An evaluation of final disposal alternatives for municipal solid waste through life cycle assessment: A case of study in Colombia
El vertido sigue siendo la tecnología más común utilizada en el desarrollo países para la disposición final de los residuos sólidos urbanos (RSU), aunque la negativa impactos en el medio ambiente como los causados por la liberación de gases de efecto invernadero gases (GEI) que contribuyen al calent...
- Autores:
-
Caicedo Concha, Diana Milena
Sandoval Cobo, John J.
Stringfellow, Anne
Colmenares Quintero, Ramón Fernando
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2021
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/46558
- Acceso en línea:
- https://doi.org/10.1080/23311916.2021.1956860
https://hdl.handle.net/20.500.12494/46558
- Palabra clave:
- Vertedero
Gas de vertedero
Biogás
Análisis del ciclo de vida
Países en desarrollo
Metas de desarrollo sostenible
Landfill
Landfill gas
Biogas
Life cycle analysis
Developing countries
Sustainable development goals
- Rights
- openAccess
- License
- Atribución
id |
COOPER2_50e59de58e34f2b09d42d29fd3b3ef09 |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/46558 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
An evaluation of final disposal alternatives for municipal solid waste through life cycle assessment: A case of study in Colombia |
title |
An evaluation of final disposal alternatives for municipal solid waste through life cycle assessment: A case of study in Colombia |
spellingShingle |
An evaluation of final disposal alternatives for municipal solid waste through life cycle assessment: A case of study in Colombia Vertedero Gas de vertedero Biogás Análisis del ciclo de vida Países en desarrollo Metas de desarrollo sostenible Landfill Landfill gas Biogas Life cycle analysis Developing countries Sustainable development goals |
title_short |
An evaluation of final disposal alternatives for municipal solid waste through life cycle assessment: A case of study in Colombia |
title_full |
An evaluation of final disposal alternatives for municipal solid waste through life cycle assessment: A case of study in Colombia |
title_fullStr |
An evaluation of final disposal alternatives for municipal solid waste through life cycle assessment: A case of study in Colombia |
title_full_unstemmed |
An evaluation of final disposal alternatives for municipal solid waste through life cycle assessment: A case of study in Colombia |
title_sort |
An evaluation of final disposal alternatives for municipal solid waste through life cycle assessment: A case of study in Colombia |
dc.creator.fl_str_mv |
Caicedo Concha, Diana Milena Sandoval Cobo, John J. Stringfellow, Anne Colmenares Quintero, Ramón Fernando |
dc.contributor.author.none.fl_str_mv |
Caicedo Concha, Diana Milena Sandoval Cobo, John J. Stringfellow, Anne Colmenares Quintero, Ramón Fernando |
dc.subject.spa.fl_str_mv |
Vertedero Gas de vertedero Biogás Análisis del ciclo de vida Países en desarrollo Metas de desarrollo sostenible |
topic |
Vertedero Gas de vertedero Biogás Análisis del ciclo de vida Países en desarrollo Metas de desarrollo sostenible Landfill Landfill gas Biogas Life cycle analysis Developing countries Sustainable development goals |
dc.subject.other.spa.fl_str_mv |
Landfill Landfill gas Biogas Life cycle analysis Developing countries Sustainable development goals |
description |
El vertido sigue siendo la tecnología más común utilizada en el desarrollo países para la disposición final de los residuos sólidos urbanos (RSU), aunque la negativa impactos en el medio ambiente como los causados por la liberación de gases de efecto invernadero gases (GEI) que contribuyen al calentamiento global (GW). el gobierno colombiano fijó una meta de reducción del 20% en las emisiones de GEI para el año 2030, para lo cual el sólido sector de la gestión de residuos tiene un papel importante que desempeñar. Asimismo, el logro de las metas de los objetivos de desarrollo sostenible (ODS) está jugando un papel clave para la agenda de gobierno y así lo hará durante los próximos años. En este contexto, hay una importante margen de mejora de las alternativas de gestión en la actualidad rellenos sanitarios operativos en el país, especialmente en cuanto a las medidas para reducir emisiones al aire y lixiviados. Este documento evalúa, utilizando el análisis del ciclo de vida (LCA) métodos, los impactos ambientales asociados con un relleno sanitario en Colombia bajo cuatro escenarios diferentes: vertederos a cielo abierto (cero) y vertedero convencional bajo tres alternativas de gestión de gas de vertedero (LFG): venteo (a), quema (b) y energía recuperación (c). Las categorías de impacto, así como los métodos de evaluación del impacto del ciclo de vida (LCIA) utilizados, se determinaron a través de la revisión de los estudios de LCA para RSU sistemas de gestión en los países en desarrollo. Los principales resultados muestran que a nivel mundial potencial de calentamiento global (GWP) fue el principal impacto ambiental causado por el vertedero funcionamiento en las condiciones consideradas; sin embargo, el GWP se redujo significativamente con el cambio de escenarios de gestión sin tratamiento de biogás (o y a: común a la mayoría de los rellenos sanitarios en los países en desarrollo) a escenarios donde el GRS es antorcha (b) o utilizada para la producción de energía (c). Estos resultados sugieren que la adopción de Se deben considerar tecnologías para la captura, quema y recuperación de energía de GRS si Se esperan importantes reducciones de GEI del sector de la gestión de residuos, ya que así como proporcionar incentivos económicos para mejorar la sostenibilidad operativa de vertederos en los países en desarrollo. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-08 |
dc.date.accessioned.none.fl_str_mv |
2022-09-29T15:47:26Z |
dc.date.available.none.fl_str_mv |
2022-09-29T15:47:26Z |
dc.type.none.fl_str_mv |
Artículos Científicos |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
23311916 |
dc.identifier.uri.spa.fl_str_mv |
https://doi.org/10.1080/23311916.2021.1956860 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/46558 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Diana M Caicedo-Concha, John J Sandoval-Cobo, Anne Stringfellow & Ramon Fernando Colmenares-Quintero | (2021) An evaluation of final disposal alternatives for municipal solid waste through life cycle assessment: A case of study in Colombia, Cogent Engineering, 8:1, 1956860, DOI: 10.1080/23311916.2021.1956860 |
identifier_str_mv |
23311916 Diana M Caicedo-Concha, John J Sandoval-Cobo, Anne Stringfellow & Ramon Fernando Colmenares-Quintero | (2021) An evaluation of final disposal alternatives for municipal solid waste through life cycle assessment: A case of study in Colombia, Cogent Engineering, 8:1, 1956860, DOI: 10.1080/23311916.2021.1956860 |
url |
https://doi.org/10.1080/23311916.2021.1956860 https://hdl.handle.net/20.500.12494/46558 |
dc.relation.isversionof.spa.fl_str_mv |
https://www.tandfonline.com/doi/full/10.1080/23311916.2021.1956860 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Cogent Engineering |
dc.relation.references.spa.fl_str_mv |
Abduli, A. N., & Mansoor Yonesi, A. (2011). Life cycle assessment (LCA) of solid waste management strategies in Tehran: Landfill and composting plus landfill. Environmental Monitoring and Assessment, 178(1), 487–498. https://doi.org/10.1007/s10661- 010-1707-x Abeliotis, K., Kalogeropoulos, A., & Lasaridi, K. (2012). Life cycle assessment of the MBT plant in Ano Liossia, Athens, Greece. Waste Manag, 32(1), 213–219. https://doi.org/10.1016/j.wasman.2011.09.002 Arafat, H. A., Jijakli, K., & Ahsan, A. (Oct 2015). Environmental performance and energy recovery potential of five processes for municipal solid waste treatment. Journal of Cleaner Production, 105, 233–240. https://doi.org/10.1016/j.jclepro.2013.11.071 Assamoi, B., & Lawryshyn, Y. (2012). The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion. Waste Manag, 32(5), 1019–1030. https://doi.org/10.1016/j.wasman.2011. 10.023 Aye, L., & Widjaya, E. R. (2006). Environmental and economic analyses of waste disposal options for traditional markets in Indonesia. Waste Manag, 26 (10), 1180–1191. https://doi.org/10.1016/j.wasman. 2005.09.010 Banar, M., Cokaygil, Z., & Ozkan, A. (2009). Life cycle assessment of solid waste management options for Eskisehir, Turkey. Waste Manag, 29(1), 54–62. https:// doi.org/10.1016/j.wasman.2007.12.006 Bernstad Saraiva Schott, A., Wenzel, H., & la Cour Jansen, J. (Feb 2016). Identification of decisive factors for greenhouse gas emissions in comparative lifecycle assessments of food waste management – an analytical review. J. Clean. Prod, 13-24. https://doi. org/10.1016/j.jclepro.2016.01.079 BID. (2015). Estudio tecnologías alternativas de disposición final o aprovechamiento de residuos sólidos. Propuesta de ajuste al Decreto 838 de 2005. https://colaboracion.dnp.gov.co/CDT/Conpes/Econ% C3%B3micos/3874.pdf Boldrin, A., Neidel, T. L., Damgaard, A., Bhander, G. S., Møller, J., & Christensen, T. H. (2011). Modelling of environmental impacts from biological treatment of organic municipal waste in EASEWASTE. Waste Manag, 31(4), 619–630. https://doi.org/10.1016/j.was man.2010.10.025 Caicedo-Concha, D. M., Sandoval-Cobo, J. J., Fernando, C.- Q. R., Marmolejo-Rebellón, L. F., Torres-Lozada, P., & Sonia, H. (2019). The potential of methane production using aged landfill waste in developing countries: A case of study in Colombia. Cogent Eng, 6(1), 1-15. https://doi.org/10.1080/23311916.2019. 1664862 Cárdenas Cleves, L. M., Parra Orobio, B. A., Torres Lozada, P., & Vásquez Franco, C. H. (2016). Perspectivas del ensayo de potencial bioquímico de metano - PBM para el control del proceso de digestión anaerobia de residuos. Rev. Investig. Optim. y Nuevos procesos en Ing, 29(1), 95–108. http://www. scielo.org.co/scielo.php?pid=S0120- 100X2016000100009&script=sci_abstract&tlng=es Carolina, A. (2017). “Life Cycle Assessment and Multicriteria Decision Analysis: Selection of a strategy for domestic food waste management in Rio de Janeiro. Journal of Cleaner Production, 143, 744 - 7561 Cherubini, F., Bargigli, S., & Ulgiati, S. (2009). Life cycle assessment (LCA) of waste management strategies: landfilling, sorting plant and incineration. Energy, 34 (12), 2116–2123. https://doi.org/10.1016/j.energy. 2008.08.023 Chi, Y., Dong, J., Tang, Y., Huang, Q., & Ni, M. (2015). Life cycle assessment of municipal solid waste source-separated collection and integrated waste management systems in Hangzhou, China. J. Mater. Cycles Waste Manag, 17(4), 695–706. https://doi.org/ 10.1007/s10163-014-0300-8 Christensen, T. H. (2020). Application of LCA modelling in integrated waste management. Waste Manag, 118, 313–322. https://doi.org/10.1016/j.wasman.2020.08. 034 Clavreul, J., Baumeister, H., Christensen, T. H., & Damgaard, A. (Oct 2014). An environmental assessment system for environmental technologies. Environmental Modelling and Software, 60, 18–30. https://doi.org/10.1016/j.envsoft.2014.06.007 Damgaard, A., Manfredi, S., Merrild, H., Stensøe, S., & Christensen, T. H. (2011). LCA and economic evaluation of landfill leachate and gas technologies. Waste Manag, 31(7), 1532–1541. https://doi.org/10.1016/j. wasman.2011.02.027 de Planeación, D. N. (2016). Política nacional para la gestión de residuos sólidos. CONPES 3874, I, 73. https://colaboracion.dnp.gov.co/CDT/Conpes/Econ% C3%B3micos/3874.pdf Edwards, J., Othman, M., Crossin, E., & Burn, S. (2017). Anaerobic co-digestion of municipal food waste and sewage sludge: A comparative life cycle assessment in the context of a waste service provision. Bioresource Technology, 223, 237–249. https://doi. org/10.1016/j.biortech.2016.10.044 European Commission. (2010). International Reference Life Cycle Data System (ILCD) Handbook and General Guide for Life Cycle Assessment. DOI: 10.2788/94987 Ferronato, N., Moresco, L., Guisbert Lizarazu, G. E., Gorritty Portillo, M. A., Conti, F., & Torretta, V. (2021). Sensitivity analysis and improvements of the recycling rate in municipal solid waste life cycle assessment: focus on a Latin American developing context. Waste Manag, 128, 1–15. https://doi.org/10.1016/j. wasman.2021.04.043 Gunamantha, M., & Sarto. (2012). Life cycle assessment of municipal solid waste treatment to energy options: case study of KARTAMANTUL region, Yogyakarta. Renew. Energy, 41, 277–284. https://doi. org/10.1016/j.renene.2011.11.008 Hong, J., Li, X., & Zhaojie, C. (Nov 2010). Life cycle assessment of four municipal solid waste management scenarios in China. Waste Manag, 30(11), 2362–2369. https://doi.org/10.1016/j.wasman.2010. 03.038 Hong, R. J. (2006). Life cycle assessment of BMT-based integrated municipal solid waste management: case study in Pudong, China. Resour. Conserv. Recycl, 49 (2), 129–146. https://doi.org/10.1016/j.resconrec. 2006.03.007 Icontec. (2006). “Gestión ambiental. Análisis de Ciclo de Vida. Principios y marco de referencia. UNE-EN ISO 14040:2006”. ISO. (2006). ISO 14040:2006(es), Gestión ambiental — Análisis del ciclo de vida — Principios y marco de referencia. ISO – ICONTEC. (2007). Norma técnica Colombiana TTCISO 14040. Icontec, (571), 1–24. https://tienda.icon tec.org/gp-gestion-ambiental-analisis-del-ciclo-devida-principios-y-marco-de-referencia-ntc-iso14040- 2007.html Laner, D. (2009). The consideration of long-term emissions from landfills within life-cycle assessment. Waste Manag. Res, 27(5), 463–470. https://doi.org/10. 1177/0734242X09102335 Laurent, A. (Mar 2014). Review of LCA studies of solid waste management systems–part II: Methodological guidance for a better practice. Waste Manag, 34(3), 589–606. https://doi.org/10.1016/j.wasman.2013.12. 004 Liamsanguan, C., & Gheewala, S. H. (2008). LCA: A decision support tool for environmental assessment of MSW management systems. Journal of Environmental Management, 87(1), 132–138. https:// doi.org/10.1016/j.jenvman.2007.01.003 Lima, P. D. M., Colvero, D. A., Gomes, A. P., Wenzel, H., Schalch, V., & Cimpan, C. (2018). Environmental assessment of existing and alternative options for management of municipal solid waste in Brazil. Waste Manag, 78, 857–870. https://doi.org/10.1016/j. wasman.2018.07.007 Majumdar, D. (2014). Emission, speciation, and evaluation of impacts of non-methane volatile organic compounds from open dump site. Journal of the Air & Waste Management Association, 67(7), 834-845. https://www.tandfonline.com/doi/full/10.1080/ 10962247.2013.873747 Manaf, L. A., Samah, M. A. A., & Zukki, N. I. M. (2009). Municipal solid waste management in Malaysia: practices and challenges. Waste Manag, 29(11), 2902–2906. https://doi.org/10.1016/j.wasman.2008. 07.015 Max, L., Coelho, G., & Celina, L. (2018). Resources, conservation and recycling applying life cycle assessment to support environmentally sustainable waste management strategies in Brazil. “Resources, Conserv. Recycl, 128, 438–450. https://doi.org/10. 1016/j.resconrec.2016.09.026 Mendes, M. R., Aramaki, T., & Hanaki, K. (2003). Assessment of the environmental impact of management measures for the biodegradable fraction of municipal solid waste in Sao Paulo City. Waste Manag, 23(5), 403–409. https://doi.org/10.1016/S0956-053X(03)00058-8 Mendes, M. R., Aramaki, T., & Hanaki, K. (2004). Comparison of the environmental impact of incineration and landfilling in Sao Paulo City as determined by LCA. Resour. Conserv. Recycl, 41(1), 47–63. https://doi.org/10.1016/j.resconrec.2003.08.003 Menikpura, S. N. M., Gheewala, S. H., & Bonnet, S. (2012). Sustainability assessment of municipal solid waste management in Sri Lanka: problems and prospects. J. Mater. Cycles Waste Manag, 14(3), 181–192. https://doi.org/10.1007/s10163-012-0055-z Milutinovi, B., Stefanovi, G., Ðeki, P. S., Mijailovi, I., & Tomi, M. (2017). Environmental assessment of waste management scenarios with energy recovery using life cycle assessment and multi-criteria analysis. Energy, 137, 917–926. https://doi.org/10.1016/j. energy.2017.02.167 Ministerio de Ambiente y Desarrollo Sostenible. (2019). Estrategia Nacional de Economía Circular. Özeler, D., Yetiş, Ü., & Demirer, G. N. (2006). Life cycle assesment of municipal solid waste management methods: ankara case study. Environ. Int, 32(3), 405–411. https://doi.org/10.1016/j.envint.2005.10.002 Saheri, S. (2012). Life cycle assessment for solid waste disposal options in Malaysia. Polish J. Environ. Stud, 21(5), 1377–1382 Sandoval-Cobo, J. J. (2020). Methane potential and degradation kinetics of fresh and excavated municipal solid waste from a tropical landfill in Colombia. Sustain. Environ. Res, 30(1). https://doi.org/10.1186/ s42834-020-00048-6 Superintendencia de Servicios Públicos Domiciliarios. (2018). Informe de Disposición Final de Residuos Sólidos – 2017 Traivivatana, S., Wangjiraniran, W., Junlakarn, S., & Wansophark, N. (Oct 2017). Thailand energy outlook for the Thailand integrated energy blueprint (TIEB). Energy Procedia, 138, 399–404. https://doi.org/10. 1016/j.egypro.2017.10.179 United Nations Department of Economic and Social Affairs (UN DESA). (2018). “Sustainable Development Goals Report 2018,” p. 64. Urup Anders, A. D. O. (2014). “Landfilling in EASETECH.” p. 46. USEPA/ISWA. (2012). International Best Practices Guide for Landfill Gas Energy Project. U.S. Environmental Protection Agency and ISWA (International Waste Management Association). Xing, W., Lu, W., Zhao, Y., Zhang, X., Deng, W., & Christensen, T. H. (2013). Environmental impact assessment of leachate recirculation in landfill of municipal solid waste by comparing with evaporation and discharge (EASEWASTE). Waste Manag, 33(2), 382–389. https://www.sciencedirect.com/science/arti cle/abs/pii/S0956053X12004795 Yang, N., Damgaard, A., Lü, F., Shao, L. M., Brogaard, L. K. S., & He, P. J. (2014). Environmental impact assessment on the construction and operation of municipal solid waste sanitary landfills in developing countries: China case study. Waste Manag, 34(5), 929–937. https://doi.org/10.1016/j.was man.2014.02.017 Yang, N., Zhang, H., Shao, L.-M., Lü, F., & He, P.-J. (Nov 2013). Greenhouse gas emissions during MSW landfilling in China: influence of waste characteristics and LFG treatment measures. Journal of Environmental Management, 129(5), 510–521. https://doi.org/10. 1016/j.jenvman.2013.08.039 Zhao, W., van der Voet, E., Zhang, Y., & Huppes, G. (2009). Life cycle assessment of municipal solid waste management with regard to greenhouse gas emissions: case study of Tianjin, China. The Science of the Total Environment, 407(5), 1517–1526. https://doi.org/10.1016/j.scitotenv. 2008.11.007 Zhao, Y., Christensen, T. H., Lu, W., Wu, H., & Wang, H. (2011). Environmental impact assessment of solid waste management in Beijing City, China. Waste Manag, 31(4), 793–799. https://doi.org/10.1016/j.was man.2010.11.007 Zhao, Y., Wang, H. T., Lu, W. J., Damgaard, A., & Christensen, T. H. (2009). Life-cycle assessment of the municipal solid waste management system in Hangzhou, China (EASEWASTE). Waste Manag. Res, 27(4), 399–406. https://doi.org/10.1177/ 0734242X09103823 Ziegler-Rodriguez, K., Margallo, M., Aldaco, R., VázquezRowe, I., & Kahhat, R. (2019). Transitioning from open dumpsters to landfilling in Peru: environmental benefits and challenges from a life-cycle perspective. Journal of Cleaner Production, 229, 989–1003. https://doi.org/10.1016/j.jclepro.2019.05. 015 |
dc.rights.license.none.fl_str_mv |
Atribución |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
18 p. |
dc.coverage.temporal.spa.fl_str_mv |
Vol. 8, No. 1 |
dc.publisher.spa.fl_str_mv |
Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería de Sistemas, Cali |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Industrial |
dc.publisher.place.spa.fl_str_mv |
Cali |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/5773d80b-39b8-42f3-a4d5-d619ac0b8864/download https://repository.ucc.edu.co/bitstreams/405efb2d-9dd9-49a3-ace0-454c221b8a37/download https://repository.ucc.edu.co/bitstreams/490c83a5-e4b8-40c3-b141-6fca7e1de05f/download https://repository.ucc.edu.co/bitstreams/dc040ba4-755a-487c-b290-0e791c453609/download |
bitstream.checksum.fl_str_mv |
5d565efb892833c4de144afb968060aa 8a4605be74aa9ea9d79846c1fba20a33 3121ad01d0c28d7c38d9bafe75d550ae e3c4f53edf45511df6c1701b4ae3619b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1811565170337513472 |
spelling |
Caicedo Concha, Diana MilenaSandoval Cobo, John J.Stringfellow, AnneColmenares Quintero, Ramón FernandoVol. 8, No. 12022-09-29T15:47:26Z2022-09-29T15:47:26Z2021-0823311916https://doi.org/10.1080/23311916.2021.1956860https://hdl.handle.net/20.500.12494/46558Diana M Caicedo-Concha, John J Sandoval-Cobo, Anne Stringfellow & Ramon Fernando Colmenares-Quintero | (2021) An evaluation of final disposal alternatives for municipal solid waste through life cycle assessment: A case of study in Colombia, Cogent Engineering, 8:1, 1956860, DOI: 10.1080/23311916.2021.1956860El vertido sigue siendo la tecnología más común utilizada en el desarrollo países para la disposición final de los residuos sólidos urbanos (RSU), aunque la negativa impactos en el medio ambiente como los causados por la liberación de gases de efecto invernadero gases (GEI) que contribuyen al calentamiento global (GW). el gobierno colombiano fijó una meta de reducción del 20% en las emisiones de GEI para el año 2030, para lo cual el sólido sector de la gestión de residuos tiene un papel importante que desempeñar. Asimismo, el logro de las metas de los objetivos de desarrollo sostenible (ODS) está jugando un papel clave para la agenda de gobierno y así lo hará durante los próximos años. En este contexto, hay una importante margen de mejora de las alternativas de gestión en la actualidad rellenos sanitarios operativos en el país, especialmente en cuanto a las medidas para reducir emisiones al aire y lixiviados. Este documento evalúa, utilizando el análisis del ciclo de vida (LCA) métodos, los impactos ambientales asociados con un relleno sanitario en Colombia bajo cuatro escenarios diferentes: vertederos a cielo abierto (cero) y vertedero convencional bajo tres alternativas de gestión de gas de vertedero (LFG): venteo (a), quema (b) y energía recuperación (c). Las categorías de impacto, así como los métodos de evaluación del impacto del ciclo de vida (LCIA) utilizados, se determinaron a través de la revisión de los estudios de LCA para RSU sistemas de gestión en los países en desarrollo. Los principales resultados muestran que a nivel mundial potencial de calentamiento global (GWP) fue el principal impacto ambiental causado por el vertedero funcionamiento en las condiciones consideradas; sin embargo, el GWP se redujo significativamente con el cambio de escenarios de gestión sin tratamiento de biogás (o y a: común a la mayoría de los rellenos sanitarios en los países en desarrollo) a escenarios donde el GRS es antorcha (b) o utilizada para la producción de energía (c). Estos resultados sugieren que la adopción de Se deben considerar tecnologías para la captura, quema y recuperación de energía de GRS si Se esperan importantes reducciones de GEI del sector de la gestión de residuos, ya que así como proporcionar incentivos económicos para mejorar la sostenibilidad operativa de vertederos en los países en desarrollo.Landfilling is still the most common technology used in developing countries for the final disposal of municipal solid waste (MSW), albeit the negative impacts on the environment such as those caused by the release of greenhouse gases (GHG) that contribute to global warming (GW). The Colombian government set a target of 20% reduction in GHG emissions by year 2030, for which the solid waste management sector has an important role to play. Also, the achievement of the targets of sustainable development goals (SDG) is playing a key role for the government agenda and will do so for the next years. In this context, there is an important room for improvement of the management alternatives in currently operative landfills in the country, especially in terms of measures to reduce fugitive air emissions and leachates. This paper evaluates, using life cycle assessment (LCA) methods, the environmental impacts associated with a landfill in Colombia under four different scenarios: open dumps (zero) and conventional landfill under three landfill gas (LFG) management alternatives: venting (a), flaring (b), and energy recovery (c). The impact categories as well as the life cycle impact assessment (LCIA) methods used were determined through the review of LCA studies for MSW management systems in developing countries. Main results show that global warming potential (GWP) was the main environmental impact caused by the landfill operation under the conditions considered; however, GWP was significantly reduced with the shifting from management scenarios with no LFG treatment (o and a: common to most landfills in developing countries) to scenarios where LFG is either flare (b) or utilized for energy production (c). These results suggest that adoption of technologies for LFG capture, burn, and energy recovery must be considered if important reductions of GHGs are expected from the waste management sector, as well as to provide economic incentives to improve the operational sustainability of landfills in developing countries.http://orcid.org/0000-0003-4031-4568http://orcid.org/0000-0002-2608-7699http://orcid.org/0000-0003-1166-1982diana.caidedoc@campusucc.edu.co18 p.Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería de Sistemas, CaliIngeniería IndustrialCalihttps://www.tandfonline.com/doi/full/10.1080/23311916.2021.1956860Cogent EngineeringAbduli, A. N., & Mansoor Yonesi, A. (2011). Life cycle assessment (LCA) of solid waste management strategies in Tehran: Landfill and composting plus landfill. Environmental Monitoring and Assessment, 178(1), 487–498. https://doi.org/10.1007/s10661- 010-1707-xAbeliotis, K., Kalogeropoulos, A., & Lasaridi, K. (2012). Life cycle assessment of the MBT plant in Ano Liossia, Athens, Greece. Waste Manag, 32(1), 213–219. https://doi.org/10.1016/j.wasman.2011.09.002Arafat, H. A., Jijakli, K., & Ahsan, A. (Oct 2015). Environmental performance and energy recovery potential of five processes for municipal solid waste treatment. Journal of Cleaner Production, 105, 233–240. https://doi.org/10.1016/j.jclepro.2013.11.071Assamoi, B., & Lawryshyn, Y. (2012). The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion. Waste Manag, 32(5), 1019–1030. https://doi.org/10.1016/j.wasman.2011. 10.023Aye, L., & Widjaya, E. R. (2006). Environmental and economic analyses of waste disposal options for traditional markets in Indonesia. Waste Manag, 26 (10), 1180–1191. https://doi.org/10.1016/j.wasman. 2005.09.010Banar, M., Cokaygil, Z., & Ozkan, A. (2009). Life cycle assessment of solid waste management options for Eskisehir, Turkey. Waste Manag, 29(1), 54–62. https:// doi.org/10.1016/j.wasman.2007.12.006Bernstad Saraiva Schott, A., Wenzel, H., & la Cour Jansen, J. (Feb 2016). Identification of decisive factors for greenhouse gas emissions in comparative lifecycle assessments of food waste management – an analytical review. J. Clean. Prod, 13-24. https://doi. org/10.1016/j.jclepro.2016.01.079BID. (2015). Estudio tecnologías alternativas de disposición final o aprovechamiento de residuos sólidos. Propuesta de ajuste al Decreto 838 de 2005. https://colaboracion.dnp.gov.co/CDT/Conpes/Econ% C3%B3micos/3874.pdfBoldrin, A., Neidel, T. L., Damgaard, A., Bhander, G. S., Møller, J., & Christensen, T. H. (2011). Modelling of environmental impacts from biological treatment of organic municipal waste in EASEWASTE. Waste Manag, 31(4), 619–630. https://doi.org/10.1016/j.was man.2010.10.025Caicedo-Concha, D. M., Sandoval-Cobo, J. J., Fernando, C.- Q. R., Marmolejo-Rebellón, L. F., Torres-Lozada, P., & Sonia, H. (2019). The potential of methane production using aged landfill waste in developing countries: A case of study in Colombia. Cogent Eng, 6(1), 1-15. https://doi.org/10.1080/23311916.2019. 1664862Cárdenas Cleves, L. M., Parra Orobio, B. A., Torres Lozada, P., & Vásquez Franco, C. H. (2016). Perspectivas del ensayo de potencial bioquímico de metano - PBM para el control del proceso de digestión anaerobia de residuos. Rev. Investig. Optim. y Nuevos procesos en Ing, 29(1), 95–108. http://www. scielo.org.co/scielo.php?pid=S0120- 100X2016000100009&script=sci_abstract&tlng=esCarolina, A. (2017). “Life Cycle Assessment and Multicriteria Decision Analysis: Selection of a strategy for domestic food waste management in Rio de Janeiro. Journal of Cleaner Production, 143, 744 - 7561Cherubini, F., Bargigli, S., & Ulgiati, S. (2009). Life cycle assessment (LCA) of waste management strategies: landfilling, sorting plant and incineration. Energy, 34 (12), 2116–2123. https://doi.org/10.1016/j.energy. 2008.08.023Chi, Y., Dong, J., Tang, Y., Huang, Q., & Ni, M. (2015). Life cycle assessment of municipal solid waste source-separated collection and integrated waste management systems in Hangzhou, China. J. Mater. Cycles Waste Manag, 17(4), 695–706. https://doi.org/ 10.1007/s10163-014-0300-8Christensen, T. H. (2020). Application of LCA modelling in integrated waste management. Waste Manag, 118, 313–322. https://doi.org/10.1016/j.wasman.2020.08. 034Clavreul, J., Baumeister, H., Christensen, T. H., & Damgaard, A. (Oct 2014). An environmental assessment system for environmental technologies. Environmental Modelling and Software, 60, 18–30. https://doi.org/10.1016/j.envsoft.2014.06.007Damgaard, A., Manfredi, S., Merrild, H., Stensøe, S., & Christensen, T. H. (2011). LCA and economic evaluation of landfill leachate and gas technologies. Waste Manag, 31(7), 1532–1541. https://doi.org/10.1016/j. wasman.2011.02.027de Planeación, D. N. (2016). Política nacional para la gestión de residuos sólidos. CONPES 3874, I, 73. https://colaboracion.dnp.gov.co/CDT/Conpes/Econ% C3%B3micos/3874.pdfEdwards, J., Othman, M., Crossin, E., & Burn, S. (2017). Anaerobic co-digestion of municipal food waste and sewage sludge: A comparative life cycle assessment in the context of a waste service provision. Bioresource Technology, 223, 237–249. https://doi. org/10.1016/j.biortech.2016.10.044European Commission. (2010). International Reference Life Cycle Data System (ILCD) Handbook and General Guide for Life Cycle Assessment. DOI: 10.2788/94987Ferronato, N., Moresco, L., Guisbert Lizarazu, G. E., Gorritty Portillo, M. A., Conti, F., & Torretta, V. (2021). Sensitivity analysis and improvements of the recycling rate in municipal solid waste life cycle assessment: focus on a Latin American developing context. Waste Manag, 128, 1–15. https://doi.org/10.1016/j. wasman.2021.04.043Gunamantha, M., & Sarto. (2012). Life cycle assessment of municipal solid waste treatment to energy options: case study of KARTAMANTUL region, Yogyakarta. Renew. Energy, 41, 277–284. https://doi. org/10.1016/j.renene.2011.11.008Hong, J., Li, X., & Zhaojie, C. (Nov 2010). Life cycle assessment of four municipal solid waste management scenarios in China. Waste Manag, 30(11), 2362–2369. https://doi.org/10.1016/j.wasman.2010. 03.038Hong, R. J. (2006). Life cycle assessment of BMT-based integrated municipal solid waste management: case study in Pudong, China. Resour. Conserv. Recycl, 49 (2), 129–146. https://doi.org/10.1016/j.resconrec. 2006.03.007Icontec. (2006). “Gestión ambiental. Análisis de Ciclo de Vida. Principios y marco de referencia. UNE-EN ISO 14040:2006”.ISO. (2006). ISO 14040:2006(es), Gestión ambiental — Análisis del ciclo de vida — Principios y marco de referencia.ISO – ICONTEC. (2007). Norma técnica Colombiana TTCISO 14040. Icontec, (571), 1–24. https://tienda.icon tec.org/gp-gestion-ambiental-analisis-del-ciclo-devida-principios-y-marco-de-referencia-ntc-iso14040- 2007.htmlLaner, D. (2009). The consideration of long-term emissions from landfills within life-cycle assessment. Waste Manag. Res, 27(5), 463–470. https://doi.org/10. 1177/0734242X09102335Laurent, A. (Mar 2014). Review of LCA studies of solid waste management systems–part II: Methodological guidance for a better practice. Waste Manag, 34(3), 589–606. https://doi.org/10.1016/j.wasman.2013.12. 004Liamsanguan, C., & Gheewala, S. H. (2008). LCA: A decision support tool for environmental assessment of MSW management systems. Journal of Environmental Management, 87(1), 132–138. https:// doi.org/10.1016/j.jenvman.2007.01.003Lima, P. D. M., Colvero, D. A., Gomes, A. P., Wenzel, H., Schalch, V., & Cimpan, C. (2018). Environmental assessment of existing and alternative options for management of municipal solid waste in Brazil. Waste Manag, 78, 857–870. https://doi.org/10.1016/j. wasman.2018.07.007Majumdar, D. (2014). Emission, speciation, and evaluation of impacts of non-methane volatile organic compounds from open dump site. Journal of the Air & Waste Management Association, 67(7), 834-845. https://www.tandfonline.com/doi/full/10.1080/ 10962247.2013.873747Manaf, L. A., Samah, M. A. A., & Zukki, N. I. M. (2009). Municipal solid waste management in Malaysia: practices and challenges. Waste Manag, 29(11), 2902–2906. https://doi.org/10.1016/j.wasman.2008. 07.015Max, L., Coelho, G., & Celina, L. (2018). Resources, conservation and recycling applying life cycle assessment to support environmentally sustainable waste management strategies in Brazil. “Resources, Conserv. Recycl, 128, 438–450. https://doi.org/10. 1016/j.resconrec.2016.09.026Mendes, M. R., Aramaki, T., & Hanaki, K. (2003). Assessment of the environmental impact of management measures for the biodegradable fraction of municipal solid waste in Sao Paulo City. Waste Manag, 23(5), 403–409. https://doi.org/10.1016/S0956-053X(03)00058-8Mendes, M. R., Aramaki, T., & Hanaki, K. (2004). Comparison of the environmental impact of incineration and landfilling in Sao Paulo City as determined by LCA. Resour. Conserv. Recycl, 41(1), 47–63. https://doi.org/10.1016/j.resconrec.2003.08.003Menikpura, S. N. M., Gheewala, S. H., & Bonnet, S. (2012). Sustainability assessment of municipal solid waste management in Sri Lanka: problems and prospects. J. Mater. Cycles Waste Manag, 14(3), 181–192. https://doi.org/10.1007/s10163-012-0055-zMilutinovi, B., Stefanovi, G., Ðeki, P. S., Mijailovi, I., & Tomi, M. (2017). Environmental assessment of waste management scenarios with energy recovery using life cycle assessment and multi-criteria analysis. Energy, 137, 917–926. https://doi.org/10.1016/j. energy.2017.02.167Ministerio de Ambiente y Desarrollo Sostenible. (2019). Estrategia Nacional de Economía Circular.Özeler, D., Yetiş, Ü., & Demirer, G. N. (2006). Life cycle assesment of municipal solid waste management methods: ankara case study. Environ. Int, 32(3), 405–411. https://doi.org/10.1016/j.envint.2005.10.002Saheri, S. (2012). Life cycle assessment for solid waste disposal options in Malaysia. Polish J. Environ. Stud, 21(5), 1377–1382Sandoval-Cobo, J. J. (2020). Methane potential and degradation kinetics of fresh and excavated municipal solid waste from a tropical landfill in Colombia. Sustain. Environ. Res, 30(1). https://doi.org/10.1186/ s42834-020-00048-6Superintendencia de Servicios Públicos Domiciliarios. (2018). Informe de Disposición Final de Residuos Sólidos – 2017Traivivatana, S., Wangjiraniran, W., Junlakarn, S., & Wansophark, N. (Oct 2017). Thailand energy outlook for the Thailand integrated energy blueprint (TIEB). Energy Procedia, 138, 399–404. https://doi.org/10. 1016/j.egypro.2017.10.179United Nations Department of Economic and Social Affairs (UN DESA). (2018). “Sustainable Development Goals Report 2018,” p. 64.Urup Anders, A. D. O. (2014). “Landfilling in EASETECH.” p. 46.USEPA/ISWA. (2012). International Best Practices Guide for Landfill Gas Energy Project. U.S. Environmental Protection Agency and ISWA (International Waste Management Association).Xing, W., Lu, W., Zhao, Y., Zhang, X., Deng, W., & Christensen, T. H. (2013). Environmental impact assessment of leachate recirculation in landfill of municipal solid waste by comparing with evaporation and discharge (EASEWASTE). Waste Manag, 33(2), 382–389. https://www.sciencedirect.com/science/arti cle/abs/pii/S0956053X12004795Yang, N., Damgaard, A., Lü, F., Shao, L. M., Brogaard, L. K. S., & He, P. J. (2014). Environmental impact assessment on the construction and operation of municipal solid waste sanitary landfills in developing countries: China case study. Waste Manag, 34(5), 929–937. https://doi.org/10.1016/j.was man.2014.02.017Yang, N., Zhang, H., Shao, L.-M., Lü, F., & He, P.-J. (Nov 2013). Greenhouse gas emissions during MSW landfilling in China: influence of waste characteristics and LFG treatment measures. Journal of Environmental Management, 129(5), 510–521. https://doi.org/10. 1016/j.jenvman.2013.08.039Zhao, W., van der Voet, E., Zhang, Y., & Huppes, G. (2009). Life cycle assessment of municipal solid waste management with regard to greenhouse gas emissions: case study of Tianjin, China. The Science of the Total Environment, 407(5), 1517–1526. https://doi.org/10.1016/j.scitotenv. 2008.11.007Zhao, Y., Christensen, T. H., Lu, W., Wu, H., & Wang, H. (2011). Environmental impact assessment of solid waste management in Beijing City, China. Waste Manag, 31(4), 793–799. https://doi.org/10.1016/j.was man.2010.11.007Zhao, Y., Wang, H. T., Lu, W. J., Damgaard, A., & Christensen, T. H. (2009). Life-cycle assessment of the municipal solid waste management system in Hangzhou, China (EASEWASTE). Waste Manag. Res, 27(4), 399–406. https://doi.org/10.1177/ 0734242X09103823Ziegler-Rodriguez, K., Margallo, M., Aldaco, R., VázquezRowe, I., & Kahhat, R. (2019). Transitioning from open dumpsters to landfilling in Peru: environmental benefits and challenges from a life-cycle perspective. Journal of Cleaner Production, 229, 989–1003. https://doi.org/10.1016/j.jclepro.2019.05. 015VertederoGas de vertederoBiogásAnálisis del ciclo de vidaPaíses en desarrolloMetas de desarrollo sostenibleLandfillLandfill gasBiogasLife cycle analysisDeveloping countriesSustainable development goalsAn evaluation of final disposal alternatives for municipal solid waste through life cycle assessment: A case of study in ColombiaArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINAL2021_solid_waste_through.pdf2021_solid_waste_through.pdfapplication/pdf6118675https://repository.ucc.edu.co/bitstreams/5773d80b-39b8-42f3-a4d5-d619ac0b8864/download5d565efb892833c4de144afb968060aaMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.ucc.edu.co/bitstreams/405efb2d-9dd9-49a3-ace0-454c221b8a37/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAIL2021_solid_waste_through.pdf.jpg2021_solid_waste_through.pdf.jpgGenerated Thumbnailimage/jpeg4377https://repository.ucc.edu.co/bitstreams/490c83a5-e4b8-40c3-b141-6fca7e1de05f/download3121ad01d0c28d7c38d9bafe75d550aeMD53TEXT2021_solid_waste_through.pdf.txt2021_solid_waste_through.pdf.txtExtracted texttext/plain66354https://repository.ucc.edu.co/bitstreams/dc040ba4-755a-487c-b290-0e791c453609/downloade3c4f53edf45511df6c1701b4ae3619bMD5420.500.12494/46558oai:repository.ucc.edu.co:20.500.12494/465582024-08-10 21:03:06.56restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |