An evaluation of final disposal alternatives for municipal solid waste through life cycle assessment: A case of study in Colombia

El vertido sigue siendo la tecnología más común utilizada en el desarrollo países para la disposición final de los residuos sólidos urbanos (RSU), aunque la negativa impactos en el medio ambiente como los causados por la liberación de gases de efecto invernadero gases (GEI) que contribuyen al calent...

Full description

Autores:
Caicedo Concha, Diana Milena
Sandoval Cobo, John J.
Stringfellow, Anne
Colmenares Quintero, Ramón Fernando
Tipo de recurso:
Article of investigation
Fecha de publicación:
2021
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/46558
Acceso en línea:
https://doi.org/10.1080/23311916.2021.1956860
https://hdl.handle.net/20.500.12494/46558
Palabra clave:
Vertedero
Gas de vertedero
Biogás
Análisis del ciclo de vida
Países en desarrollo
Metas de desarrollo sostenible
Landfill
Landfill gas
Biogas
Life cycle analysis
Developing countries
Sustainable development goals
Rights
openAccess
License
Atribución
id COOPER2_50e59de58e34f2b09d42d29fd3b3ef09
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/46558
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv An evaluation of final disposal alternatives for municipal solid waste through life cycle assessment: A case of study in Colombia
title An evaluation of final disposal alternatives for municipal solid waste through life cycle assessment: A case of study in Colombia
spellingShingle An evaluation of final disposal alternatives for municipal solid waste through life cycle assessment: A case of study in Colombia
Vertedero
Gas de vertedero
Biogás
Análisis del ciclo de vida
Países en desarrollo
Metas de desarrollo sostenible
Landfill
Landfill gas
Biogas
Life cycle analysis
Developing countries
Sustainable development goals
title_short An evaluation of final disposal alternatives for municipal solid waste through life cycle assessment: A case of study in Colombia
title_full An evaluation of final disposal alternatives for municipal solid waste through life cycle assessment: A case of study in Colombia
title_fullStr An evaluation of final disposal alternatives for municipal solid waste through life cycle assessment: A case of study in Colombia
title_full_unstemmed An evaluation of final disposal alternatives for municipal solid waste through life cycle assessment: A case of study in Colombia
title_sort An evaluation of final disposal alternatives for municipal solid waste through life cycle assessment: A case of study in Colombia
dc.creator.fl_str_mv Caicedo Concha, Diana Milena
Sandoval Cobo, John J.
Stringfellow, Anne
Colmenares Quintero, Ramón Fernando
dc.contributor.author.none.fl_str_mv Caicedo Concha, Diana Milena
Sandoval Cobo, John J.
Stringfellow, Anne
Colmenares Quintero, Ramón Fernando
dc.subject.spa.fl_str_mv Vertedero
Gas de vertedero
Biogás
Análisis del ciclo de vida
Países en desarrollo
Metas de desarrollo sostenible
topic Vertedero
Gas de vertedero
Biogás
Análisis del ciclo de vida
Países en desarrollo
Metas de desarrollo sostenible
Landfill
Landfill gas
Biogas
Life cycle analysis
Developing countries
Sustainable development goals
dc.subject.other.spa.fl_str_mv Landfill
Landfill gas
Biogas
Life cycle analysis
Developing countries
Sustainable development goals
description El vertido sigue siendo la tecnología más común utilizada en el desarrollo países para la disposición final de los residuos sólidos urbanos (RSU), aunque la negativa impactos en el medio ambiente como los causados por la liberación de gases de efecto invernadero gases (GEI) que contribuyen al calentamiento global (GW). el gobierno colombiano fijó una meta de reducción del 20% en las emisiones de GEI para el año 2030, para lo cual el sólido sector de la gestión de residuos tiene un papel importante que desempeñar. Asimismo, el logro de las metas de los objetivos de desarrollo sostenible (ODS) está jugando un papel clave para la agenda de gobierno y así lo hará durante los próximos años. En este contexto, hay una importante margen de mejora de las alternativas de gestión en la actualidad rellenos sanitarios operativos en el país, especialmente en cuanto a las medidas para reducir emisiones al aire y lixiviados. Este documento evalúa, utilizando el análisis del ciclo de vida (LCA) métodos, los impactos ambientales asociados con un relleno sanitario en Colombia bajo cuatro escenarios diferentes: vertederos a cielo abierto (cero) y vertedero convencional bajo tres alternativas de gestión de gas de vertedero (LFG): venteo (a), quema (b) y energía recuperación (c). Las categorías de impacto, así como los métodos de evaluación del impacto del ciclo de vida (LCIA) utilizados, se determinaron a través de la revisión de los estudios de LCA para RSU sistemas de gestión en los países en desarrollo. Los principales resultados muestran que a nivel mundial potencial de calentamiento global (GWP) fue el principal impacto ambiental causado por el vertedero funcionamiento en las condiciones consideradas; sin embargo, el GWP se redujo significativamente con el cambio de escenarios de gestión sin tratamiento de biogás (o y a: común a la mayoría de los rellenos sanitarios en los países en desarrollo) a escenarios donde el GRS es antorcha (b) o utilizada para la producción de energía (c). Estos resultados sugieren que la adopción de Se deben considerar tecnologías para la captura, quema y recuperación de energía de GRS si Se esperan importantes reducciones de GEI del sector de la gestión de residuos, ya que así como proporcionar incentivos económicos para mejorar la sostenibilidad operativa de vertederos en los países en desarrollo.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-08
dc.date.accessioned.none.fl_str_mv 2022-09-29T15:47:26Z
dc.date.available.none.fl_str_mv 2022-09-29T15:47:26Z
dc.type.none.fl_str_mv Artículos Científicos
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 23311916
dc.identifier.uri.spa.fl_str_mv https://doi.org/10.1080/23311916.2021.1956860
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/46558
dc.identifier.bibliographicCitation.spa.fl_str_mv Diana M Caicedo-Concha, John J Sandoval-Cobo, Anne Stringfellow & Ramon Fernando Colmenares-Quintero | (2021) An evaluation of final disposal alternatives for municipal solid waste through life cycle assessment: A case of study in Colombia, Cogent Engineering, 8:1, 1956860, DOI: 10.1080/23311916.2021.1956860
identifier_str_mv 23311916
Diana M Caicedo-Concha, John J Sandoval-Cobo, Anne Stringfellow & Ramon Fernando Colmenares-Quintero | (2021) An evaluation of final disposal alternatives for municipal solid waste through life cycle assessment: A case of study in Colombia, Cogent Engineering, 8:1, 1956860, DOI: 10.1080/23311916.2021.1956860
url https://doi.org/10.1080/23311916.2021.1956860
https://hdl.handle.net/20.500.12494/46558
dc.relation.isversionof.spa.fl_str_mv https://www.tandfonline.com/doi/full/10.1080/23311916.2021.1956860
dc.relation.ispartofjournal.spa.fl_str_mv Cogent Engineering
dc.relation.references.spa.fl_str_mv Abduli, A. N., & Mansoor Yonesi, A. (2011). Life cycle assessment (LCA) of solid waste management strategies in Tehran: Landfill and composting plus landfill. Environmental Monitoring and Assessment, 178(1), 487–498. https://doi.org/10.1007/s10661- 010-1707-x
Abeliotis, K., Kalogeropoulos, A., & Lasaridi, K. (2012). Life cycle assessment of the MBT plant in Ano Liossia, Athens, Greece. Waste Manag, 32(1), 213–219. https://doi.org/10.1016/j.wasman.2011.09.002
Arafat, H. A., Jijakli, K., & Ahsan, A. (Oct 2015). Environmental performance and energy recovery potential of five processes for municipal solid waste treatment. Journal of Cleaner Production, 105, 233–240. https://doi.org/10.1016/j.jclepro.2013.11.071
Assamoi, B., & Lawryshyn, Y. (2012). The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion. Waste Manag, 32(5), 1019–1030. https://doi.org/10.1016/j.wasman.2011. 10.023
Aye, L., & Widjaya, E. R. (2006). Environmental and economic analyses of waste disposal options for traditional markets in Indonesia. Waste Manag, 26 (10), 1180–1191. https://doi.org/10.1016/j.wasman. 2005.09.010
Banar, M., Cokaygil, Z., & Ozkan, A. (2009). Life cycle assessment of solid waste management options for Eskisehir, Turkey. Waste Manag, 29(1), 54–62. https:// doi.org/10.1016/j.wasman.2007.12.006
Bernstad Saraiva Schott, A., Wenzel, H., & la Cour Jansen, J. (Feb 2016). Identification of decisive factors for greenhouse gas emissions in comparative lifecycle assessments of food waste management – an analytical review. J. Clean. Prod, 13-24. https://doi. org/10.1016/j.jclepro.2016.01.079
BID. (2015). Estudio tecnologías alternativas de disposición final o aprovechamiento de residuos sólidos. Propuesta de ajuste al Decreto 838 de 2005. https://colaboracion.dnp.gov.co/CDT/Conpes/Econ% C3%B3micos/3874.pdf
Boldrin, A., Neidel, T. L., Damgaard, A., Bhander, G. S., Møller, J., & Christensen, T. H. (2011). Modelling of environmental impacts from biological treatment of organic municipal waste in EASEWASTE. Waste Manag, 31(4), 619–630. https://doi.org/10.1016/j.was man.2010.10.025
Caicedo-Concha, D. M., Sandoval-Cobo, J. J., Fernando, C.- Q. R., Marmolejo-Rebellón, L. F., Torres-Lozada, P., & Sonia, H. (2019). The potential of methane production using aged landfill waste in developing countries: A case of study in Colombia. Cogent Eng, 6(1), 1-15. https://doi.org/10.1080/23311916.2019. 1664862
Cárdenas Cleves, L. M., Parra Orobio, B. A., Torres Lozada, P., & Vásquez Franco, C. H. (2016). Perspectivas del ensayo de potencial bioquímico de metano - PBM para el control del proceso de digestión anaerobia de residuos. Rev. Investig. Optim. y Nuevos procesos en Ing, 29(1), 95–108. http://www. scielo.org.co/scielo.php?pid=S0120- 100X2016000100009&script=sci_abstract&tlng=es
Carolina, A. (2017). “Life Cycle Assessment and Multicriteria Decision Analysis: Selection of a strategy for domestic food waste management in Rio de Janeiro. Journal of Cleaner Production, 143, 744 - 7561
Cherubini, F., Bargigli, S., & Ulgiati, S. (2009). Life cycle assessment (LCA) of waste management strategies: landfilling, sorting plant and incineration. Energy, 34 (12), 2116–2123. https://doi.org/10.1016/j.energy. 2008.08.023
Chi, Y., Dong, J., Tang, Y., Huang, Q., & Ni, M. (2015). Life cycle assessment of municipal solid waste source-separated collection and integrated waste management systems in Hangzhou, China. J. Mater. Cycles Waste Manag, 17(4), 695–706. https://doi.org/ 10.1007/s10163-014-0300-8
Christensen, T. H. (2020). Application of LCA modelling in integrated waste management. Waste Manag, 118, 313–322. https://doi.org/10.1016/j.wasman.2020.08. 034
Clavreul, J., Baumeister, H., Christensen, T. H., & Damgaard, A. (Oct 2014). An environmental assessment system for environmental technologies. Environmental Modelling and Software, 60, 18–30. https://doi.org/10.1016/j.envsoft.2014.06.007
Damgaard, A., Manfredi, S., Merrild, H., Stensøe, S., & Christensen, T. H. (2011). LCA and economic evaluation of landfill leachate and gas technologies. Waste Manag, 31(7), 1532–1541. https://doi.org/10.1016/j. wasman.2011.02.027
de Planeación, D. N. (2016). Política nacional para la gestión de residuos sólidos. CONPES 3874, I, 73. https://colaboracion.dnp.gov.co/CDT/Conpes/Econ% C3%B3micos/3874.pdf
Edwards, J., Othman, M., Crossin, E., & Burn, S. (2017). Anaerobic co-digestion of municipal food waste and sewage sludge: A comparative life cycle assessment in the context of a waste service provision. Bioresource Technology, 223, 237–249. https://doi. org/10.1016/j.biortech.2016.10.044
European Commission. (2010). International Reference Life Cycle Data System (ILCD) Handbook and General Guide for Life Cycle Assessment. DOI: 10.2788/94987
Ferronato, N., Moresco, L., Guisbert Lizarazu, G. E., Gorritty Portillo, M. A., Conti, F., & Torretta, V. (2021). Sensitivity analysis and improvements of the recycling rate in municipal solid waste life cycle assessment: focus on a Latin American developing context. Waste Manag, 128, 1–15. https://doi.org/10.1016/j. wasman.2021.04.043
Gunamantha, M., & Sarto. (2012). Life cycle assessment of municipal solid waste treatment to energy options: case study of KARTAMANTUL region, Yogyakarta. Renew. Energy, 41, 277–284. https://doi. org/10.1016/j.renene.2011.11.008
Hong, J., Li, X., & Zhaojie, C. (Nov 2010). Life cycle assessment of four municipal solid waste management scenarios in China. Waste Manag, 30(11), 2362–2369. https://doi.org/10.1016/j.wasman.2010. 03.038
Hong, R. J. (2006). Life cycle assessment of BMT-based integrated municipal solid waste management: case study in Pudong, China. Resour. Conserv. Recycl, 49 (2), 129–146. https://doi.org/10.1016/j.resconrec. 2006.03.007
Icontec. (2006). “Gestión ambiental. Análisis de Ciclo de Vida. Principios y marco de referencia. UNE-EN ISO 14040:2006”.
ISO. (2006). ISO 14040:2006(es), Gestión ambiental — Análisis del ciclo de vida — Principios y marco de referencia.
ISO – ICONTEC. (2007). Norma técnica Colombiana TTCISO 14040. Icontec, (571), 1–24. https://tienda.icon tec.org/gp-gestion-ambiental-analisis-del-ciclo-devida-principios-y-marco-de-referencia-ntc-iso14040- 2007.html
Laner, D. (2009). The consideration of long-term emissions from landfills within life-cycle assessment. Waste Manag. Res, 27(5), 463–470. https://doi.org/10. 1177/0734242X09102335
Laurent, A. (Mar 2014). Review of LCA studies of solid waste management systems–part II: Methodological guidance for a better practice. Waste Manag, 34(3), 589–606. https://doi.org/10.1016/j.wasman.2013.12. 004
Liamsanguan, C., & Gheewala, S. H. (2008). LCA: A decision support tool for environmental assessment of MSW management systems. Journal of Environmental Management, 87(1), 132–138. https:// doi.org/10.1016/j.jenvman.2007.01.003
Lima, P. D. M., Colvero, D. A., Gomes, A. P., Wenzel, H., Schalch, V., & Cimpan, C. (2018). Environmental assessment of existing and alternative options for management of municipal solid waste in Brazil. Waste Manag, 78, 857–870. https://doi.org/10.1016/j. wasman.2018.07.007
Majumdar, D. (2014). Emission, speciation, and evaluation of impacts of non-methane volatile organic compounds from open dump site. Journal of the Air & Waste Management Association, 67(7), 834-845. https://www.tandfonline.com/doi/full/10.1080/ 10962247.2013.873747
Manaf, L. A., Samah, M. A. A., & Zukki, N. I. M. (2009). Municipal solid waste management in Malaysia: practices and challenges. Waste Manag, 29(11), 2902–2906. https://doi.org/10.1016/j.wasman.2008. 07.015
Max, L., Coelho, G., & Celina, L. (2018). Resources, conservation and recycling applying life cycle assessment to support environmentally sustainable waste management strategies in Brazil. “Resources, Conserv. Recycl, 128, 438–450. https://doi.org/10. 1016/j.resconrec.2016.09.026
Mendes, M. R., Aramaki, T., & Hanaki, K. (2003). Assessment of the environmental impact of management measures for the biodegradable fraction of municipal solid waste in Sao Paulo City. Waste Manag, 23(5), 403–409. https://doi.org/10.1016/S0956-053X(03)00058-8
Mendes, M. R., Aramaki, T., & Hanaki, K. (2004). Comparison of the environmental impact of incineration and landfilling in Sao Paulo City as determined by LCA. Resour. Conserv. Recycl, 41(1), 47–63. https://doi.org/10.1016/j.resconrec.2003.08.003
Menikpura, S. N. M., Gheewala, S. H., & Bonnet, S. (2012). Sustainability assessment of municipal solid waste management in Sri Lanka: problems and prospects. J. Mater. Cycles Waste Manag, 14(3), 181–192. https://doi.org/10.1007/s10163-012-0055-z
Milutinovi, B., Stefanovi, G., Ðeki, P. S., Mijailovi, I., & Tomi, M. (2017). Environmental assessment of waste management scenarios with energy recovery using life cycle assessment and multi-criteria analysis. Energy, 137, 917–926. https://doi.org/10.1016/j. energy.2017.02.167
Ministerio de Ambiente y Desarrollo Sostenible. (2019). Estrategia Nacional de Economía Circular.
Özeler, D., Yetiş, Ü., & Demirer, G. N. (2006). Life cycle assesment of municipal solid waste management methods: ankara case study. Environ. Int, 32(3), 405–411. https://doi.org/10.1016/j.envint.2005.10.002
Saheri, S. (2012). Life cycle assessment for solid waste disposal options in Malaysia. Polish J. Environ. Stud, 21(5), 1377–1382
Sandoval-Cobo, J. J. (2020). Methane potential and degradation kinetics of fresh and excavated municipal solid waste from a tropical landfill in Colombia. Sustain. Environ. Res, 30(1). https://doi.org/10.1186/ s42834-020-00048-6
Superintendencia de Servicios Públicos Domiciliarios. (2018). Informe de Disposición Final de Residuos Sólidos – 2017
Traivivatana, S., Wangjiraniran, W., Junlakarn, S., & Wansophark, N. (Oct 2017). Thailand energy outlook for the Thailand integrated energy blueprint (TIEB). Energy Procedia, 138, 399–404. https://doi.org/10. 1016/j.egypro.2017.10.179
United Nations Department of Economic and Social Affairs (UN DESA). (2018). “Sustainable Development Goals Report 2018,” p. 64.
Urup Anders, A. D. O. (2014). “Landfilling in EASETECH.” p. 46.
USEPA/ISWA. (2012). International Best Practices Guide for Landfill Gas Energy Project. U.S. Environmental Protection Agency and ISWA (International Waste Management Association).
Xing, W., Lu, W., Zhao, Y., Zhang, X., Deng, W., & Christensen, T. H. (2013). Environmental impact assessment of leachate recirculation in landfill of municipal solid waste by comparing with evaporation and discharge (EASEWASTE). Waste Manag, 33(2), 382–389. https://www.sciencedirect.com/science/arti cle/abs/pii/S0956053X12004795
Yang, N., Damgaard, A., Lü, F., Shao, L. M., Brogaard, L. K. S., & He, P. J. (2014). Environmental impact assessment on the construction and operation of municipal solid waste sanitary landfills in developing countries: China case study. Waste Manag, 34(5), 929–937. https://doi.org/10.1016/j.was man.2014.02.017
Yang, N., Zhang, H., Shao, L.-M., Lü, F., & He, P.-J. (Nov 2013). Greenhouse gas emissions during MSW landfilling in China: influence of waste characteristics and LFG treatment measures. Journal of Environmental Management, 129(5), 510–521. https://doi.org/10. 1016/j.jenvman.2013.08.039
Zhao, W., van der Voet, E., Zhang, Y., & Huppes, G. (2009). Life cycle assessment of municipal solid waste management with regard to greenhouse gas emissions: case study of Tianjin, China. The Science of the Total Environment, 407(5), 1517–1526. https://doi.org/10.1016/j.scitotenv. 2008.11.007
Zhao, Y., Christensen, T. H., Lu, W., Wu, H., & Wang, H. (2011). Environmental impact assessment of solid waste management in Beijing City, China. Waste Manag, 31(4), 793–799. https://doi.org/10.1016/j.was man.2010.11.007
Zhao, Y., Wang, H. T., Lu, W. J., Damgaard, A., & Christensen, T. H. (2009). Life-cycle assessment of the municipal solid waste management system in Hangzhou, China (EASEWASTE). Waste Manag. Res, 27(4), 399–406. https://doi.org/10.1177/ 0734242X09103823
Ziegler-Rodriguez, K., Margallo, M., Aldaco, R., VázquezRowe, I., & Kahhat, R. (2019). Transitioning from open dumpsters to landfilling in Peru: environmental benefits and challenges from a life-cycle perspective. Journal of Cleaner Production, 229, 989–1003. https://doi.org/10.1016/j.jclepro.2019.05. 015
dc.rights.license.none.fl_str_mv Atribución
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 18 p.
dc.coverage.temporal.spa.fl_str_mv Vol. 8, No. 1
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería de Sistemas, Cali
dc.publisher.program.spa.fl_str_mv Ingeniería Industrial
dc.publisher.place.spa.fl_str_mv Cali
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/5773d80b-39b8-42f3-a4d5-d619ac0b8864/download
https://repository.ucc.edu.co/bitstreams/405efb2d-9dd9-49a3-ace0-454c221b8a37/download
https://repository.ucc.edu.co/bitstreams/490c83a5-e4b8-40c3-b141-6fca7e1de05f/download
https://repository.ucc.edu.co/bitstreams/dc040ba4-755a-487c-b290-0e791c453609/download
bitstream.checksum.fl_str_mv 5d565efb892833c4de144afb968060aa
8a4605be74aa9ea9d79846c1fba20a33
3121ad01d0c28d7c38d9bafe75d550ae
e3c4f53edf45511df6c1701b4ae3619b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1811565170337513472
spelling Caicedo Concha, Diana MilenaSandoval Cobo, John J.Stringfellow, AnneColmenares Quintero, Ramón FernandoVol. 8, No. 12022-09-29T15:47:26Z2022-09-29T15:47:26Z2021-0823311916https://doi.org/10.1080/23311916.2021.1956860https://hdl.handle.net/20.500.12494/46558Diana M Caicedo-Concha, John J Sandoval-Cobo, Anne Stringfellow & Ramon Fernando Colmenares-Quintero | (2021) An evaluation of final disposal alternatives for municipal solid waste through life cycle assessment: A case of study in Colombia, Cogent Engineering, 8:1, 1956860, DOI: 10.1080/23311916.2021.1956860El vertido sigue siendo la tecnología más común utilizada en el desarrollo países para la disposición final de los residuos sólidos urbanos (RSU), aunque la negativa impactos en el medio ambiente como los causados por la liberación de gases de efecto invernadero gases (GEI) que contribuyen al calentamiento global (GW). el gobierno colombiano fijó una meta de reducción del 20% en las emisiones de GEI para el año 2030, para lo cual el sólido sector de la gestión de residuos tiene un papel importante que desempeñar. Asimismo, el logro de las metas de los objetivos de desarrollo sostenible (ODS) está jugando un papel clave para la agenda de gobierno y así lo hará durante los próximos años. En este contexto, hay una importante margen de mejora de las alternativas de gestión en la actualidad rellenos sanitarios operativos en el país, especialmente en cuanto a las medidas para reducir emisiones al aire y lixiviados. Este documento evalúa, utilizando el análisis del ciclo de vida (LCA) métodos, los impactos ambientales asociados con un relleno sanitario en Colombia bajo cuatro escenarios diferentes: vertederos a cielo abierto (cero) y vertedero convencional bajo tres alternativas de gestión de gas de vertedero (LFG): venteo (a), quema (b) y energía recuperación (c). Las categorías de impacto, así como los métodos de evaluación del impacto del ciclo de vida (LCIA) utilizados, se determinaron a través de la revisión de los estudios de LCA para RSU sistemas de gestión en los países en desarrollo. Los principales resultados muestran que a nivel mundial potencial de calentamiento global (GWP) fue el principal impacto ambiental causado por el vertedero funcionamiento en las condiciones consideradas; sin embargo, el GWP se redujo significativamente con el cambio de escenarios de gestión sin tratamiento de biogás (o y a: común a la mayoría de los rellenos sanitarios en los países en desarrollo) a escenarios donde el GRS es antorcha (b) o utilizada para la producción de energía (c). Estos resultados sugieren que la adopción de Se deben considerar tecnologías para la captura, quema y recuperación de energía de GRS si Se esperan importantes reducciones de GEI del sector de la gestión de residuos, ya que así como proporcionar incentivos económicos para mejorar la sostenibilidad operativa de vertederos en los países en desarrollo.Landfilling is still the most common technology used in developing countries for the final disposal of municipal solid waste (MSW), albeit the negative impacts on the environment such as those caused by the release of greenhouse gases (GHG) that contribute to global warming (GW). The Colombian government set a target of 20% reduction in GHG emissions by year 2030, for which the solid waste management sector has an important role to play. Also, the achievement of the targets of sustainable development goals (SDG) is playing a key role for the government agenda and will do so for the next years. In this context, there is an important room for improvement of the management alternatives in currently operative landfills in the country, especially in terms of measures to reduce fugitive air emissions and leachates. This paper evaluates, using life cycle assessment (LCA) methods, the environmental impacts associated with a landfill in Colombia under four different scenarios: open dumps (zero) and conventional landfill under three landfill gas (LFG) management alternatives: venting (a), flaring (b), and energy recovery (c). The impact categories as well as the life cycle impact assessment (LCIA) methods used were determined through the review of LCA studies for MSW management systems in developing countries. Main results show that global warming potential (GWP) was the main environmental impact caused by the landfill operation under the conditions considered; however, GWP was significantly reduced with the shifting from management scenarios with no LFG treatment (o and a: common to most landfills in developing countries) to scenarios where LFG is either flare (b) or utilized for energy production (c). These results suggest that adoption of technologies for LFG capture, burn, and energy recovery must be considered if important reductions of GHGs are expected from the waste management sector, as well as to provide economic incentives to improve the operational sustainability of landfills in developing countries.http://orcid.org/0000-0003-4031-4568http://orcid.org/0000-0002-2608-7699http://orcid.org/0000-0003-1166-1982diana.caidedoc@campusucc.edu.co18 p.Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería de Sistemas, CaliIngeniería IndustrialCalihttps://www.tandfonline.com/doi/full/10.1080/23311916.2021.1956860Cogent EngineeringAbduli, A. N., & Mansoor Yonesi, A. (2011). Life cycle assessment (LCA) of solid waste management strategies in Tehran: Landfill and composting plus landfill. Environmental Monitoring and Assessment, 178(1), 487–498. https://doi.org/10.1007/s10661- 010-1707-xAbeliotis, K., Kalogeropoulos, A., & Lasaridi, K. (2012). Life cycle assessment of the MBT plant in Ano Liossia, Athens, Greece. Waste Manag, 32(1), 213–219. https://doi.org/10.1016/j.wasman.2011.09.002Arafat, H. A., Jijakli, K., & Ahsan, A. (Oct 2015). Environmental performance and energy recovery potential of five processes for municipal solid waste treatment. Journal of Cleaner Production, 105, 233–240. https://doi.org/10.1016/j.jclepro.2013.11.071Assamoi, B., & Lawryshyn, Y. (2012). The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion. Waste Manag, 32(5), 1019–1030. https://doi.org/10.1016/j.wasman.2011. 10.023Aye, L., & Widjaya, E. R. (2006). Environmental and economic analyses of waste disposal options for traditional markets in Indonesia. Waste Manag, 26 (10), 1180–1191. https://doi.org/10.1016/j.wasman. 2005.09.010Banar, M., Cokaygil, Z., & Ozkan, A. (2009). Life cycle assessment of solid waste management options for Eskisehir, Turkey. Waste Manag, 29(1), 54–62. https:// doi.org/10.1016/j.wasman.2007.12.006Bernstad Saraiva Schott, A., Wenzel, H., & la Cour Jansen, J. (Feb 2016). Identification of decisive factors for greenhouse gas emissions in comparative lifecycle assessments of food waste management – an analytical review. J. Clean. Prod, 13-24. https://doi. org/10.1016/j.jclepro.2016.01.079BID. (2015). Estudio tecnologías alternativas de disposición final o aprovechamiento de residuos sólidos. Propuesta de ajuste al Decreto 838 de 2005. https://colaboracion.dnp.gov.co/CDT/Conpes/Econ% C3%B3micos/3874.pdfBoldrin, A., Neidel, T. L., Damgaard, A., Bhander, G. S., Møller, J., & Christensen, T. H. (2011). Modelling of environmental impacts from biological treatment of organic municipal waste in EASEWASTE. Waste Manag, 31(4), 619–630. https://doi.org/10.1016/j.was man.2010.10.025Caicedo-Concha, D. M., Sandoval-Cobo, J. J., Fernando, C.- Q. R., Marmolejo-Rebellón, L. F., Torres-Lozada, P., & Sonia, H. (2019). The potential of methane production using aged landfill waste in developing countries: A case of study in Colombia. Cogent Eng, 6(1), 1-15. https://doi.org/10.1080/23311916.2019. 1664862Cárdenas Cleves, L. M., Parra Orobio, B. A., Torres Lozada, P., & Vásquez Franco, C. H. (2016). Perspectivas del ensayo de potencial bioquímico de metano - PBM para el control del proceso de digestión anaerobia de residuos. Rev. Investig. Optim. y Nuevos procesos en Ing, 29(1), 95–108. http://www. scielo.org.co/scielo.php?pid=S0120- 100X2016000100009&script=sci_abstract&tlng=esCarolina, A. (2017). “Life Cycle Assessment and Multicriteria Decision Analysis: Selection of a strategy for domestic food waste management in Rio de Janeiro. Journal of Cleaner Production, 143, 744 - 7561Cherubini, F., Bargigli, S., & Ulgiati, S. (2009). Life cycle assessment (LCA) of waste management strategies: landfilling, sorting plant and incineration. Energy, 34 (12), 2116–2123. https://doi.org/10.1016/j.energy. 2008.08.023Chi, Y., Dong, J., Tang, Y., Huang, Q., & Ni, M. (2015). Life cycle assessment of municipal solid waste source-separated collection and integrated waste management systems in Hangzhou, China. J. Mater. Cycles Waste Manag, 17(4), 695–706. https://doi.org/ 10.1007/s10163-014-0300-8Christensen, T. H. (2020). Application of LCA modelling in integrated waste management. Waste Manag, 118, 313–322. https://doi.org/10.1016/j.wasman.2020.08. 034Clavreul, J., Baumeister, H., Christensen, T. H., & Damgaard, A. (Oct 2014). An environmental assessment system for environmental technologies. Environmental Modelling and Software, 60, 18–30. https://doi.org/10.1016/j.envsoft.2014.06.007Damgaard, A., Manfredi, S., Merrild, H., Stensøe, S., & Christensen, T. H. (2011). LCA and economic evaluation of landfill leachate and gas technologies. Waste Manag, 31(7), 1532–1541. https://doi.org/10.1016/j. wasman.2011.02.027de Planeación, D. N. (2016). Política nacional para la gestión de residuos sólidos. CONPES 3874, I, 73. https://colaboracion.dnp.gov.co/CDT/Conpes/Econ% C3%B3micos/3874.pdfEdwards, J., Othman, M., Crossin, E., & Burn, S. (2017). Anaerobic co-digestion of municipal food waste and sewage sludge: A comparative life cycle assessment in the context of a waste service provision. Bioresource Technology, 223, 237–249. https://doi. org/10.1016/j.biortech.2016.10.044European Commission. (2010). International Reference Life Cycle Data System (ILCD) Handbook and General Guide for Life Cycle Assessment. DOI: 10.2788/94987Ferronato, N., Moresco, L., Guisbert Lizarazu, G. E., Gorritty Portillo, M. A., Conti, F., & Torretta, V. (2021). Sensitivity analysis and improvements of the recycling rate in municipal solid waste life cycle assessment: focus on a Latin American developing context. Waste Manag, 128, 1–15. https://doi.org/10.1016/j. wasman.2021.04.043Gunamantha, M., & Sarto. (2012). Life cycle assessment of municipal solid waste treatment to energy options: case study of KARTAMANTUL region, Yogyakarta. Renew. Energy, 41, 277–284. https://doi. org/10.1016/j.renene.2011.11.008Hong, J., Li, X., & Zhaojie, C. (Nov 2010). Life cycle assessment of four municipal solid waste management scenarios in China. Waste Manag, 30(11), 2362–2369. https://doi.org/10.1016/j.wasman.2010. 03.038Hong, R. J. (2006). Life cycle assessment of BMT-based integrated municipal solid waste management: case study in Pudong, China. Resour. Conserv. Recycl, 49 (2), 129–146. https://doi.org/10.1016/j.resconrec. 2006.03.007Icontec. (2006). “Gestión ambiental. Análisis de Ciclo de Vida. Principios y marco de referencia. UNE-EN ISO 14040:2006”.ISO. (2006). ISO 14040:2006(es), Gestión ambiental — Análisis del ciclo de vida — Principios y marco de referencia.ISO – ICONTEC. (2007). Norma técnica Colombiana TTCISO 14040. Icontec, (571), 1–24. https://tienda.icon tec.org/gp-gestion-ambiental-analisis-del-ciclo-devida-principios-y-marco-de-referencia-ntc-iso14040- 2007.htmlLaner, D. (2009). The consideration of long-term emissions from landfills within life-cycle assessment. Waste Manag. Res, 27(5), 463–470. https://doi.org/10. 1177/0734242X09102335Laurent, A. (Mar 2014). Review of LCA studies of solid waste management systems–part II: Methodological guidance for a better practice. Waste Manag, 34(3), 589–606. https://doi.org/10.1016/j.wasman.2013.12. 004Liamsanguan, C., & Gheewala, S. H. (2008). LCA: A decision support tool for environmental assessment of MSW management systems. Journal of Environmental Management, 87(1), 132–138. https:// doi.org/10.1016/j.jenvman.2007.01.003Lima, P. D. M., Colvero, D. A., Gomes, A. P., Wenzel, H., Schalch, V., & Cimpan, C. (2018). Environmental assessment of existing and alternative options for management of municipal solid waste in Brazil. Waste Manag, 78, 857–870. https://doi.org/10.1016/j. wasman.2018.07.007Majumdar, D. (2014). Emission, speciation, and evaluation of impacts of non-methane volatile organic compounds from open dump site. Journal of the Air & Waste Management Association, 67(7), 834-845. https://www.tandfonline.com/doi/full/10.1080/ 10962247.2013.873747Manaf, L. A., Samah, M. A. A., & Zukki, N. I. M. (2009). Municipal solid waste management in Malaysia: practices and challenges. Waste Manag, 29(11), 2902–2906. https://doi.org/10.1016/j.wasman.2008. 07.015Max, L., Coelho, G., & Celina, L. (2018). Resources, conservation and recycling applying life cycle assessment to support environmentally sustainable waste management strategies in Brazil. “Resources, Conserv. Recycl, 128, 438–450. https://doi.org/10. 1016/j.resconrec.2016.09.026Mendes, M. R., Aramaki, T., & Hanaki, K. (2003). Assessment of the environmental impact of management measures for the biodegradable fraction of municipal solid waste in Sao Paulo City. Waste Manag, 23(5), 403–409. https://doi.org/10.1016/S0956-053X(03)00058-8Mendes, M. R., Aramaki, T., & Hanaki, K. (2004). Comparison of the environmental impact of incineration and landfilling in Sao Paulo City as determined by LCA. Resour. Conserv. Recycl, 41(1), 47–63. https://doi.org/10.1016/j.resconrec.2003.08.003Menikpura, S. N. M., Gheewala, S. H., & Bonnet, S. (2012). Sustainability assessment of municipal solid waste management in Sri Lanka: problems and prospects. J. Mater. Cycles Waste Manag, 14(3), 181–192. https://doi.org/10.1007/s10163-012-0055-zMilutinovi, B., Stefanovi, G., Ðeki, P. S., Mijailovi, I., & Tomi, M. (2017). Environmental assessment of waste management scenarios with energy recovery using life cycle assessment and multi-criteria analysis. Energy, 137, 917–926. https://doi.org/10.1016/j. energy.2017.02.167Ministerio de Ambiente y Desarrollo Sostenible. (2019). Estrategia Nacional de Economía Circular.Özeler, D., Yetiş, Ü., & Demirer, G. N. (2006). Life cycle assesment of municipal solid waste management methods: ankara case study. Environ. Int, 32(3), 405–411. https://doi.org/10.1016/j.envint.2005.10.002Saheri, S. (2012). Life cycle assessment for solid waste disposal options in Malaysia. Polish J. Environ. Stud, 21(5), 1377–1382Sandoval-Cobo, J. J. (2020). Methane potential and degradation kinetics of fresh and excavated municipal solid waste from a tropical landfill in Colombia. Sustain. Environ. Res, 30(1). https://doi.org/10.1186/ s42834-020-00048-6Superintendencia de Servicios Públicos Domiciliarios. (2018). Informe de Disposición Final de Residuos Sólidos – 2017Traivivatana, S., Wangjiraniran, W., Junlakarn, S., & Wansophark, N. (Oct 2017). Thailand energy outlook for the Thailand integrated energy blueprint (TIEB). Energy Procedia, 138, 399–404. https://doi.org/10. 1016/j.egypro.2017.10.179United Nations Department of Economic and Social Affairs (UN DESA). (2018). “Sustainable Development Goals Report 2018,” p. 64.Urup Anders, A. D. O. (2014). “Landfilling in EASETECH.” p. 46.USEPA/ISWA. (2012). International Best Practices Guide for Landfill Gas Energy Project. U.S. Environmental Protection Agency and ISWA (International Waste Management Association).Xing, W., Lu, W., Zhao, Y., Zhang, X., Deng, W., & Christensen, T. H. (2013). Environmental impact assessment of leachate recirculation in landfill of municipal solid waste by comparing with evaporation and discharge (EASEWASTE). Waste Manag, 33(2), 382–389. https://www.sciencedirect.com/science/arti cle/abs/pii/S0956053X12004795Yang, N., Damgaard, A., Lü, F., Shao, L. M., Brogaard, L. K. S., & He, P. J. (2014). Environmental impact assessment on the construction and operation of municipal solid waste sanitary landfills in developing countries: China case study. Waste Manag, 34(5), 929–937. https://doi.org/10.1016/j.was man.2014.02.017Yang, N., Zhang, H., Shao, L.-M., Lü, F., & He, P.-J. (Nov 2013). Greenhouse gas emissions during MSW landfilling in China: influence of waste characteristics and LFG treatment measures. Journal of Environmental Management, 129(5), 510–521. https://doi.org/10. 1016/j.jenvman.2013.08.039Zhao, W., van der Voet, E., Zhang, Y., & Huppes, G. (2009). Life cycle assessment of municipal solid waste management with regard to greenhouse gas emissions: case study of Tianjin, China. The Science of the Total Environment, 407(5), 1517–1526. https://doi.org/10.1016/j.scitotenv. 2008.11.007Zhao, Y., Christensen, T. H., Lu, W., Wu, H., & Wang, H. (2011). Environmental impact assessment of solid waste management in Beijing City, China. Waste Manag, 31(4), 793–799. https://doi.org/10.1016/j.was man.2010.11.007Zhao, Y., Wang, H. T., Lu, W. J., Damgaard, A., & Christensen, T. H. (2009). Life-cycle assessment of the municipal solid waste management system in Hangzhou, China (EASEWASTE). Waste Manag. Res, 27(4), 399–406. https://doi.org/10.1177/ 0734242X09103823Ziegler-Rodriguez, K., Margallo, M., Aldaco, R., VázquezRowe, I., & Kahhat, R. (2019). Transitioning from open dumpsters to landfilling in Peru: environmental benefits and challenges from a life-cycle perspective. Journal of Cleaner Production, 229, 989–1003. https://doi.org/10.1016/j.jclepro.2019.05. 015VertederoGas de vertederoBiogásAnálisis del ciclo de vidaPaíses en desarrolloMetas de desarrollo sostenibleLandfillLandfill gasBiogasLife cycle analysisDeveloping countriesSustainable development goalsAn evaluation of final disposal alternatives for municipal solid waste through life cycle assessment: A case of study in ColombiaArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINAL2021_solid_waste_through.pdf2021_solid_waste_through.pdfapplication/pdf6118675https://repository.ucc.edu.co/bitstreams/5773d80b-39b8-42f3-a4d5-d619ac0b8864/download5d565efb892833c4de144afb968060aaMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.ucc.edu.co/bitstreams/405efb2d-9dd9-49a3-ace0-454c221b8a37/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAIL2021_solid_waste_through.pdf.jpg2021_solid_waste_through.pdf.jpgGenerated Thumbnailimage/jpeg4377https://repository.ucc.edu.co/bitstreams/490c83a5-e4b8-40c3-b141-6fca7e1de05f/download3121ad01d0c28d7c38d9bafe75d550aeMD53TEXT2021_solid_waste_through.pdf.txt2021_solid_waste_through.pdf.txtExtracted texttext/plain66354https://repository.ucc.edu.co/bitstreams/dc040ba4-755a-487c-b290-0e791c453609/downloade3c4f53edf45511df6c1701b4ae3619bMD5420.500.12494/46558oai:repository.ucc.edu.co:20.500.12494/465582024-08-10 21:03:06.56restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=