crit. Rev. Biomed. Eng. 2012, 40, 363–408. [CrossRef] [PubMed]
Shrivats, A.R.; McDermott, M.C.; Hollinger, J.O. Bone Tissue Engineering: State of the Union. Drug Discov. Today 2014, 19, 781–786. [CrossRef] [PubMed]
Carletti, E.; Motta, A.; Migliaresi, C. Scaffolds for Tissue Engineering and 3D Cell Culture. In 3D Cell Culture; Haycock, J.W., Ed.; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2011; Volume 695, pp. 17–39. ISBN 978-1-60761-983-3
Saleh Alghamdi, S.; John, S.; Roy Choudhury, N.; Dutta, N.K. Additive Manufacturing of Polymer Materials: Progress, Promise and Challenges. Polymers 2021, 13, 753. [CrossRef]
Chen, Z.; Li, Z.; Li, J.; Liu, C.; Lao, C.; Fu, Y.; Liu, C.; Li, Y.; Wang, P.; He, Y. 3D Printing of Ceramics: A Review. J. Eur. Ceram. Soc. 2019, 39, 661–687. [CrossRef]
Jorge, L.S.; Chueire, A.G.; Baptista Rossit, A.R. Osteomyelitis: A Current Challenge. Braz. J. Infect. Dis. 2010, 14, 310–315. [CrossRef]
Qu, H.; Fu, H.; Han, Z.; Sun, Y. Biomaterials for Bone Tissue Engineering Scaffolds: A Review. RSC Adv. 2019, 9, 26252–26262. [CrossRef]
Abudhahir, M.; Saleem, A.; Paramita, P.; Kumar, S.D.; Tze-Wen, C.; Selvamurugan, N.; Moorthi, A. Polycaprolactone Fibrous Electrospun Scaffolds Reinforced with Copper Doped Wollastonite for Bone Tissue Engineering Applications. J. Biomed. Mater. Res. 2021, 109, 654–664. [CrossRef]
Liu, A.; Sun, M.; Shao, H.; Yang, X.; Ma, C.; He, D.; Gao, Q.; Liu, Y.; Yan, S.; Xu, S.; et al. The Outstanding Mechanical Response and Bone Regeneration Capacity of Robocast Dilute Magnesium-Doped Wollastonite Scaffolds in Critical Size Bone Defects. J. Mater. Chem. B 2016, 4, 3945–3958. [CrossRef]
Shao, H.; Liu, A.; Ke, X.; Sun, M.; He, Y.; Yang, X.; Fu, J.; Zhang, L.; Yang, G.; Liu, Y.; et al. 3D Robocasting Magnesium-Doped Wollastonite/TCP Bioceramic Scaffolds with Improved Bone Regeneration Capacity in Critical Sized Calvarial Defects. J. Mater. Chem. B 2017, 5, 2941–2951. [CrossRef]
Lee, J.W.; Ahn, G.; Kim, D.S.; Cho, D.-W. Development of Nano- and Microscale Composite 3D Scaffolds Using PPF/DEF-HA and Micro-Stereolithography. Microelectron. Eng. 2009, 86, 1465–1467. [CrossRef]
Narayanan, G.; Vernekar, V.N.; Kuyinu, E.L.; Laurencin, C.T. Poly (lactic acid)-Based biomaterials for orthopaedic regenerative engineering. Adv. Drug Deliv. Rev. 2016, 107, 247–276. [CrossRef]
Singhvi, M.S.; Zinjarde, S.S.; Gokhale, D.V. Polylactic Acid: Synthesis and Biomedical Applications. J. Appl. Microbiol. 2019, 127, 1612–1626. [CrossRef]
Chen, X.; Gao, C.; Jiang, J.; Wu, Y.; Zhu, P.; Chen, G. 3D Printed Porous PLA/NHA Composite Scaffolds with Enhanced Osteogenesis and Osteoconductivity in Vivo for Bone Regeneration. Biomed. Mater. 2019, 14, 065003. [CrossRef]
Sawyer, A.A.; Song, S.J.; Susanto, E.; Chuan, P.; Lam, C.X.F.; Woodruff, M.A.; Hutmacher, D.W.; Cool, S.M. The Stimulation of Healing within a Rat Calvarial Defect by MPCL–TCP/Collagen Scaffolds Loaded with RhBMP-2. Biomaterials 2009, 30, 2479–2488. [CrossRef]
Yang, Y.; Wang, G.; Liang, H.; Gao, C.; Peng, S.; Shen, L.; Shuai, C. Additive Manufacturing of Bone Scaffolds. Int. J. Bioprint. 2018, 5, 148. [CrossRef
Esposito Corcione, C.; Gervaso, F.; Scalera, F.; Padmanabhan, S.K.; Madaghiele, M.; Montagna, F.; Sannino, A.; Licciulli, A.; Maffezzoli, A. Highly Loaded Hydroxyapatite Microsphere/PLA Porous Scaffolds Obtained by Fused Deposition Modelling. Ceram. Int. 2019, 45, 2803–2810. [CrossRef]
Zein, I.; Hutmacher, D.W.; Tan, K.C.; Teoh, S.H. Fused Deposition Modeling of Novel Scaffold Architectures for Tissue Engineering Applications. Biomaterials 2002, 23, 1169–1185. [CrossRef]
Leong, K.F.; Cheah, C.M.; Chua, C.K. Solid Freeform Fabrication of Three-Dimensional Scaffolds for Engineering Replacement Tissues and Organs. Biomaterials 2003, 24, 2363–2378. [CrossRef]
Dong, Z.; Zhao, X. Application of TPMS Structure in Bone Regeneration. Eng. Regen. 2021, 2, 154–162. [CrossRef]
Lu, F.; Wu, R.; Shen, M.; Xie, L.; Liu, M.; Li, Y.; Xu, S.; Wan, L.; Yang, X.; Gao, C.; et al. Rational Design of Bioceramic Scaffolds with Tuning Pore Geometry by Stereolithography: Microstructure Evaluation and Mechanical Evolution. J. Eur. Ceram. Soc. 2021, 41, 1672–1682. [CrossRef]
Restrepo, S.; Ocampo, S.; Ramírez, J.A.; Paucar, C.; García, C. Mechanical Properties of Ceramic Structures Based on Triply Periodic Minimal Surface (TPMS) Processed by 3D Printing. J. Phys. Conf. Ser. 2017, 935, 012036. [CrossRef]
Al-Ketan, O.; Abu Al-Rub, R.K. Multifunctional Mechanical Metamaterials Based on Triply Periodic Minimal Surface Lattices. Adv. Eng. Mater. 2019, 21, 1900524. [CrossRef]
Simone-Finstrom, M.; Borba, R.; Wilson, M.; Spivak, M. Propolis Counteracts Some Threats to Honey Bee Health. Insects 2017, 8, 46. [CrossRef]
Becerra, T.B.; Calla-Poma, R.D.; Requena-Mendizabal, M.F.; Millones-Gómez, P.A. Antibacterial Effect of Peruvian Propolis Collected During Different Seasons on the Growth of Streptococcus Mutans. TODENTJ 2019, 13, 327–331. [CrossRef]
Toreti, V.C.; Sato, H.H.; Pastore, G.M.; Park, Y.K. Recent Progress of Propolis for Its Biological and Chemical Compositions and Its Botanical Origin. Evid.-Based Complement. Altern. Med. 2013, 2013, 697390. [CrossRef]
Afrouzan, H.; Tahghighi, A.; Zakeri, S.; Es-haghi, A. Chemical Composition and Antimicrobial Activities of Iranian Propolis. IBJ 2018, 22, 50–65. [CrossRef]
Oryan, A.; Alemzadeh, E.; Moshiri, A. Potential Role of Propolis in Wound Healing: Biological Properties and Therapeutic Activities. Biomed. Pharmacother. 2018, 98, 469–483. [CrossRef]
Pasupuleti, V.R.; Sammugam, L.; Ramesh, N.; Gan, S.H. Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits. Oxid. Med. Cell. Longev. 2017, 2017, 1259510. [CrossRef]
Hassan, M.A.; Abd El-Aziz, S.; Elbadry, H.M.; El-Aassar, S.A.; Tamer, T.M. Prevalence, Antimicrobial Resistance Profile, and Characterization of Multi-Drug Resistant Bacteria from Various Infected Wounds in North Egypt. Saudi J. Biol. Sci. 2022, 29, 2978–2988. [CrossRef]
Przybyłek, I.; Karpi ´nski, T.M. Antibacterial Properties of Propolis. Molecules 2019, 24, 2047. [CrossRef]
Demir, S.; Aliyazicioglu, Y.; Turan, I.; Misir, S.; Mentese, A.; Yaman, S.O.; Akbulut, K.; Kilinc, K.; Deger, O. Antiproliferative and Proapoptotic Activity of Turkish Propolis on Human Lung Cancer Cell Line. Nutr. Cancer 2016, 68, 165–172. [CrossRef]
Orsi, R.O.; Fernandes, A.; Bankova, V.; Sforcin, J.M. The Effects of Brazilian and Bulgarian Propolis in Vitro against Salmonella Typhi and Their Synergism with Antibiotics Acting on the Ribosome. Nat. Prod. Res. 2012, 26, 430–437. [CrossRef]
Ceylan, O.; Karakus, H.; Cicek, H. Design and In Vitro Antibiofilm Activity of Propolis Diffusion-Controlled Biopolymers. Biotechnol. Appl. Biochem. 2021, 68, 789–800. [CrossRef]
Nori, M.P.; Favaro-Trindade, C.S.; Matias de Alencar, S.; Thomazini, M.; de Camargo Balieiro, J.C.; Contreras Castillo, C.J. Microencapsulation of Propolis Extract by Complex Coacervation. LWT Food Sci. Technol. 2011, 44, 429–435. [CrossRef]
Sanpa, S.; Sutjarittangtham, K.; Tunkasiri, T.; Eitssayeam, S.; Chantawannakul, P. Antimicrobial Effect of Brazillian Propolis/Polycaprolactone Polymer on Some Human Pathogenic Bacteria. AMR 2012, 506, 537–540. [CrossRef]
Khoshnevisan, K.; Maleki, H.; Samadian, H.; Doostan, M.; Khorramizadeh, M.R. Antibacterial and Antioxidant Assessment of Cellulose Acetate/Polycaprolactone Nanofibrous Mats Impregnated with Propolis. Int. J. Biol. Macromol. 2019, 140, 1260–1268. [CrossRef]
da Costa Silva, V.; do Nascimento, T.G.; Mergulhão, N.L.O.N.; Freitas, J.D.; Duarte, I.F.B.; de Bulhões, L.C.G.; Dornelas, C.B.; de Araújo, J.X.; dos Santos, J.; Silva, A.C.A.; et al. Development of a Polymeric Membrane Impregnated with Poly-Lactic Acid (PLA) Nanoparticles Loaded with Red Propolis (RP). Molecules 2022, 27, 6959. [CrossRef]
González-Masís, J.; Cubero-Sesin, J.M.; Corrales-Ureña, Y.R.; González-Camacho, S.; Mora-Ugalde, N.; Baizán-Rojas, M.; Loaiza, R.; Vega-Baudrit, J.R.; Gonzalez-Paz, R.J. Increased Fibroblast Metabolic Activity of Collagen Scaffolds via the Addition of Propolis Nanoparticles. Materials 2020, 13, 3118. [CrossRef]
Kumazawa, S.; Hamasaka, T.; Nakayama, T. Antioxidant Activity of Propolis of Various Geographic Origins. Food Chem. 2004, 84, 329–339. [CrossRef]
Rahmani, P.; Shojaei, A. Developing Tough Terpolymer Hydrogel with Outstanding Swelling Ability by Hydrophobic Association Cross-Linking. Polymer 2022, 254, 125037. [CrossRef]
Sadeghianmaryan, A.; Naghieh, S.; Yazdanpanah, Z.; Alizadeh Sardroud, H.; Sharma, N.K.; Wilson, L.D.; Chen, X. Fabrication of Chitosan/Alginate/Hydroxyapatite Hybrid Scaffolds Using 3D Printing and Impregnating Techniques for Potential Cartilage Regeneration. Int. J. Biol. Macromol. 2022, 204, 62–75. [CrossRef] [PubMed]
Zhu, N.; Li, M.G.; Cooper, D.; Chen, X.B. Development of Novel Hybrid Poly(L-lactide)/Chitosan Scaffolds Using the Rapid Freeze Prototyping Technique. Biofabrication 2011, 3, 034105. [CrossRef] [PubMed]
Bidan, C.M.; Kommareddy, K.P.; Rumpler, M.; Kollmannsberger, P.; Fratzl, P.; Dunlop, J.W.C. Geometry as a Factor for Tissue Growth: Towards Shape Optimization of Tissue Engineering Scaffolds. Adv. Healthc. Mater. 2013, 2, 186–194. [CrossRef]
Garcia, C.; Orozco, Y.; Betancur, A.; Moreno, A.I.; Fuentes, K.; Lopera, A.; Suarez, O.; Lobo, T.; Ossa, A.; Peláez-Vargas, A.; et al. Fabrication of Polycaprolactone/Calcium Phosphates Hybrid Scaffolds Impregnated with Plant Extracts Using 3D Printing for Potential Bone Regeneration. Heliyon 2023, 9, e13176. [CrossRef]
Ramírez, J.A.; Ospina, V.; Rozo, A.A.; Viana, M.I.; Ocampo, S.; Restrepo, S.; Vásquez, N.A.; Paucar, C.; García, C. Influence of Geometry on Cell Proliferation of PLA and Alumina Scaffolds Constructed by Additive Manufacturing. J. Mater. Res. 2019, 34, 3757–3765. [CrossRef]
Karageorgiou, V.; Kaplan, D. Porosity of 3D Biomaterial Scaffolds and Osteogenesis. Biomaterials 2005, 26, 5474–5491. [CrossRef]
Lopera, A.A.; Montoya, A.; Vélez, I.D.; Robledo, S.M.; Garcia, C.P. Synthesis of Calcium Phosphate Nanostructures by Combustion in Solution as a Potential Encapsulant System of Drugs with Photodynamic Properties for the Treatment of Cutaneous Leishmaniasis. Photodiagn. Photodyn. Ther. 2018, 21, 138–146. [CrossRef]
Nevado, P.; Lopera, A.; Bezzon, V.; Fulla, M.R.; Palacio, J.; Zaghete, M.A.; Biasotto, G.; Montoya, A.; Rivera, J.; Robledo, S.M.; et al. Preparation and In Vitro Evaluation of PLA/Biphasic Calcium Phosphate Filaments Used for Fused Deposition Modelling of Scaffolds. Mater. Sci. Eng. C 2020, 114, 111013. [CrossRef]
Mendoza, E.; Garcia, C. Sol-Gel Coatings Containing Wollastonite Particles on Stainless Steel 316L. Sci. Technol. 2007, 36, 413–417.
Sedelnikova, M.B.; Ugodchikova, A.V.; Tolkacheva, T.V.; Chebodaeva, V.V.; Cluklhov, I.A.; Khimich, M.A.; Bakina, O.V.; Lerner, M.I.; Egorkin, V.S.; Schmidt, J.; et al. Surface Modification of Mg0.8Ca Alloy via Wollastonite Micro-Arc Coatings: Significant Improvement in Corrosion Resistance. Metals 2021, 11, 754. [CrossRef]
Zheng, Y.; Wang, C.; Zhou, S.; Luo, C. The Self-Gelation Properties of Calcined Wollastonite Powder. Constr. Build. Mater. 2021, 290, 123061. [CrossRef]
Kalinkina, E.V.; Kalinkin, A.M.; Forsling, W.; Makarov, V.N. Sorption of Atmospheric Carbon Dioxide and Structural Changes of Ca and Mg Silicate Minerals during Grinding. Int. J. Miner. Process. 2001, 61, 273–288. [CrossRef]
Cai, R.; Wang, S.; Meng, Y.; Meng, Q.; Zhao, W. Rapid Quantification of Flavonoids in Propolis and Previous Study for Classification of Propolis from Different Origins by Using near Infrared Spectroscopy. Anal. Methods 2012, 4, 2388–2395. [CrossRef]
Sveˇcnjak, L.; Marijanovi´c, Z.; Oki ´nczyc, P.; Marek Ku´s, P.; Jerkovi´c, I. Mediterranean Propolis from the Adriatic Sea Islands as a Source of Natural Antioxidants: Comprehensive Chemical Biodiversity Determined by GC-MS, FTIR-ATR, UHPLC-DADQqTOF-MS, DPPH and FRAP Assay. Antioxidants 2020, 9, 337. [CrossRef]
Banskota, A.H.; Tezuka, Y.; Kadota, S. Recent Progress in Pharmacological Research of Propolis. Phytother. Res. 2001, 15, 561–571. [CrossRef]
Byun, Y.; Rodriguez, K.; Han, J.H.; Kim, Y.T. Improved Thermal Stability of Polylactic Acid (PLA) Composite Film via PLA–βCyclodextrin-Inclusion Complex Systems. Int. J. Biol. Macromol. 2015, 81, 591–598. [CrossRef]
Byun, Y.; Whiteside, S.; Thomas, R.; Dharman, M.; Hughes, J.; Kim, Y.T. The Effect of Solvent Mixture on the Properties of Solvent Cast Polylactic Acid (PLA) Film. J. Appl. Polym. Sci. 2012, 124, 3577–3582. [CrossRef]
Mars, avina, L.; Vălean, C.; Mărghitas, , M.; Linul, E.; Razavi, S.M.J.; Berto, F.; Brighenti, R. Effect of the Manufacturing Parameters on the Tensile and Fracture Properties of FDM 3D-Printed PLA Specimens. Eng. Fract. Mech. 2022, 274, 108766. [CrossRef]
Sahinler, N.; Kaftanoglu, O. Natural Product Propolis: Chemical Composition. Nat. Prod. Res. 2005, 19, 183–188. [CrossRef] [PubMed]
Andrade, J.K.S.; Denadai, M.; de Oliveira, C.S.; Nunes, M.L.; Narain, N. Evaluation of Bioactive Compounds Potential and Antioxidant Activity of Brown, Green and Red Propolis from Brazilian Northeast Region. Food Res. Int. 2017, 101, 129–138. [CrossRef] [PubMed]
Christov, R.; Trusheva, B.; Popova, M.; Bankova, V.; Bertrand, M. Chemical Composition of Propolis from Canada, Its Antiradical Activity and Plant Origin. Nat. Prod. Res. 2006, 20, 531–536. [CrossRef] [PubMed]
Costa, P.; Almeida, M.O.; Lemos, M.; Arruda, C.; Casoti, R.; Somensi, L.B.; Boeing, T.; Mariott, M.; da Silva, R.d.C.M.V.d.A.F.; Stein, B.D.P.; et al. Artepillin C, Drupanin, Aromadendrin-40 -O-Methyl-Ether and Kaempferide from Brazilian Green Propolis Promote Gastroprotective Action by Diversified Mode of Action. J. Ethnopharmacol. 2018, 226, 82–89. [CrossRef]
Kudo, D.; Inden, M.; Sekine, S.; Tamaoki, N.; Iida, K.; Naito, E.; Watanabe, K.; Kamishina, H.; Shibata, T.; Hozumi, I. Conditioned Medium of Dental Pulp Cells Stimulated by Chinese Propolis Show Neuroprotection and Neurite Extension In Vitro. Neurosci. Lett. 2015, 589, 92–97. [CrossRef]
Alshaher, A.; Wallace, J.; Agarwal, S.; Bretz, W.; Baugh, D. Effect of Propolis on Human Fibroblasts from the Pulp and Periodontal Ligament. J. Endod. 2004, 30, 359–361. [CrossRef]
Burdock, G.A. Review of the Biological Properties and Toxicity of Bee Propolis (Propolis). Food Chem. Toxicol. 1998, 36, 347–363. [CrossRef]
Cottica, S.M.; Sawaya, A.C.H.F.; Eberlin, M.N.; Franco, S.L.; Zeoula, L.M.; Visentainer, J.V. Antioxidant Activity and Composition of Propolis Obtained by Different Methods of Extraction. J. Braz. Chem. Soc. 2011, 22, 929–935. [CrossRef]
Pobiega, K.; Kra´sniewska, K.; Derewiaka, D.; Gniewosz, M. Comparison of the Antimicrobial Activity of Propolis Extracts Obtained by Means of Various Extraction Methods. J. Food Sci. Technol. 2019, 56, 5386–5395. [CrossRef]
Trusheva, B.; Trunkova, D.; Bankova, V. Different Extraction Methods of Biologically Active Components from Propolis: A Preliminary Study. Chem. Cent. J. 2007, 1, 13. [CrossRef]
Heinrich, M.; Modarai, M.; Kortenkamp, A. Herbal Extracts Used for Upper Respiratory Tract Infections: Are There Clinically Relevant Interactions with the Cytochrome P450 Enzyme System? Planta Med. 2008, 74, 657–660. [CrossRef]
Moussaoui, S.; Lahouel, M. Propolis Extract: A Potent Bacteria Efflux Pump Inhibitor. J. Biol. Act. Prod. Nat. 2014, 4, 216–223. [CrossRef]
Garzoli, S.; Maggio, F.; Vinciguerra, V.; Rossi, C.; Donadu, M.G.; Serio, A. Chemical Characterization and Antimicrobial Properties of the Hydroalcoholic Solution of Echinacea purpurea (L.) Moench. and Propolis from Northern Italy. Molecules 2023, 28, 1380. [CrossRef]
Gonçalves, I.S.; Lima, L.R.; Berretta, A.A.; Amorim, N.A.; Pratavieira, S.; Corrêa, T.Q.; Nogueira, F.A.R.; Barud, H.S. Antimicrobial Formulation of a Bacterial Nanocellulose/Propolis-Containing Photosensitizer for Biomedical Applications. Polymers 2023, 15, 987. [CrossRef]
Gonzalez-Pastor, R.; Carrera-Pacheco, S.E.; Zúñiga-Miranda, J.; Rodríguez-Pólit, C.; Mayorga-Ramos, A.; Guamán, L.P.; BarbaOstria, C. Current Landscape of Methods to Evaluate Antimicrobial Activity of Natural Extracts. Molecules 2023, 28, 1068. [CrossRef]
Tamer, T.M.; Alsehli, M.H.; Omer, A.M.; Afifi, T.H.; Sabet, M.M.; Mohy-Eldin, M.S.; Hassan, M.A. Development of Polyvinyl Alcohol/Kaolin Sponges Stimulated by Marjoram as Hemostatic, Antibacterial, and Antioxidant Dressings for Wound Healing Promotion. Int. J. Mol. Sci. 2021, 22, 13050. [CrossRef]
da Cruz Almeida, E.T.; da Silva, M.C.; dos Santos Oliveira, J.M.; Kamiya, R.U.; dos Santos Arruda, R.E.; Vieira, D.A.; da Costa Silva, V.; Escodro, P.B.; Basílio-Júnior, I.D.; do Nascimento, T.G. Chemical and Microbiological Characterization of Tinctures and Microcapsules Loaded with Brazilian Red Propolis Extract. J. Pharm. Anal. 2017, 7, 280–287. [CrossRef]
Carek, P.J.; Dickerson, L.M.; Sackier, J.M. Diagnosis and management of osteomyelitis. Am. Fam. Physician 2001, 63, 2413–2420.
Peschel, A.; Otto, M. Phenol-Soluble Modulins and Staphylococcal Infection. Nat. Rev. Microbiol. 2013, 11, 667–673. [CrossRef]
Gonsales, G.Z.; Orsi, R.O.; Fernandes Júnior, A.; Rodrigues, P.; Funari, S.R.C. Antibacterial Activity of Propolis Collected in Different Regions of Brazil. J. Venom. Anim. Toxins Incl. Trop. Dis. 2006, 12, 276–284. [CrossRef]
Rahman, M.M.; Richardson, A.; Sofian-Azirun, M. Antibacterial activity of propolis and honey against Staphylococcus aureus and Escherichia coli. Afr. J. Microbiol. Res. 2010, 4, 1872–1878.
Massuda, K.F. Parâmetros Físico-Químicos e Atividade Biológica da Própolis Submetida a Diferentes Tipos de Extração. Ph.D. Thesis, Universidade Estadual Paulista, Rio Claro, Brazil, 2003.
Lu, L.-C.; Chen, Y.-W.; Chou, C.-C. Antibacterial Activity of Propolis against Staphylococcus Aureus. Int. J. Food Microbiol. 2005, 102, 213–220. [CrossRef] [PubMed]
Abd Rashid, N.; Mohammed, S.N.F.; Syed Abd Halim, S.A.; Ghafar, N.A.; Abdul Jalil, N.A. Therapeutic Potential of Honey and Propolis on Ocular Disease. Pharmaceuticals 2022, 15, 1419. [CrossRef]
Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive Review of Antimicrobial Activities of Plant Flavonoids. Phytochem. Rev. 2019, 18, 241–272. [CrossRef]
Seidel, V.; Peyfoon, E.; Watson, D.G.; Fearnley, J. Comparative Study of the Antibacterial Activity of Propolis from Different Geographical and Climatic Zones: Antibacterial Activity of Propolis from Different Zones. Phytother. Res. 2008, 22, 1256–1263. [CrossRef]
Periasamy, S.; Chatterjee, S.S.; Cheung, G.Y.C.; Otto, M. Phenol-Soluble Modulins in Staphylococci: What Are They Originally For? Commun. Integr. Biol. 2012, 5, 275–277. [CrossRef]
Cheung, G.Y.C.; Joo, H.-S.; Chatterjee, S.S.; Otto, M. Phenol-Soluble Modulins—Critical Determinants of Staphylococcal Virulence. FEMS Microbiol. Rev. 2014, 38, 698–719. [CrossRef]
Shehata, M.G.; Ahmad, F.T.; Badr, A.N.; Masry, S.H.; El-Sohaimy, S.A. Chemical Analysis, Antioxidant, Cytotoxic and Antimicrobial Properties of Propolis from Different Geographic Regions. Ann. Agric. Sci. 2020, 65, 209–217. [CrossRef]
Tatlısulu, S.; Özgör, E. Identification of Cyprus Propolis Composition and Evaluation of Its Antimicrobial and Antiproliferative Activities. Food Biosci. 2023, 51, 102273. [CrossRef]
Seda Vatansever, H.; Sorkun, K.; ˙Ismet Delilo ˘glu Gurhan, S.; Ozdal-Kurt, F.; Turkoz, E.; Gencay, O.; Salih, B. Propolis from Turkey Induces Apoptosis through Activating Caspases in Human Breast Carcinoma Cell Lines. Acta Histochem. 2010, 112, 546–556. [CrossRef]
Choudhari, M.K.; Haghniaz, R.; Rajwade, J.M.; Paknikar, K.M. Anticancer Activity of Indian Stingless Bee Propolis: An In Vitro Study. Evid.-Based Complement. Altern. Med. 2013, 2013, 928280. [CrossRef]
Salehi, A.; Rezaei, A.; Damavandi, M.S.; Kharazmi, M.S.; Jafari, S.M. Almond Gum-Sodium Caseinate Complexes for Loading Propolis Extract: Characterization, Antibacterial Activity, Release, and In-Vitro Cytotoxicity. Food Chem. 2023, 405, 134801. [CrossRef]
dc.rights.uri.none.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.none.fl_str_mv CC0 1.0 Universal
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/publicdomain/zero/1.0/
CC0 1.0 Universal
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 21
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Odontología, Medellín y Envigado
dc.publisher.place.none.fl_str_mv Medellín
publisher.none.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Odontología, Medellín y Envigado
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/dcc52a2a-bba2-4201-b051-29418f896067/download
https://repository.ucc.edu.co/bitstreams/6ce45edd-dd33-4fdc-97fc-89d83658cf59/download
https://repository.ucc.edu.co/bitstreams/a9ef02fb-7cfe-45d5-b472-9638218687e7/download
https://repository.ucc.edu.co/bitstreams/d11e9c8c-1e01-4c6d-bc61-264615dff991/download
https://repository.ucc.edu.co/bitstreams/b1846d20-b174-4642-955d-2c408e47d06e/download
https://repository.ucc.edu.co/bitstreams/871a5a78-e8aa-4716-9f87-6ccf27f911ec/download
https://repository.ucc.edu.co/bitstreams/e7c1e141-0a11-49f0-a6ae-23de09c28714/download
https://repository.ucc.edu.co/bitstreams/609ff198-edb3-44da-b547-12e3b54d84a9/download
bitstream.checksum.fl_str_mv 3bce4f7ab09dfc588f126e1e36e98a45
12dd7c7d38fd48d481ab7a9d14699efc
3d1e7fa95a4f3d6b62b4eb718efd7c76
42fd4ad1e89814f5e4a476b409eb708c
2e30c7f2639d66f1d9233a3a52e0f900
1b76acbfd1abda93a502c943914c3851
477ed9d811423ca1fd8eb4d67203d0c6
8973046323faddc99bf5d8f258aec9b1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808788919364354048
spelling Moreno, Ana IsabelOrozco, YeisonOcampo, SebastianMalagon, SaritaOssa, Edgar Alexander Peláez Vargas, AlejandroPaucar, CarlosLopera, AlexGarcía, ClaudiaGIOM2024-03-04T22:53:20Z2024-03-04T22:53:20Z2023-06-09Moreno AI, Orozco Y, Ocampo S, Malagón S, Ossa A, Peláez-Vargas A, Paucar C, Lopera A, Garcia C. Effects of Propolis Impregnation on Polylactic Acid (PLA) Scaffolds Loaded with Wollastonite Particles against Staphylococcus aureus, Staphylococcus epidermidis, and Their Coculture for Potential Medical Devices. Polymers. 2023 Jun 9;15(12):2629.https://hdl.handle.net/20.500.12494/551272073-4360https://hdl.handle.net/20.500.12494/55127https://doi.org/ 10.3390/polym15122629Several diseases and injuries cause irreversible damage to bone tissues, which may require partial or total regeneration or replacement. Tissue engineering suggests developing substitutes that may contribute to the repair or regeneration process by using three-dimensional lattices (scaffolds) to create functional bone tissues. Herein, scaffolds comprising polylactic acid and wollastonite particles enriched with propolis extracts from the Arauca region of Colombia were developed as gyroid triply periodic minimal surfaces using fused deposition modeling. The propolis extracts exhibited antibacterial activity against Staphylococcus aureus (ATCC 25175) and Staphylococcus epidermidis (ATCC 12228), which cause osteomyelitis. The scaffolds were characterized using scanning electron microscopy, Fourier-transform infrared spectroscopy, differential scanning calorimetry, contact angle, swelling, and degradation. Their mechanical properties were assessed using static and dynamic tests. Cell viability/proliferation assay was conducted using hDP-MSC cultures, while their bactericidal properties against monospecies cultures (S. aureus and S. epidermidis) and cocultures were evaluated. The wollastonite particles did not affect the physical, mechanical, or thermal properties of the scaffolds. The contact angle results showed that there were no substantial differences in the hydrophobicity between scaffolds with and without particles. Scaffolds containing wollastonite particles suffered less degradation than those produced using PLA alone. A representative result of the cyclic tests at Fmax = 450 N showed that the maximum strain reached after 8000 cycles is well below the yield strain (i.e., <7.5%), thereby indicating that even under these stringent conditions, these scaffolds will be able to work properly. The scaffolds impregnated with propolis showed a lower % of cell viability using hDP-MSCs on the 3rd day, but these values increased on the 7th day. These scaffolds exhibited antibacterial activity against the monospecies cultures of S. aureus and S. epidermidis and their cocultures. The samples without propolis loads did not show inhibition halos, whereas those loaded with EEP exhibited halos of 17.42 0.2 mm against S. aureus and 12.9 0.5 mm against S. epidermidis. These results made the scaffolds possible bone substitutes that exert control over species with a proliferative capacity for the biofilm-formation processes required for typical severe infectious processes.Biomaterials21application/pdfengUniversidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Odontología, Medellín y EnvigadoMedellínhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccessCC0 1.0 Universalhttp://purl.org/coar/access_right/c_abf2610 - Medicina y saludScaffoldsPropolisAntibacterial activityTPMSAdditive manufacturingEffects of Propolis Impregnation on Polylactic Acid (PLA) Scaffolds Loaded withWollastonite Particles against Staphylococcus aureus, Staphylococcus epidermidis, and Their Coculture for Potential Medical DevicesArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersion21 p.2629115PolymersBa, X.; Hadjiargyrou, M.; Di Masi, E.; Meng, Y.; Simon, M.; Tan, Z.; Rafailovich, M.H. The Role of Moderate Static Magnetic Fields on Biomineralization of Osteoblasts on Sulfonated Polystyrene Films. Biomaterials 2011, 32, 7831–7838.Martin-Piedra, A.; Martin-Piedra, L. Matrices para Ingeniería del tejido óseo. Actual. Med. 2019, 104, 36–45. [CrossRef]Amini, A.R.; Laurencin, C.T.; Nukavarapu, S.P. Bone Tissue Engineering: Recent Advances and Challenges. Crit. Rev. Biomed. Eng. 2012, 40, 363–408. [CrossRef] [PubMed]Shrivats, A.R.; McDermott, M.C.; Hollinger, J.O. Bone Tissue Engineering: State of the Union. Drug Discov. Today 2014, 19, 781–786. [CrossRef] [PubMed]Carletti, E.; Motta, A.; Migliaresi, C. Scaffolds for Tissue Engineering and 3D Cell Culture. In 3D Cell Culture; Haycock, J.W., Ed.; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2011; Volume 695, pp. 17–39. ISBN 978-1-60761-983-3Saleh Alghamdi, S.; John, S.; Roy Choudhury, N.; Dutta, N.K. Additive Manufacturing of Polymer Materials: Progress, Promise and Challenges. Polymers 2021, 13, 753. [CrossRef]Chen, Z.; Li, Z.; Li, J.; Liu, C.; Lao, C.; Fu, Y.; Liu, C.; Li, Y.; Wang, P.; He, Y. 3D Printing of Ceramics: A Review. J. Eur. Ceram. Soc. 2019, 39, 661–687. [CrossRef]Jorge, L.S.; Chueire, A.G.; Baptista Rossit, A.R. Osteomyelitis: A Current Challenge. Braz. J. Infect. Dis. 2010, 14, 310–315. [CrossRef]Qu, H.; Fu, H.; Han, Z.; Sun, Y. Biomaterials for Bone Tissue Engineering Scaffolds: A Review. RSC Adv. 2019, 9, 26252–26262. [CrossRef]Abudhahir, M.; Saleem, A.; Paramita, P.; Kumar, S.D.; Tze-Wen, C.; Selvamurugan, N.; Moorthi, A. Polycaprolactone Fibrous Electrospun Scaffolds Reinforced with Copper Doped Wollastonite for Bone Tissue Engineering Applications. J. Biomed. Mater. Res. 2021, 109, 654–664. [CrossRef]Liu, A.; Sun, M.; Shao, H.; Yang, X.; Ma, C.; He, D.; Gao, Q.; Liu, Y.; Yan, S.; Xu, S.; et al. The Outstanding Mechanical Response and Bone Regeneration Capacity of Robocast Dilute Magnesium-Doped Wollastonite Scaffolds in Critical Size Bone Defects. J. Mater. Chem. B 2016, 4, 3945–3958. [CrossRef]Shao, H.; Liu, A.; Ke, X.; Sun, M.; He, Y.; Yang, X.; Fu, J.; Zhang, L.; Yang, G.; Liu, Y.; et al. 3D Robocasting Magnesium-Doped Wollastonite/TCP Bioceramic Scaffolds with Improved Bone Regeneration Capacity in Critical Sized Calvarial Defects. J. Mater. Chem. B 2017, 5, 2941–2951. [CrossRef]Lee, J.W.; Ahn, G.; Kim, D.S.; Cho, D.-W. Development of Nano- and Microscale Composite 3D Scaffolds Using PPF/DEF-HA and Micro-Stereolithography. Microelectron. Eng. 2009, 86, 1465–1467. [CrossRef]Narayanan, G.; Vernekar, V.N.; Kuyinu, E.L.; Laurencin, C.T. Poly (lactic acid)-Based biomaterials for orthopaedic regenerative engineering. Adv. Drug Deliv. Rev. 2016, 107, 247–276. [CrossRef]Singhvi, M.S.; Zinjarde, S.S.; Gokhale, D.V. Polylactic Acid: Synthesis and Biomedical Applications. J. Appl. Microbiol. 2019, 127, 1612–1626. [CrossRef]Chen, X.; Gao, C.; Jiang, J.; Wu, Y.; Zhu, P.; Chen, G. 3D Printed Porous PLA/NHA Composite Scaffolds with Enhanced Osteogenesis and Osteoconductivity in Vivo for Bone Regeneration. Biomed. Mater. 2019, 14, 065003. [CrossRef]Sawyer, A.A.; Song, S.J.; Susanto, E.; Chuan, P.; Lam, C.X.F.; Woodruff, M.A.; Hutmacher, D.W.; Cool, S.M. The Stimulation of Healing within a Rat Calvarial Defect by MPCL–TCP/Collagen Scaffolds Loaded with RhBMP-2. Biomaterials 2009, 30, 2479–2488. [CrossRef]Yang, Y.; Wang, G.; Liang, H.; Gao, C.; Peng, S.; Shen, L.; Shuai, C. Additive Manufacturing of Bone Scaffolds. Int. J. Bioprint. 2018, 5, 148. [CrossRefEsposito Corcione, C.; Gervaso, F.; Scalera, F.; Padmanabhan, S.K.; Madaghiele, M.; Montagna, F.; Sannino, A.; Licciulli, A.; Maffezzoli, A. Highly Loaded Hydroxyapatite Microsphere/PLA Porous Scaffolds Obtained by Fused Deposition Modelling. Ceram. Int. 2019, 45, 2803–2810. [CrossRef]Zein, I.; Hutmacher, D.W.; Tan, K.C.; Teoh, S.H. Fused Deposition Modeling of Novel Scaffold Architectures for Tissue Engineering Applications. Biomaterials 2002, 23, 1169–1185. [CrossRef]Leong, K.F.; Cheah, C.M.; Chua, C.K. Solid Freeform Fabrication of Three-Dimensional Scaffolds for Engineering Replacement Tissues and Organs. Biomaterials 2003, 24, 2363–2378. [CrossRef]Dong, Z.; Zhao, X. Application of TPMS Structure in Bone Regeneration. Eng. Regen. 2021, 2, 154–162. [CrossRef]Lu, F.; Wu, R.; Shen, M.; Xie, L.; Liu, M.; Li, Y.; Xu, S.; Wan, L.; Yang, X.; Gao, C.; et al. Rational Design of Bioceramic Scaffolds with Tuning Pore Geometry by Stereolithography: Microstructure Evaluation and Mechanical Evolution. J. Eur. Ceram. Soc. 2021, 41, 1672–1682. [CrossRef]Restrepo, S.; Ocampo, S.; Ramírez, J.A.; Paucar, C.; García, C. Mechanical Properties of Ceramic Structures Based on Triply Periodic Minimal Surface (TPMS) Processed by 3D Printing. J. Phys. Conf. Ser. 2017, 935, 012036. [CrossRef]Al-Ketan, O.; Abu Al-Rub, R.K. Multifunctional Mechanical Metamaterials Based on Triply Periodic Minimal Surface Lattices. Adv. Eng. Mater. 2019, 21, 1900524. [CrossRef]Simone-Finstrom, M.; Borba, R.; Wilson, M.; Spivak, M. Propolis Counteracts Some Threats to Honey Bee Health. Insects 2017, 8, 46. [CrossRef]Becerra, T.B.; Calla-Poma, R.D.; Requena-Mendizabal, M.F.; Millones-Gómez, P.A. Antibacterial Effect of Peruvian Propolis Collected During Different Seasons on the Growth of Streptococcus Mutans. TODENTJ 2019, 13, 327–331. [CrossRef]Toreti, V.C.; Sato, H.H.; Pastore, G.M.; Park, Y.K. Recent Progress of Propolis for Its Biological and Chemical Compositions and Its Botanical Origin. Evid.-Based Complement. Altern. Med. 2013, 2013, 697390. [CrossRef]Afrouzan, H.; Tahghighi, A.; Zakeri, S.; Es-haghi, A. Chemical Composition and Antimicrobial Activities of Iranian Propolis. IBJ 2018, 22, 50–65. [CrossRef]Oryan, A.; Alemzadeh, E.; Moshiri, A. Potential Role of Propolis in Wound Healing: Biological Properties and Therapeutic Activities. Biomed. Pharmacother. 2018, 98, 469–483. [CrossRef]Pasupuleti, V.R.; Sammugam, L.; Ramesh, N.; Gan, S.H. Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits. Oxid. Med. Cell. Longev. 2017, 2017, 1259510. [CrossRef]Hassan, M.A.; Abd El-Aziz, S.; Elbadry, H.M.; El-Aassar, S.A.; Tamer, T.M. Prevalence, Antimicrobial Resistance Profile, and Characterization of Multi-Drug Resistant Bacteria from Various Infected Wounds in North Egypt. Saudi J. Biol. Sci. 2022, 29, 2978–2988. [CrossRef]Przybyłek, I.; Karpi ´nski, T.M. Antibacterial Properties of Propolis. Molecules 2019, 24, 2047. [CrossRef]Demir, S.; Aliyazicioglu, Y.; Turan, I.; Misir, S.; Mentese, A.; Yaman, S.O.; Akbulut, K.; Kilinc, K.; Deger, O. Antiproliferative and Proapoptotic Activity of Turkish Propolis on Human Lung Cancer Cell Line. Nutr. Cancer 2016, 68, 165–172. [CrossRef]Orsi, R.O.; Fernandes, A.; Bankova, V.; Sforcin, J.M. The Effects of Brazilian and Bulgarian Propolis in Vitro against Salmonella Typhi and Their Synergism with Antibiotics Acting on the Ribosome. Nat. Prod. Res. 2012, 26, 430–437. [CrossRef]Ceylan, O.; Karakus, H.; Cicek, H. Design and In Vitro Antibiofilm Activity of Propolis Diffusion-Controlled Biopolymers. Biotechnol. Appl. Biochem. 2021, 68, 789–800. [CrossRef]Nori, M.P.; Favaro-Trindade, C.S.; Matias de Alencar, S.; Thomazini, M.; de Camargo Balieiro, J.C.; Contreras Castillo, C.J. Microencapsulation of Propolis Extract by Complex Coacervation. LWT Food Sci. Technol. 2011, 44, 429–435. [CrossRef]Sanpa, S.; Sutjarittangtham, K.; Tunkasiri, T.; Eitssayeam, S.; Chantawannakul, P. Antimicrobial Effect of Brazillian Propolis/Polycaprolactone Polymer on Some Human Pathogenic Bacteria. AMR 2012, 506, 537–540. [CrossRef]Khoshnevisan, K.; Maleki, H.; Samadian, H.; Doostan, M.; Khorramizadeh, M.R. Antibacterial and Antioxidant Assessment of Cellulose Acetate/Polycaprolactone Nanofibrous Mats Impregnated with Propolis. Int. J. Biol. Macromol. 2019, 140, 1260–1268. [CrossRef]da Costa Silva, V.; do Nascimento, T.G.; Mergulhão, N.L.O.N.; Freitas, J.D.; Duarte, I.F.B.; de Bulhões, L.C.G.; Dornelas, C.B.; de Araújo, J.X.; dos Santos, J.; Silva, A.C.A.; et al. Development of a Polymeric Membrane Impregnated with Poly-Lactic Acid (PLA) Nanoparticles Loaded with Red Propolis (RP). Molecules 2022, 27, 6959. [CrossRef]González-Masís, J.; Cubero-Sesin, J.M.; Corrales-Ureña, Y.R.; González-Camacho, S.; Mora-Ugalde, N.; Baizán-Rojas, M.; Loaiza, R.; Vega-Baudrit, J.R.; Gonzalez-Paz, R.J. Increased Fibroblast Metabolic Activity of Collagen Scaffolds via the Addition of Propolis Nanoparticles. Materials 2020, 13, 3118. [CrossRef]Kumazawa, S.; Hamasaka, T.; Nakayama, T. Antioxidant Activity of Propolis of Various Geographic Origins. Food Chem. 2004, 84, 329–339. [CrossRef]Rahmani, P.; Shojaei, A. Developing Tough Terpolymer Hydrogel with Outstanding Swelling Ability by Hydrophobic Association Cross-Linking. Polymer 2022, 254, 125037. [CrossRef]Sadeghianmaryan, A.; Naghieh, S.; Yazdanpanah, Z.; Alizadeh Sardroud, H.; Sharma, N.K.; Wilson, L.D.; Chen, X. Fabrication of Chitosan/Alginate/Hydroxyapatite Hybrid Scaffolds Using 3D Printing and Impregnating Techniques for Potential Cartilage Regeneration. Int. J. Biol. Macromol. 2022, 204, 62–75. [CrossRef] [PubMed]Zhu, N.; Li, M.G.; Cooper, D.; Chen, X.B. Development of Novel Hybrid Poly(L-lactide)/Chitosan Scaffolds Using the Rapid Freeze Prototyping Technique. Biofabrication 2011, 3, 034105. [CrossRef] [PubMed]Bidan, C.M.; Kommareddy, K.P.; Rumpler, M.; Kollmannsberger, P.; Fratzl, P.; Dunlop, J.W.C. Geometry as a Factor for Tissue Growth: Towards Shape Optimization of Tissue Engineering Scaffolds. Adv. Healthc. Mater. 2013, 2, 186–194. [CrossRef]Garcia, C.; Orozco, Y.; Betancur, A.; Moreno, A.I.; Fuentes, K.; Lopera, A.; Suarez, O.; Lobo, T.; Ossa, A.; Peláez-Vargas, A.; et al. Fabrication of Polycaprolactone/Calcium Phosphates Hybrid Scaffolds Impregnated with Plant Extracts Using 3D Printing for Potential Bone Regeneration. Heliyon 2023, 9, e13176. [CrossRef]Ramírez, J.A.; Ospina, V.; Rozo, A.A.; Viana, M.I.; Ocampo, S.; Restrepo, S.; Vásquez, N.A.; Paucar, C.; García, C. Influence of Geometry on Cell Proliferation of PLA and Alumina Scaffolds Constructed by Additive Manufacturing. J. Mater. Res. 2019, 34, 3757–3765. [CrossRef]Karageorgiou, V.; Kaplan, D. Porosity of 3D Biomaterial Scaffolds and Osteogenesis. Biomaterials 2005, 26, 5474–5491. [CrossRef]Lopera, A.A.; Montoya, A.; Vélez, I.D.; Robledo, S.M.; Garcia, C.P. Synthesis of Calcium Phosphate Nanostructures by Combustion in Solution as a Potential Encapsulant System of Drugs with Photodynamic Properties for the Treatment of Cutaneous Leishmaniasis. Photodiagn. Photodyn. Ther. 2018, 21, 138–146. [CrossRef]Nevado, P.; Lopera, A.; Bezzon, V.; Fulla, M.R.; Palacio, J.; Zaghete, M.A.; Biasotto, G.; Montoya, A.; Rivera, J.; Robledo, S.M.; et al. Preparation and In Vitro Evaluation of PLA/Biphasic Calcium Phosphate Filaments Used for Fused Deposition Modelling of Scaffolds. Mater. Sci. Eng. C 2020, 114, 111013. [CrossRef]Mendoza, E.; Garcia, C. Sol-Gel Coatings Containing Wollastonite Particles on Stainless Steel 316L. Sci. Technol. 2007, 36, 413–417.Sedelnikova, M.B.; Ugodchikova, A.V.; Tolkacheva, T.V.; Chebodaeva, V.V.; Cluklhov, I.A.; Khimich, M.A.; Bakina, O.V.; Lerner, M.I.; Egorkin, V.S.; Schmidt, J.; et al. Surface Modification of Mg0.8Ca Alloy via Wollastonite Micro-Arc Coatings: Significant Improvement in Corrosion Resistance. Metals 2021, 11, 754. [CrossRef]Zheng, Y.; Wang, C.; Zhou, S.; Luo, C. The Self-Gelation Properties of Calcined Wollastonite Powder. Constr. Build. Mater. 2021, 290, 123061. [CrossRef]Kalinkina, E.V.; Kalinkin, A.M.; Forsling, W.; Makarov, V.N. Sorption of Atmospheric Carbon Dioxide and Structural Changes of Ca and Mg Silicate Minerals during Grinding. Int. J. Miner. Process. 2001, 61, 273–288. [CrossRef]Cai, R.; Wang, S.; Meng, Y.; Meng, Q.; Zhao, W. Rapid Quantification of Flavonoids in Propolis and Previous Study for Classification of Propolis from Different Origins by Using near Infrared Spectroscopy. Anal. Methods 2012, 4, 2388–2395. [CrossRef]Sveˇcnjak, L.; Marijanovi´c, Z.; Oki ´nczyc, P.; Marek Ku´s, P.; Jerkovi´c, I. Mediterranean Propolis from the Adriatic Sea Islands as a Source of Natural Antioxidants: Comprehensive Chemical Biodiversity Determined by GC-MS, FTIR-ATR, UHPLC-DADQqTOF-MS, DPPH and FRAP Assay. Antioxidants 2020, 9, 337. [CrossRef]Banskota, A.H.; Tezuka, Y.; Kadota, S. Recent Progress in Pharmacological Research of Propolis. Phytother. Res. 2001, 15, 561–571. [CrossRef]Byun, Y.; Rodriguez, K.; Han, J.H.; Kim, Y.T. Improved Thermal Stability of Polylactic Acid (PLA) Composite Film via PLA–βCyclodextrin-Inclusion Complex Systems. Int. J. Biol. Macromol. 2015, 81, 591–598. [CrossRef]Byun, Y.; Whiteside, S.; Thomas, R.; Dharman, M.; Hughes, J.; Kim, Y.T. The Effect of Solvent Mixture on the Properties of Solvent Cast Polylactic Acid (PLA) Film. J. Appl. Polym. Sci. 2012, 124, 3577–3582. [CrossRef]Mars, avina, L.; Vălean, C.; Mărghitas, , M.; Linul, E.; Razavi, S.M.J.; Berto, F.; Brighenti, R. Effect of the Manufacturing Parameters on the Tensile and Fracture Properties of FDM 3D-Printed PLA Specimens. Eng. Fract. Mech. 2022, 274, 108766. [CrossRef]Sahinler, N.; Kaftanoglu, O. Natural Product Propolis: Chemical Composition. Nat. Prod. Res. 2005, 19, 183–188. [CrossRef] [PubMed]Andrade, J.K.S.; Denadai, M.; de Oliveira, C.S.; Nunes, M.L.; Narain, N. Evaluation of Bioactive Compounds Potential and Antioxidant Activity of Brown, Green and Red Propolis from Brazilian Northeast Region. Food Res. Int. 2017, 101, 129–138. [CrossRef] [PubMed]Christov, R.; Trusheva, B.; Popova, M.; Bankova, V.; Bertrand, M. Chemical Composition of Propolis from Canada, Its Antiradical Activity and Plant Origin. Nat. Prod. Res. 2006, 20, 531–536. [CrossRef] [PubMed]Costa, P.; Almeida, M.O.; Lemos, M.; Arruda, C.; Casoti, R.; Somensi, L.B.; Boeing, T.; Mariott, M.; da Silva, R.d.C.M.V.d.A.F.; Stein, B.D.P.; et al. Artepillin C, Drupanin, Aromadendrin-40 -O-Methyl-Ether and Kaempferide from Brazilian Green Propolis Promote Gastroprotective Action by Diversified Mode of Action. J. Ethnopharmacol. 2018, 226, 82–89. [CrossRef]Kudo, D.; Inden, M.; Sekine, S.; Tamaoki, N.; Iida, K.; Naito, E.; Watanabe, K.; Kamishina, H.; Shibata, T.; Hozumi, I. Conditioned Medium of Dental Pulp Cells Stimulated by Chinese Propolis Show Neuroprotection and Neurite Extension In Vitro. Neurosci. Lett. 2015, 589, 92–97. [CrossRef]Alshaher, A.; Wallace, J.; Agarwal, S.; Bretz, W.; Baugh, D. Effect of Propolis on Human Fibroblasts from the Pulp and Periodontal Ligament. J. Endod. 2004, 30, 359–361. [CrossRef]Burdock, G.A. Review of the Biological Properties and Toxicity of Bee Propolis (Propolis). Food Chem. Toxicol. 1998, 36, 347–363. [CrossRef]Cottica, S.M.; Sawaya, A.C.H.F.; Eberlin, M.N.; Franco, S.L.; Zeoula, L.M.; Visentainer, J.V. Antioxidant Activity and Composition of Propolis Obtained by Different Methods of Extraction. J. Braz. Chem. Soc. 2011, 22, 929–935. [CrossRef]Pobiega, K.; Kra´sniewska, K.; Derewiaka, D.; Gniewosz, M. Comparison of the Antimicrobial Activity of Propolis Extracts Obtained by Means of Various Extraction Methods. J. Food Sci. Technol. 2019, 56, 5386–5395. [CrossRef]Trusheva, B.; Trunkova, D.; Bankova, V. Different Extraction Methods of Biologically Active Components from Propolis: A Preliminary Study. Chem. Cent. J. 2007, 1, 13. [CrossRef]Heinrich, M.; Modarai, M.; Kortenkamp, A. Herbal Extracts Used for Upper Respiratory Tract Infections: Are There Clinically Relevant Interactions with the Cytochrome P450 Enzyme System? Planta Med. 2008, 74, 657–660. [CrossRef]Moussaoui, S.; Lahouel, M. Propolis Extract: A Potent Bacteria Efflux Pump Inhibitor. J. Biol. Act. Prod. Nat. 2014, 4, 216–223. [CrossRef]Garzoli, S.; Maggio, F.; Vinciguerra, V.; Rossi, C.; Donadu, M.G.; Serio, A. Chemical Characterization and Antimicrobial Properties of the Hydroalcoholic Solution of Echinacea purpurea (L.) Moench. and Propolis from Northern Italy. Molecules 2023, 28, 1380. [CrossRef]Gonçalves, I.S.; Lima, L.R.; Berretta, A.A.; Amorim, N.A.; Pratavieira, S.; Corrêa, T.Q.; Nogueira, F.A.R.; Barud, H.S. Antimicrobial Formulation of a Bacterial Nanocellulose/Propolis-Containing Photosensitizer for Biomedical Applications. Polymers 2023, 15, 987. [CrossRef]Gonzalez-Pastor, R.; Carrera-Pacheco, S.E.; Zúñiga-Miranda, J.; Rodríguez-Pólit, C.; Mayorga-Ramos, A.; Guamán, L.P.; BarbaOstria, C. Current Landscape of Methods to Evaluate Antimicrobial Activity of Natural Extracts. Molecules 2023, 28, 1068. [CrossRef]Tamer, T.M.; Alsehli, M.H.; Omer, A.M.; Afifi, T.H.; Sabet, M.M.; Mohy-Eldin, M.S.; Hassan, M.A. Development of Polyvinyl Alcohol/Kaolin Sponges Stimulated by Marjoram as Hemostatic, Antibacterial, and Antioxidant Dressings for Wound Healing Promotion. Int. J. Mol. Sci. 2021, 22, 13050. [CrossRef]da Cruz Almeida, E.T.; da Silva, M.C.; dos Santos Oliveira, J.M.; Kamiya, R.U.; dos Santos Arruda, R.E.; Vieira, D.A.; da Costa Silva, V.; Escodro, P.B.; Basílio-Júnior, I.D.; do Nascimento, T.G. Chemical and Microbiological Characterization of Tinctures and Microcapsules Loaded with Brazilian Red Propolis Extract. J. Pharm. Anal. 2017, 7, 280–287. [CrossRef]Carek, P.J.; Dickerson, L.M.; Sackier, J.M. Diagnosis and management of osteomyelitis. Am. Fam. Physician 2001, 63, 2413–2420.Peschel, A.; Otto, M. Phenol-Soluble Modulins and Staphylococcal Infection. Nat. Rev. Microbiol. 2013, 11, 667–673. [CrossRef]Gonsales, G.Z.; Orsi, R.O.; Fernandes Júnior, A.; Rodrigues, P.; Funari, S.R.C. Antibacterial Activity of Propolis Collected in Different Regions of Brazil. J. Venom. Anim. Toxins Incl. Trop. Dis. 2006, 12, 276–284. [CrossRef]Rahman, M.M.; Richardson, A.; Sofian-Azirun, M. Antibacterial activity of propolis and honey against Staphylococcus aureus and Escherichia coli. Afr. J. Microbiol. Res. 2010, 4, 1872–1878.Massuda, K.F. Parâmetros Físico-Químicos e Atividade Biológica da Própolis Submetida a Diferentes Tipos de Extração. Ph.D. Thesis, Universidade Estadual Paulista, Rio Claro, Brazil, 2003.Lu, L.-C.; Chen, Y.-W.; Chou, C.-C. Antibacterial Activity of Propolis against Staphylococcus Aureus. Int. J. Food Microbiol. 2005, 102, 213–220. [CrossRef] [PubMed]Abd Rashid, N.; Mohammed, S.N.F.; Syed Abd Halim, S.A.; Ghafar, N.A.; Abdul Jalil, N.A. Therapeutic Potential of Honey and Propolis on Ocular Disease. Pharmaceuticals 2022, 15, 1419. [CrossRef]Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive Review of Antimicrobial Activities of Plant Flavonoids. Phytochem. Rev. 2019, 18, 241–272. [CrossRef]Seidel, V.; Peyfoon, E.; Watson, D.G.; Fearnley, J. Comparative Study of the Antibacterial Activity of Propolis from Different Geographical and Climatic Zones: Antibacterial Activity of Propolis from Different Zones. Phytother. Res. 2008, 22, 1256–1263. [CrossRef]Periasamy, S.; Chatterjee, S.S.; Cheung, G.Y.C.; Otto, M. Phenol-Soluble Modulins in Staphylococci: What Are They Originally For? Commun. Integr. Biol. 2012, 5, 275–277. [CrossRef]Cheung, G.Y.C.; Joo, H.-S.; Chatterjee, S.S.; Otto, M. Phenol-Soluble Modulins—Critical Determinants of Staphylococcal Virulence. FEMS Microbiol. Rev. 2014, 38, 698–719. [CrossRef]Shehata, M.G.; Ahmad, F.T.; Badr, A.N.; Masry, S.H.; El-Sohaimy, S.A. Chemical Analysis, Antioxidant, Cytotoxic and Antimicrobial Properties of Propolis from Different Geographic Regions. Ann. Agric. Sci. 2020, 65, 209–217. [CrossRef]Tatlısulu, S.; Özgör, E. Identification of Cyprus Propolis Composition and Evaluation of Its Antimicrobial and Antiproliferative Activities. Food Biosci. 2023, 51, 102273. [CrossRef]Seda Vatansever, H.; Sorkun, K.; ˙Ismet Delilo ˘glu Gurhan, S.; Ozdal-Kurt, F.; Turkoz, E.; Gencay, O.; Salih, B. Propolis from Turkey Induces Apoptosis through Activating Caspases in Human Breast Carcinoma Cell Lines. Acta Histochem. 2010, 112, 546–556. [CrossRef]Choudhari, M.K.; Haghniaz, R.; Rajwade, J.M.; Paknikar, K.M. Anticancer Activity of Indian Stingless Bee Propolis: An In Vitro Study. Evid.-Based Complement. Altern. Med. 2013, 2013, 928280. [CrossRef]Salehi, A.; Rezaei, A.; Damavandi, M.S.; Kharazmi, M.S.; Jafari, S.M. Almond Gum-Sodium Caseinate Complexes for Loading Propolis Extract: Characterization, Antibacterial Activity, Release, and In-Vitro Cytotoxicity. Food Chem. 2023, 405, 134801. [CrossRef]PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/dcc52a2a-bba2-4201-b051-29418f896067/download3bce4f7ab09dfc588f126e1e36e98a45MD54ORIGINAL2023_OthersandPelaez-Vargas_Antimicrobial_propolis_PCL_Wollastonite_Polymers.pdf2023_OthersandPelaez-Vargas_Antimicrobial_propolis_PCL_Wollastonite_Polymers.pdfapplication/pdf3959407https://repository.ucc.edu.co/bitstreams/6ce45edd-dd33-4fdc-97fc-89d83658cf59/download12dd7c7d38fd48d481ab7a9d14699efcMD512023_OthersandPelaez-Vargas_Antimicrobial_propolis_PCL_Wollastonite_Polymers_Licence.pdf2023_OthersandPelaez-Vargas_Antimicrobial_propolis_PCL_Wollastonite_Polymers_Licence.pdfapplication/pdf195525https://repository.ucc.edu.co/bitstreams/a9ef02fb-7cfe-45d5-b472-9638218687e7/download3d1e7fa95a4f3d6b62b4eb718efd7c76MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repository.ucc.edu.co/bitstreams/d11e9c8c-1e01-4c6d-bc61-264615dff991/download42fd4ad1e89814f5e4a476b409eb708cMD55TEXT2023_OthersandPelaez-Vargas_Antimicrobial_propolis_PCL_Wollastonite_Polymers.pdf.txt2023_OthersandPelaez-Vargas_Antimicrobial_propolis_PCL_Wollastonite_Polymers.pdf.txtExtracted texttext/plain103844https://repository.ucc.edu.co/bitstreams/b1846d20-b174-4642-955d-2c408e47d06e/download2e30c7f2639d66f1d9233a3a52e0f900MD562023_OthersandPelaez-Vargas_Antimicrobial_propolis_PCL_Wollastonite_Polymers_Licence.pdf.txt2023_OthersandPelaez-Vargas_Antimicrobial_propolis_PCL_Wollastonite_Polymers_Licence.pdf.txtExtracted texttext/plain5834https://repository.ucc.edu.co/bitstreams/871a5a78-e8aa-4716-9f87-6ccf27f911ec/download1b76acbfd1abda93a502c943914c3851MD58THUMBNAIL2023_OthersandPelaez-Vargas_Antimicrobial_propolis_PCL_Wollastonite_Polymers.pdf.jpg2023_OthersandPelaez-Vargas_Antimicrobial_propolis_PCL_Wollastonite_Polymers.pdf.jpgGenerated Thumbnailimage/jpeg16329https://repository.ucc.edu.co/bitstreams/e7c1e141-0a11-49f0-a6ae-23de09c28714/download477ed9d811423ca1fd8eb4d67203d0c6MD572023_OthersandPelaez-Vargas_Antimicrobial_propolis_PCL_Wollastonite_Polymers_Licence.pdf.jpg2023_OthersandPelaez-Vargas_Antimicrobial_propolis_PCL_Wollastonite_Polymers_Licence.pdf.jpgGenerated Thumbnailimage/jpeg13971https://repository.ucc.edu.co/bitstreams/609ff198-edb3-44da-b547-12e3b54d84a9/download8973046323faddc99bf5d8f258aec9b1MD5920.500.12494/55127oai:repository.ucc.edu.co:20.500.12494/551272024-08-10 22:47:11.55http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalrestrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=