Effect of high doses of vitamin D supplementation on dengue virus replication, Toll-like receptor expression, and cytokine profiles on dendritic cells
Dengue, caused by dengue virus (DENV) infection, is a public health problem worldwide. Although DENV pathogenesis has not yet been fully elucidated, the inflammatory response is a hallmark feature in severe DENV infection. Although vitamin D (vitD) can promote the innate immune response against viru...
- Autores:
-
Martínez Moreno, Jahnnyer
Hernández López, Juan Carlos
Urcuqui Inchima, Silvio
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/15938
- Acceso en línea:
- https://hdl.handle.net/20.500.12494/15938
- Palabra clave:
- Inflammation
- Rights
- openAccess
- License
- Atribución
id |
COOPER2_54534b9d465c90c2ae9c0724ea7c8786 |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/15938 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Effect of high doses of vitamin D supplementation on dengue virus replication, Toll-like receptor expression, and cytokine profiles on dendritic cells |
title |
Effect of high doses of vitamin D supplementation on dengue virus replication, Toll-like receptor expression, and cytokine profiles on dendritic cells |
spellingShingle |
Effect of high doses of vitamin D supplementation on dengue virus replication, Toll-like receptor expression, and cytokine profiles on dendritic cells Inflammation |
title_short |
Effect of high doses of vitamin D supplementation on dengue virus replication, Toll-like receptor expression, and cytokine profiles on dendritic cells |
title_full |
Effect of high doses of vitamin D supplementation on dengue virus replication, Toll-like receptor expression, and cytokine profiles on dendritic cells |
title_fullStr |
Effect of high doses of vitamin D supplementation on dengue virus replication, Toll-like receptor expression, and cytokine profiles on dendritic cells |
title_full_unstemmed |
Effect of high doses of vitamin D supplementation on dengue virus replication, Toll-like receptor expression, and cytokine profiles on dendritic cells |
title_sort |
Effect of high doses of vitamin D supplementation on dengue virus replication, Toll-like receptor expression, and cytokine profiles on dendritic cells |
dc.creator.fl_str_mv |
Martínez Moreno, Jahnnyer Hernández López, Juan Carlos Urcuqui Inchima, Silvio |
dc.contributor.author.none.fl_str_mv |
Martínez Moreno, Jahnnyer Hernández López, Juan Carlos Urcuqui Inchima, Silvio |
dc.subject.spa.fl_str_mv |
Inflammation |
topic |
Inflammation |
description |
Dengue, caused by dengue virus (DENV) infection, is a public health problem worldwide. Although DENV pathogenesis has not yet been fully elucidated, the inflammatory response is a hallmark feature in severe DENV infection. Although vitamin D (vitD) can promote the innate immune response against virus infection, no studies have evaluated the effects of vitD on DENV infection, dendritic cells (DCs), and inflammatory response regulation. This study aimed to assess the impact of oral vitD supplementation on DENV-2 infection, Toll-like receptor (TLR) expression, and both pro- and anti-inflammatory cytokine production in monocyte-derived DCs (MDDCs). To accomplish this, 20 healthy donors were randomly divided into two groups and received either 1000 or 4000 international units (IU)/day of vitD for 10 days. During pre- and post-vitD supplementation, peripheral blood samples were taken to obtain MDDCs, which were challenged with DENV-2. We found that MDDCs from donors who received 4000 IU/day of vitD were less susceptible to DENV-2 infection than MDDCs from donors who received 1000 IU/day of vitD. Moreover, these cells showed decreased mRNA expression of TLR3, 7, and 9; downregulation of IL-12/IL-8 production; and increased IL-10 secretion in response to DENV-2 infection. In conclusion, the administration of 4000 IU/day of vitD decreased DENV-2 infection. Our findings support a possible role of vitD in improving the innate immune response against DENV. However, further studies are necessary to determine the role of vitD on DENV replication and its innate immune response modulation in MDDCs. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-01-15T18:48:20Z |
dc.date.available.none.fl_str_mv |
2020-01-15T18:48:20Z |
dc.date.issued.none.fl_str_mv |
2020-01-02 |
dc.type.none.fl_str_mv |
Artículo |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
1573-4919 |
dc.identifier.uri.spa.fl_str_mv |
10.1007/s11010-019-03658-w |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/15938 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Martínez-Moreno, J., Hernandez, J.C. & Urcuqui-Inchima, S. (2019). Effect of high doses of vitamin D supplementation on dengue virus replication, Toll-like receptor expression, and cytokine profiles on dendritic cells. Mol Cell Biochem (2020) 464: 169. https://doi.org/10.1007/s11010-019-03658-w. Recuperado de: http://hdl.handle.net/20.500.12494/15938 |
identifier_str_mv |
1573-4919 10.1007/s11010-019-03658-w Martínez-Moreno, J., Hernandez, J.C. & Urcuqui-Inchima, S. (2019). Effect of high doses of vitamin D supplementation on dengue virus replication, Toll-like receptor expression, and cytokine profiles on dendritic cells. Mol Cell Biochem (2020) 464: 169. https://doi.org/10.1007/s11010-019-03658-w. Recuperado de: http://hdl.handle.net/20.500.12494/15938 |
url |
https://hdl.handle.net/20.500.12494/15938 |
dc.relation.isversionof.spa.fl_str_mv |
https://link.springer.com/article/10.1007%2Fs11010-019-03658-w#citeas |
dc.relation.ispartofjournal.spa.fl_str_mv |
Molecular and Cellular Biochemistry |
dc.relation.references.spa.fl_str_mv |
Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI (2013) The global distribution and burden of dengue. Nature 496(7446):504–507. https ://doi.org/10.1038/natur e1206 0 Guzman MG, Harris E (2014) Dengue. Lancet 385(9966):453– 465. https ://doi.org/10.1016/s0140 -6736(14)60572 -9 Guabiraba R, Ryffel B (2013) Dengue virus infection: current concepts in immune mechanisms and lessons from murine models. Immunology 141(2):143–156. https ://doi.org/10.1111/imm.12188 Soe HJ, Khan AM, Manikam R, Samudi Raju C, Vanhoutte P, Sekaran SD (2017) High dengue virus load differentially modulates human microvascular endothelial barrier function during early infection. J Gen Virol 98(12):2993–3007. https ://doi. org/10.1099/jgv.0.00098 1 Luplertlop N, Misse D, Bray D, Deleuze V, Gonzalez JP, Leardkamolkarn V, Yssel H, Veas F (2006) Dengue-virus-infected dendritic cells trigger vascular leakage through metalloproteinase overproduction. EMBO Rep 7(11):1176–1181. https ://doi. org/10.1038/sj.embor .74008 14 Torres S, Flipse J, Upasani VC, van der Ende-Metselaar H, Urcuqui-Inchima S, Smit JM, Rodenhuis-Zybert IA (2016) Altered immune response of immature dendritic cells following dengue virus infection in the presence of specific antibodies. J Gen Virol 97(7):1584–1591. https ://doi.org/10.1099/jgv.0.00049 1 Torres S, Hernandez JC, Giraldo D, Arboleda M, Rojas M, Smit JM, Urcuqui-Inchima S (2013) Differential expression of Tolllike receptors in dendritic cells of patients with dengue during early and late acute phases of the disease. PLoS Negl Trop Dis 7(2):e2060. https ://doi.org/10.1371/journ al.pntd.00020 60pnt d-d-12-00843 Lai JH, Wang MY, Huang CY, Wu CH, Hung LF, Yang CY, Ke PY, Luo SF, Liu SJ, Ho LJ (2018) Infection with the dengue RNA virus activates TLR9 signaling in human dendritic cells. EMBO Rep. https ://doi.org/10.15252 /embr.20184 6182 Hsu YL, Wang MY, Ho LJ, Lai JH (2016) Dengue virus infection induces interferon-lambda1 to facilitate cell migration. Sci Rep 6:24530. https ://doi.org/10.1038/srep2 4530 Akira S (2006) TLR signaling. Curr Top Microbiol Immunol 311:1–16 Chen J, Ng MM, Chu JJ (2015) Activation of TLR2 and TLR6 by dengue NS1 protein and its implications in the immunopathogenesis of dengue virus infection. PLoS Pathog 11(7):e1005053. https ://doi.org/10.1371/journ al.ppat.10050 53 George JA, Kim SB, Choi JY, Patil AM, Hossain FMA, Uyangaa E, Hur J, Park SY, Lee JH, Kim K, Eo SK (2017) TLR2/MyD88 pathway-dependent regulation of dendritic cells by dengue virus promotes antibody-dependent enhancement via Th2-biased immunity. Oncotarget 8(62):106050–106070. https ://doi.org/10.18632 / oncot arget .22525 Beard JA, Bearden A, Striker R (2011) Vitamin D and the antiviral state. J Clin Virol 50(3):194–200. https ://doi.org/10.1016/j. jcv.2010.12.006 Giraldo DM, Cardona A, Urcuqui-Inchima S (2018) High-dose of vitamin D supplement is associated with reduced susceptibility of monocyte-derived macrophages to dengue virus infection and pro-inflammatory cytokine production: an exploratory study. Clin Chim Acta 478:140–151. https ://doi.org/10.1016/j. cca.2017.12.044 Arboleda Alzate JF, Rodenhuis-Zybert IA, Hernandez JC, Smit JM, Urcuqui-Inchima S (2017) Human macrophages differentiated in the presence of vitamin D3 restrict dengue virus infection and innate responses by downregulating mannose receptor expression. PLoS Negl Trop Dis 11(10):e0005904. https ://doi.org/10.1371/ journ al.pntd.00059 04 Puerta-Guardo H, Medina F, De la Cruz Hernandez SI, Rosales VH, Ludert JE, del Angel RM (2012) The 1alpha,25-dihydroxyvitamin D3 reduces dengue virus infection in human myelomonocyte (U937) and hepatic (Huh-7) cell lines and cytokine production in the infected monocytes. Antiviral Res 94(1):57–61. https ://doi.org/10.1016/j.antiv iral.2012.02.006 Alagarasu K, Honap T, Mulay AP, Bachal RV, Shah PS, Cecilia D (2012) Association of vitamin D receptor gene polymorphisms with clinical outcomes of dengue virus infection. Hum Immunol 73(11):1194–1199. https ://doi.org/10.1016/j.humim m.2012.08.007 Bartels LE, Hvas CL, Agnholt J, Dahlerup JF, Agger R (2010) Human dendritic cell antigen presentation and chemotaxis are inhibited by intrinsic 25-hydroxy vitamin D activation. Int Immunopharmacol 10(8):922–928. https ://doi.org/10.1016/j.intim p.2010.05.003 Gottfried E, Rehli M, Hahn J, Holler E, Andreesen R, Kreutz M (2006) Monocyte-derived cells express CYP27A1 and convert vitamin D3 into its active metabolite. Biochem Biophys Res Commun 349(1):209–213. https ://doi.org/10.1016/j.bbrc.2006.08.034 Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, Durazo-Arvizu RA, Gallagher JC, Gallo RL, Jones G, Kovacs CS, Mayne ST, Rosen CJ, Shapses SA (2011) The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab 96(1):53–58. https ://doi.org/10.1210/jc.2010-2704 Vieth R (1999) Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety. Am J Clin Nutr 69(5):842–856 Nair S, Archer GE, Tedder TF (2012) Isolation and generation of human dendritic cells. Curr Protoc Immunol Chapter 7(Unit7):32. https ://doi.org/10.1002/04711 42735 .im073 2s99 Lambeth CR, White LJ, Johnston RE, de Silva AM (2005) Flow cytometry-based assay for titrating dengue virus. J Clin Microbiol 43(7):3267–3272. https ://doi.org/10.1128/ jcm.43.7.3267-3272.2005 Diamond MS, Edgil D, Roberts TG, Lu B, Harris E (2000) Infection of human cells by dengue virus is modulated by different cell types and viral strains. J Virol 74(17):7814–7823 Shu PY, Chang SF, Kuo YC, Yueh YY, Chien LJ, Sue CL, Lin TH, Huang JH (2003) Development of group- and serotype-specific one-step SYBR green I-based real-time reverse transcription-PCR assay for dengue virus. J Clin Microbiol 41(6):2408–2416 Brosbol-Ravnborg A, Bundgaard B, Hollsberg P (2013) Synergy between vitamin D(3) and Toll-like receptor agonists regulates human dendritic cell response during maturation. Clin Dev Immunol 2013:807971. https ://doi.org/10.1155/2013/80797 1 Feng C, Feng M, Jiao R, Liu D, Jin Y, Zhao X, Xiao R (2016) Effect of Dezocine on IL-12 and IL-10 secretion and lymphocyte activation by culturing dendritic cells from human umbilical cord blood. Eur J Pharmacol 796:110–114. https ://doi.org/10.1016/j. ejpha r.2016.12.035 Lang PO, Samaras N, Samaras D, Aspinall R (2013) How important is vitamin D in preventing infections? Osteoporos Int 24(5):1537–1553. https ://doi.org/10.1007/s0019 8-012-2204-6 Ho LJ, Wang JJ, Shaio MF, Kao CL, Chang DM, Han SW, Lai JH (2001) Infection of human dendritic cells by dengue virus causes cell maturation and cytokine production. J Immunol 166(3):1499–1506 Haimi M, Kremer R (2017) Vitamin D deficiency/insufficiency from childhood to adulthood: insights from a sunny country. World J Clin Pediatr 6(1):1–9. https ://doi.org/10.5409/wjcp. v6.i1.1 Holick MF (2012) Vitamin D: extraskeletal health. Rheum Dis Clin North Am 38(1):141–160. https ://doi.org/10.1016/j. rdc.2012.03.013 Hoan NX, Tong HV, Song LH, Meyer CG, Velavan TP (2018) Vitamin D deficiency and hepatitis viruses-associated liver diseases: a literature review. World J Gastroenterol 24(4):445–460. https ://doi.org/10.3748/wjg.v24.i4.445 Viard JP, Souberbielle JC, Kirk O, Reekie J, Knysz B, Losso M, Gatell J, Pedersen C, Bogner JR, Lundgren JD, Mocroft A, Euro SSG (2011) Vitamin D and clinical disease progression in HIV infection: results from the EuroSIDA study. Aids 25(10):1305–1315. https ://doi.org/10.1097/QAD.0b013 e3283 47f6f 7 Loke H, Bethell D, Phuong CX, Day N, White N, Farrar J, Hill A (2002) Susceptibility to dengue hemorrhagic fever in vietnam: evidence of an association with variation in the vitamin d receptor and Fc gamma receptor IIa genes. Am J Trop Med Hyg 67(1):102–106 Sanchez-Valdez E, Delgado-Aradillas M, Torres-Martinez JA, Torres-Benitez JM (2009) Clinical response in patients with dengue fever to oral calcium plus vitamin D administration: study of 5 cases. Proc West Pharmacol Soc 52:14–17 Coussens AK, Naude CE, Goliath R, Chaplin G, Wilkinson RJ, Jablonski NG (2015) High-dose vitamin D3 reduces deficiency caused by low UVB exposure and limits HIV-1 replication in urban Southern Africans. Proc Natl Acad Sci USA 112(26):8052– 8057. https ://doi.org/10.1073/pnas.15009 09112 Bergman P, Norlin AC, Hansen S, Rekha RS, Agerberth B, Bjorkhem-Bergman L, Ekstrom L, Lindh JD, Andersson J (2012) Vitamin D3 supplementation in patients with frequent respiratory tract infections: a randomised and double-blind intervention study. BMJ Open. https ://doi.org/10.1136/bmjop en-2012-00166 3 Aguilar-Jimenez W, Zapata W, Rugeles MT (2016) Antiviral molecules correlate with vitamin D pathway genes and are associated with natural resistance to HIV-1 infection. Microbes Infect 18(7–8):510–516. https ://doi.org/10.1016/j.micin f.2016.03.015 Wang TT, Nestel FP, Bourdeau V, Nagai Y, Wang Q, Liao J, Tavera-Mendoza L, Lin R, Hanrahan JW, Mader S, White JH (2004) Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol 173(5):2909–2912 Alagarasu K, Patil PS, Shil P, Seervi M, Kakade MB, Tillu H, Salunke A (2017) In-vitro effect of human cathelicidin antimicrobial peptide LL-37 on dengue virus type 2. Peptides 92:23–30. https ://doi.org/10.1016/j.pepti des.2017.04.002 Lopez-Gonzalez M, Meza-Sanchez D, Garcia-Cordero J, Bustos- Arriaga J, Velez-Del Valle C, Marsch-Moreno M, Castro-Jimenez T, Flores-Romo L, Santos-Argumedo L, Gutierrez-Castaneda B, Cedillo-Barron L (2018) Human keratinocyte cultures (HaCaT) can be infected by DENV, triggering innate immune responses that include IFNlambda and LL37. Immunobiology 223(11):608– 617. https ://doi.org/10.1016/j.imbio .2018.07.006 Berer A, Stockl J, Majdic O, Wagner T, Kollars M, Lechner K, Geissler K, Oehler L (2000) 1,25-Dihydroxyvitamin D(3) inhibits dendritic cell differentiation and maturation in vitro. Exp Hematol 28(5):575–583 Kyle JL, Beatty PR, Harris E (2007) Dengue virus infects macrophages and dendritic cells in a mouse model of infection. J Infect Dis 195(12):1808–1817. https ://doi.org/10.1086/51800 7 Dickie LJ, Church LD, Coulthard LR, Mathews RJ, Emery P, McDermott MF (2010) Vitamin D3 down-regulates intracellular Toll-like receptor 9 expression and Toll-like receptor 9-induced IL-6 production in human monocytes. Rheumatology (Oxford) 49(8):1466–1471. https ://doi.org/10.1093/rheum atolo gy/keq12 4 Schmid MA, Diamond MS, Harris E (2014) Dendritic cells in dengue virus infection: targets of virus replication and mediators of immunity. Front Immunol 5:647. https ://doi.org/10.3389/fimmu .2014.00647 Wang JP, Liu P, Latz E, Golenbock DT, Finberg RW, Libraty DH (2006) Flavivirus activation of plasmacytoid dendritic cells delineates key elements of TLR7 signaling beyond endosomal recognition. J Immunol 177(10):7114–7121 Tsai YT, Chang SY, Lee CN, Kao CL (2009) Human TLR3 recognizes dengue virus and modulates viral replication in vitro. Cell Microbiol 11(4):604–615. https ://doi.org/10.111 1/j.1462-5822.2008.01277 .x Nasirudeen AM, Wong HH, Thien P, Xu S, Lam KP, Liu DX (2011) RIG-I, MDA5 and TLR3 synergistically play an important role in restriction of dengue virus infection. PLoS Negl Trop Dis 5(1):e926. https ://doi.org/10.1371/journ al.pntd.00009 26 Balakrishna Pillai A, Cherupanakkal C, Immanuel J, Saravanan E, Eswar Kumar V, Kadhiravan T, Rajendiran S (2019) Expression pattern of selected Toll-like receptors (TLR’s) in the PBMC’s of severe and non-severe dengue cases. Immunol Invest. https ://doi. org/10.1080/08820 139.2019.16539 08 Morelli AE, Thomson AW (2007) Tolerogenic dendritic cells and the quest for transplant tolerance. Nat Rev Immunol 7(8):610–621. https ://doi.org/10.1038/nri21 32 Basu A, Chaturvedi UC (2008) Vascular endothelium: the battlefield of dengue viruses. FEMS Immunol Med Microbiol 53(3):287–299. https ://doi.org/10.1111/j.1574-695x.2008.00420 .x Croxford AL, Kulig P, Becher B (2014) IL-12-and IL-23 in health and disease. Cytokine Growth Factor Rev 25(4):415–421. https :// doi.org/10.1016/j.cytog fr.2014.07.017 Matilainen JM, Husso T, Toropainen S, Seuter S, Turunen MP, Gynther P, Yla-Herttuala S, Carlberg C, Vaisanen S (2010) Primary effect of 1alpha,25(OH)(2)D(3) on IL-10 expression in monocytes is short-term down-regulation. Biochim Biophys Acta 11:1276–1286. https ://doi.org/10.1016/j.bbamc r.2010.07.009 Pedersen AW, Holmstrom K, Jensen SS, Fuchs D, Rasmussen S, Kvistborg P, Claesson MH, Zocca MB (2009) Phenotypic and functional markers for 1alpha,25-dihydroxyvitamin D(3)-modified regulatory dendritic cells. Clin Exp Immunol 157(1):48–59. https ://doi.org/10.1111/j.1365-2249.2009.03961 .x Chunhakan S, Butthep P, Yoksan S, Tangnararatchakit K, Chuansumrit A (2015) Vascular leakage in dengue hemorrhagic fever is associated with dengue infected monocytes, monocyte activation/exhaustion, and cytokines production. Int J Vasc Med 2015:917143. https ://doi.org/10.1155/2015/91714 3 Wakkach A, Fournier N, Brun V, Breittmayer JP, Cottrez F, Groux H (2003) Characterization of dendritic cells that induce tolerance and T regulatory 1 cell differentiation in vivo. Immunity 18(5):605–617 Marin-Palma D, Sirois CM, Urcuqui-Inchima S, Hernandez JC (2019) Inflammatory status and severity of disease in dengue patients are associated with lipoprotein alterations. PLoS ONE 14(3):e0214245. https ://doi.org/10.1371/journ al.pone.02142 45 Malavige GN, Gomes L, Alles L, Chang T, Salimi M, Fernando S, Nanayakkara KD, Jayaratne S, Ogg GS (2013) Serum IL-10 as a marker of severe dengue infection. BMC Infect Dis 13:341. https ://doi.org/10.1186/1471-2334-13-341 Adikari TN, Gomes L, Wickramasinghe N, Salimi M, Wijesiriwardana N, Kamaladasa A, Shyamali NL, Ogg GS, Malavige GN (2016) Dengue NS1 antigen contributes to disease severity by inducing interleukin (IL)-10 by monocytes. Clin Exp Immunol 184(1):90–100. https ://doi.org/10.1111/cei.12747 Hoe E, Nathanielsz J, Toh ZQ, Spry L, Marimla R, Balloch A, Mulholland K, Licciardi PV (2016) Anti-inflammatory effects of vitamin D on human immune cells in the context of bacterial infection. Nutrients. https ://doi.org/10.3390/nu812 0806 Ikeuchi T, Nakamura T, Fukumoto S, Takada H (2012) A vitamin D3 analog augmented interleukin-8 production by human monocytic cells in response to various microbe-related synthetic ligands, especially NOD2 agonistic muramyldipeptide. Int Immunopharmacol 15(1):15–22. https: //doi.org/10.1016/j.intim p.2012.10.027 |
dc.rights.license.none.fl_str_mv |
Atribución |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
169–180 |
dc.coverage.temporal.spa.fl_str_mv |
464 (1–2) |
dc.publisher.spa.fl_str_mv |
Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Programa de Medicina, Medellín y Envigado, Colombia, 00000 |
dc.publisher.program.spa.fl_str_mv |
Medicina |
dc.publisher.place.spa.fl_str_mv |
Medellín |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/5dc5e71b-e67e-4888-ab3e-430518888ca6/download https://repository.ucc.edu.co/bitstreams/bad3d443-4e4a-464e-8131-00d12d7130fa/download https://repository.ucc.edu.co/bitstreams/52137f24-18e7-40f7-99a3-7efcee50482c/download https://repository.ucc.edu.co/bitstreams/3c012f37-416d-4da0-93a7-bb3287dedf89/download |
bitstream.checksum.fl_str_mv |
3bce4f7ab09dfc588f126e1e36e98a45 040c7b78b4b6311852a62a558b8e77d2 7e684c9b2bf658d0a5dc208f0ad70dde 29b645857b91c8797b72d5a58ca533be |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814246756429332480 |
spelling |
Martínez Moreno, JahnnyerHernández López, Juan CarlosUrcuqui Inchima, Silvio464 (1–2)2020-01-15T18:48:20Z2020-01-15T18:48:20Z2020-01-021573-491910.1007/s11010-019-03658-whttps://hdl.handle.net/20.500.12494/15938Martínez-Moreno, J., Hernandez, J.C. & Urcuqui-Inchima, S. (2019). Effect of high doses of vitamin D supplementation on dengue virus replication, Toll-like receptor expression, and cytokine profiles on dendritic cells. Mol Cell Biochem (2020) 464: 169. https://doi.org/10.1007/s11010-019-03658-w. Recuperado de: http://hdl.handle.net/20.500.12494/15938Dengue, caused by dengue virus (DENV) infection, is a public health problem worldwide. Although DENV pathogenesis has not yet been fully elucidated, the inflammatory response is a hallmark feature in severe DENV infection. Although vitamin D (vitD) can promote the innate immune response against virus infection, no studies have evaluated the effects of vitD on DENV infection, dendritic cells (DCs), and inflammatory response regulation. This study aimed to assess the impact of oral vitD supplementation on DENV-2 infection, Toll-like receptor (TLR) expression, and both pro- and anti-inflammatory cytokine production in monocyte-derived DCs (MDDCs). To accomplish this, 20 healthy donors were randomly divided into two groups and received either 1000 or 4000 international units (IU)/day of vitD for 10 days. During pre- and post-vitD supplementation, peripheral blood samples were taken to obtain MDDCs, which were challenged with DENV-2. We found that MDDCs from donors who received 4000 IU/day of vitD were less susceptible to DENV-2 infection than MDDCs from donors who received 1000 IU/day of vitD. Moreover, these cells showed decreased mRNA expression of TLR3, 7, and 9; downregulation of IL-12/IL-8 production; and increased IL-10 secretion in response to DENV-2 infection. In conclusion, the administration of 4000 IU/day of vitD decreased DENV-2 infection. Our findings support a possible role of vitD in improving the innate immune response against DENV. However, further studies are necessary to determine the role of vitD on DENV replication and its innate immune response modulation in MDDCs.https://scienti.colciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000283088http://orcid.org/0000-0002-9200-5698https://scienti.colciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000011355juanc.hernandezl@campusucc.edu.co169–180Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Programa de Medicina, Medellín y Envigado, Colombia, 00000MedicinaMedellínhttps://link.springer.com/article/10.1007%2Fs11010-019-03658-w#citeasMolecular and Cellular BiochemistryBhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI (2013) The global distribution and burden of dengue. Nature 496(7446):504–507. https ://doi.org/10.1038/natur e1206 0Guzman MG, Harris E (2014) Dengue. Lancet 385(9966):453– 465. https ://doi.org/10.1016/s0140 -6736(14)60572 -9Guabiraba R, Ryffel B (2013) Dengue virus infection: current concepts in immune mechanisms and lessons from murine models. Immunology 141(2):143–156. https ://doi.org/10.1111/imm.12188Soe HJ, Khan AM, Manikam R, Samudi Raju C, Vanhoutte P, Sekaran SD (2017) High dengue virus load differentially modulates human microvascular endothelial barrier function during early infection. J Gen Virol 98(12):2993–3007. https ://doi. org/10.1099/jgv.0.00098 1Luplertlop N, Misse D, Bray D, Deleuze V, Gonzalez JP, Leardkamolkarn V, Yssel H, Veas F (2006) Dengue-virus-infected dendritic cells trigger vascular leakage through metalloproteinase overproduction. EMBO Rep 7(11):1176–1181. https ://doi. org/10.1038/sj.embor .74008 14Torres S, Flipse J, Upasani VC, van der Ende-Metselaar H, Urcuqui-Inchima S, Smit JM, Rodenhuis-Zybert IA (2016) Altered immune response of immature dendritic cells following dengue virus infection in the presence of specific antibodies. J Gen Virol 97(7):1584–1591. https ://doi.org/10.1099/jgv.0.00049 1Torres S, Hernandez JC, Giraldo D, Arboleda M, Rojas M, Smit JM, Urcuqui-Inchima S (2013) Differential expression of Tolllike receptors in dendritic cells of patients with dengue during early and late acute phases of the disease. PLoS Negl Trop Dis 7(2):e2060. https ://doi.org/10.1371/journ al.pntd.00020 60pnt d-d-12-00843Lai JH, Wang MY, Huang CY, Wu CH, Hung LF, Yang CY, Ke PY, Luo SF, Liu SJ, Ho LJ (2018) Infection with the dengue RNA virus activates TLR9 signaling in human dendritic cells. EMBO Rep. https ://doi.org/10.15252 /embr.20184 6182Hsu YL, Wang MY, Ho LJ, Lai JH (2016) Dengue virus infection induces interferon-lambda1 to facilitate cell migration. Sci Rep 6:24530. https ://doi.org/10.1038/srep2 4530Akira S (2006) TLR signaling. Curr Top Microbiol Immunol 311:1–16Chen J, Ng MM, Chu JJ (2015) Activation of TLR2 and TLR6 by dengue NS1 protein and its implications in the immunopathogenesis of dengue virus infection. PLoS Pathog 11(7):e1005053. https ://doi.org/10.1371/journ al.ppat.10050 53George JA, Kim SB, Choi JY, Patil AM, Hossain FMA, Uyangaa E, Hur J, Park SY, Lee JH, Kim K, Eo SK (2017) TLR2/MyD88 pathway-dependent regulation of dendritic cells by dengue virus promotes antibody-dependent enhancement via Th2-biased immunity. Oncotarget 8(62):106050–106070. https ://doi.org/10.18632 / oncot arget .22525Beard JA, Bearden A, Striker R (2011) Vitamin D and the antiviral state. J Clin Virol 50(3):194–200. https ://doi.org/10.1016/j. jcv.2010.12.006Giraldo DM, Cardona A, Urcuqui-Inchima S (2018) High-dose of vitamin D supplement is associated with reduced susceptibility of monocyte-derived macrophages to dengue virus infection and pro-inflammatory cytokine production: an exploratory study. Clin Chim Acta 478:140–151. https ://doi.org/10.1016/j. cca.2017.12.044Arboleda Alzate JF, Rodenhuis-Zybert IA, Hernandez JC, Smit JM, Urcuqui-Inchima S (2017) Human macrophages differentiated in the presence of vitamin D3 restrict dengue virus infection and innate responses by downregulating mannose receptor expression. PLoS Negl Trop Dis 11(10):e0005904. https ://doi.org/10.1371/ journ al.pntd.00059 04Puerta-Guardo H, Medina F, De la Cruz Hernandez SI, Rosales VH, Ludert JE, del Angel RM (2012) The 1alpha,25-dihydroxyvitamin D3 reduces dengue virus infection in human myelomonocyte (U937) and hepatic (Huh-7) cell lines and cytokine production in the infected monocytes. Antiviral Res 94(1):57–61. https ://doi.org/10.1016/j.antiv iral.2012.02.006Alagarasu K, Honap T, Mulay AP, Bachal RV, Shah PS, Cecilia D (2012) Association of vitamin D receptor gene polymorphisms with clinical outcomes of dengue virus infection. Hum Immunol 73(11):1194–1199. https ://doi.org/10.1016/j.humim m.2012.08.007Bartels LE, Hvas CL, Agnholt J, Dahlerup JF, Agger R (2010) Human dendritic cell antigen presentation and chemotaxis are inhibited by intrinsic 25-hydroxy vitamin D activation. Int Immunopharmacol 10(8):922–928. https ://doi.org/10.1016/j.intim p.2010.05.003Gottfried E, Rehli M, Hahn J, Holler E, Andreesen R, Kreutz M (2006) Monocyte-derived cells express CYP27A1 and convert vitamin D3 into its active metabolite. Biochem Biophys Res Commun 349(1):209–213. https ://doi.org/10.1016/j.bbrc.2006.08.034Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, Durazo-Arvizu RA, Gallagher JC, Gallo RL, Jones G, Kovacs CS, Mayne ST, Rosen CJ, Shapses SA (2011) The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab 96(1):53–58. https ://doi.org/10.1210/jc.2010-2704Vieth R (1999) Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety. Am J Clin Nutr 69(5):842–856Nair S, Archer GE, Tedder TF (2012) Isolation and generation of human dendritic cells. Curr Protoc Immunol Chapter 7(Unit7):32. https ://doi.org/10.1002/04711 42735 .im073 2s99Lambeth CR, White LJ, Johnston RE, de Silva AM (2005) Flow cytometry-based assay for titrating dengue virus. J Clin Microbiol 43(7):3267–3272. https ://doi.org/10.1128/ jcm.43.7.3267-3272.2005Diamond MS, Edgil D, Roberts TG, Lu B, Harris E (2000) Infection of human cells by dengue virus is modulated by different cell types and viral strains. J Virol 74(17):7814–7823Shu PY, Chang SF, Kuo YC, Yueh YY, Chien LJ, Sue CL, Lin TH, Huang JH (2003) Development of group- and serotype-specific one-step SYBR green I-based real-time reverse transcription-PCR assay for dengue virus. J Clin Microbiol 41(6):2408–2416Brosbol-Ravnborg A, Bundgaard B, Hollsberg P (2013) Synergy between vitamin D(3) and Toll-like receptor agonists regulates human dendritic cell response during maturation. Clin Dev Immunol 2013:807971. https ://doi.org/10.1155/2013/80797 1Feng C, Feng M, Jiao R, Liu D, Jin Y, Zhao X, Xiao R (2016) Effect of Dezocine on IL-12 and IL-10 secretion and lymphocyte activation by culturing dendritic cells from human umbilical cord blood. Eur J Pharmacol 796:110–114. https ://doi.org/10.1016/j. ejpha r.2016.12.035Lang PO, Samaras N, Samaras D, Aspinall R (2013) How important is vitamin D in preventing infections? Osteoporos Int 24(5):1537–1553. https ://doi.org/10.1007/s0019 8-012-2204-6Ho LJ, Wang JJ, Shaio MF, Kao CL, Chang DM, Han SW, Lai JH (2001) Infection of human dendritic cells by dengue virus causes cell maturation and cytokine production. J Immunol 166(3):1499–1506Haimi M, Kremer R (2017) Vitamin D deficiency/insufficiency from childhood to adulthood: insights from a sunny country. World J Clin Pediatr 6(1):1–9. https ://doi.org/10.5409/wjcp. v6.i1.1Holick MF (2012) Vitamin D: extraskeletal health. Rheum Dis Clin North Am 38(1):141–160. https ://doi.org/10.1016/j. rdc.2012.03.013Hoan NX, Tong HV, Song LH, Meyer CG, Velavan TP (2018) Vitamin D deficiency and hepatitis viruses-associated liver diseases: a literature review. World J Gastroenterol 24(4):445–460. https ://doi.org/10.3748/wjg.v24.i4.445Viard JP, Souberbielle JC, Kirk O, Reekie J, Knysz B, Losso M, Gatell J, Pedersen C, Bogner JR, Lundgren JD, Mocroft A, Euro SSG (2011) Vitamin D and clinical disease progression in HIV infection: results from the EuroSIDA study. Aids 25(10):1305–1315. https ://doi.org/10.1097/QAD.0b013 e3283 47f6f 7Loke H, Bethell D, Phuong CX, Day N, White N, Farrar J, Hill A (2002) Susceptibility to dengue hemorrhagic fever in vietnam: evidence of an association with variation in the vitamin d receptor and Fc gamma receptor IIa genes. Am J Trop Med Hyg 67(1):102–106Sanchez-Valdez E, Delgado-Aradillas M, Torres-Martinez JA, Torres-Benitez JM (2009) Clinical response in patients with dengue fever to oral calcium plus vitamin D administration: study of 5 cases. Proc West Pharmacol Soc 52:14–17Coussens AK, Naude CE, Goliath R, Chaplin G, Wilkinson RJ, Jablonski NG (2015) High-dose vitamin D3 reduces deficiency caused by low UVB exposure and limits HIV-1 replication in urban Southern Africans. Proc Natl Acad Sci USA 112(26):8052– 8057. https ://doi.org/10.1073/pnas.15009 09112Bergman P, Norlin AC, Hansen S, Rekha RS, Agerberth B, Bjorkhem-Bergman L, Ekstrom L, Lindh JD, Andersson J (2012) Vitamin D3 supplementation in patients with frequent respiratory tract infections: a randomised and double-blind intervention study. BMJ Open. https ://doi.org/10.1136/bmjop en-2012-00166 3Aguilar-Jimenez W, Zapata W, Rugeles MT (2016) Antiviral molecules correlate with vitamin D pathway genes and are associated with natural resistance to HIV-1 infection. Microbes Infect 18(7–8):510–516. https ://doi.org/10.1016/j.micin f.2016.03.015Wang TT, Nestel FP, Bourdeau V, Nagai Y, Wang Q, Liao J, Tavera-Mendoza L, Lin R, Hanrahan JW, Mader S, White JH (2004) Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol 173(5):2909–2912Alagarasu K, Patil PS, Shil P, Seervi M, Kakade MB, Tillu H, Salunke A (2017) In-vitro effect of human cathelicidin antimicrobial peptide LL-37 on dengue virus type 2. Peptides 92:23–30. https ://doi.org/10.1016/j.pepti des.2017.04.002Lopez-Gonzalez M, Meza-Sanchez D, Garcia-Cordero J, Bustos- Arriaga J, Velez-Del Valle C, Marsch-Moreno M, Castro-Jimenez T, Flores-Romo L, Santos-Argumedo L, Gutierrez-Castaneda B, Cedillo-Barron L (2018) Human keratinocyte cultures (HaCaT) can be infected by DENV, triggering innate immune responses that include IFNlambda and LL37. Immunobiology 223(11):608– 617. https ://doi.org/10.1016/j.imbio .2018.07.006Berer A, Stockl J, Majdic O, Wagner T, Kollars M, Lechner K, Geissler K, Oehler L (2000) 1,25-Dihydroxyvitamin D(3) inhibits dendritic cell differentiation and maturation in vitro. Exp Hematol 28(5):575–583Kyle JL, Beatty PR, Harris E (2007) Dengue virus infects macrophages and dendritic cells in a mouse model of infection. J Infect Dis 195(12):1808–1817. https ://doi.org/10.1086/51800 7Dickie LJ, Church LD, Coulthard LR, Mathews RJ, Emery P, McDermott MF (2010) Vitamin D3 down-regulates intracellular Toll-like receptor 9 expression and Toll-like receptor 9-induced IL-6 production in human monocytes. Rheumatology (Oxford) 49(8):1466–1471. https ://doi.org/10.1093/rheum atolo gy/keq12 4Schmid MA, Diamond MS, Harris E (2014) Dendritic cells in dengue virus infection: targets of virus replication and mediators of immunity. Front Immunol 5:647. https ://doi.org/10.3389/fimmu .2014.00647Wang JP, Liu P, Latz E, Golenbock DT, Finberg RW, Libraty DH (2006) Flavivirus activation of plasmacytoid dendritic cells delineates key elements of TLR7 signaling beyond endosomal recognition. J Immunol 177(10):7114–7121Tsai YT, Chang SY, Lee CN, Kao CL (2009) Human TLR3 recognizes dengue virus and modulates viral replication in vitro. Cell Microbiol 11(4):604–615. https ://doi.org/10.111 1/j.1462-5822.2008.01277 .xNasirudeen AM, Wong HH, Thien P, Xu S, Lam KP, Liu DX (2011) RIG-I, MDA5 and TLR3 synergistically play an important role in restriction of dengue virus infection. PLoS Negl Trop Dis 5(1):e926. https ://doi.org/10.1371/journ al.pntd.00009 26Balakrishna Pillai A, Cherupanakkal C, Immanuel J, Saravanan E, Eswar Kumar V, Kadhiravan T, Rajendiran S (2019) Expression pattern of selected Toll-like receptors (TLR’s) in the PBMC’s of severe and non-severe dengue cases. Immunol Invest. https ://doi. org/10.1080/08820 139.2019.16539 08Morelli AE, Thomson AW (2007) Tolerogenic dendritic cells and the quest for transplant tolerance. Nat Rev Immunol 7(8):610–621. https ://doi.org/10.1038/nri21 32Basu A, Chaturvedi UC (2008) Vascular endothelium: the battlefield of dengue viruses. FEMS Immunol Med Microbiol 53(3):287–299. https ://doi.org/10.1111/j.1574-695x.2008.00420 .xCroxford AL, Kulig P, Becher B (2014) IL-12-and IL-23 in health and disease. Cytokine Growth Factor Rev 25(4):415–421. https :// doi.org/10.1016/j.cytog fr.2014.07.017Matilainen JM, Husso T, Toropainen S, Seuter S, Turunen MP, Gynther P, Yla-Herttuala S, Carlberg C, Vaisanen S (2010) Primary effect of 1alpha,25(OH)(2)D(3) on IL-10 expression in monocytes is short-term down-regulation. Biochim Biophys Acta 11:1276–1286. https ://doi.org/10.1016/j.bbamc r.2010.07.009Pedersen AW, Holmstrom K, Jensen SS, Fuchs D, Rasmussen S, Kvistborg P, Claesson MH, Zocca MB (2009) Phenotypic and functional markers for 1alpha,25-dihydroxyvitamin D(3)-modified regulatory dendritic cells. Clin Exp Immunol 157(1):48–59. https ://doi.org/10.1111/j.1365-2249.2009.03961 .xChunhakan S, Butthep P, Yoksan S, Tangnararatchakit K, Chuansumrit A (2015) Vascular leakage in dengue hemorrhagic fever is associated with dengue infected monocytes, monocyte activation/exhaustion, and cytokines production. Int J Vasc Med 2015:917143. https ://doi.org/10.1155/2015/91714 3Wakkach A, Fournier N, Brun V, Breittmayer JP, Cottrez F, Groux H (2003) Characterization of dendritic cells that induce tolerance and T regulatory 1 cell differentiation in vivo. Immunity 18(5):605–617Marin-Palma D, Sirois CM, Urcuqui-Inchima S, Hernandez JC (2019) Inflammatory status and severity of disease in dengue patients are associated with lipoprotein alterations. PLoS ONE 14(3):e0214245. https ://doi.org/10.1371/journ al.pone.02142 45Malavige GN, Gomes L, Alles L, Chang T, Salimi M, Fernando S, Nanayakkara KD, Jayaratne S, Ogg GS (2013) Serum IL-10 as a marker of severe dengue infection. BMC Infect Dis 13:341. https ://doi.org/10.1186/1471-2334-13-341Adikari TN, Gomes L, Wickramasinghe N, Salimi M, Wijesiriwardana N, Kamaladasa A, Shyamali NL, Ogg GS, Malavige GN (2016) Dengue NS1 antigen contributes to disease severity by inducing interleukin (IL)-10 by monocytes. Clin Exp Immunol 184(1):90–100. https ://doi.org/10.1111/cei.12747Hoe E, Nathanielsz J, Toh ZQ, Spry L, Marimla R, Balloch A, Mulholland K, Licciardi PV (2016) Anti-inflammatory effects of vitamin D on human immune cells in the context of bacterial infection. Nutrients. https ://doi.org/10.3390/nu812 0806Ikeuchi T, Nakamura T, Fukumoto S, Takada H (2012) A vitamin D3 analog augmented interleukin-8 production by human monocytic cells in response to various microbe-related synthetic ligands, especially NOD2 agonistic muramyldipeptide. Int Immunopharmacol 15(1):15–22. https: //doi.org/10.1016/j.intim p.2012.10.027InflammationEffect of high doses of vitamin D supplementation on dengue virus replication, Toll-like receptor expression, and cytokine profiles on dendritic cellsArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/5dc5e71b-e67e-4888-ab3e-430518888ca6/download3bce4f7ab09dfc588f126e1e36e98a45MD52ORIGINALVit Suppl Dengue MCB 2020.pdfVit Suppl Dengue MCB 2020.pdfArtículoapplication/pdf1336331https://repository.ucc.edu.co/bitstreams/bad3d443-4e4a-464e-8131-00d12d7130fa/download040c7b78b4b6311852a62a558b8e77d2MD51THUMBNAILVit Suppl Dengue MCB 2020.pdf.jpgVit Suppl Dengue MCB 2020.pdf.jpgGenerated Thumbnailimage/jpeg5633https://repository.ucc.edu.co/bitstreams/52137f24-18e7-40f7-99a3-7efcee50482c/download7e684c9b2bf658d0a5dc208f0ad70ddeMD53TEXTVit Suppl Dengue MCB 2020.pdf.txtVit Suppl Dengue MCB 2020.pdf.txtExtracted texttext/plain59616https://repository.ucc.edu.co/bitstreams/3c012f37-416d-4da0-93a7-bb3287dedf89/download29b645857b91c8797b72d5a58ca533beMD5420.500.12494/15938oai:repository.ucc.edu.co:20.500.12494/159382024-08-10 22:41:08.829restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo= |