In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting
For decades, bioprospecting has proven to be useful for the identification of compounds with pharmacological potential. Considering the great diversity of Colombian plants and the serious worldwide public health problem of dengue-a disease caused by the dengue virus (DENV)-in the present study, we e...
- Autores:
-
Martínez Gutiérrez, Marlén
Trujillo Correa, Andrea Isabel
Quintero Gil, Diana Carolina
Diaz Castillo, Fredyc
Quiñones, Winston
Robledo, Sara M
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/15306
- Acceso en línea:
- https://hdl.handle.net/20.500.12494/15306
- Palabra clave:
- Antiviral; Catechin
Bioprospecting
Dengue virus
Gallic acid
Psidium guajava
Quercetin
Catechin
- Rights
- openAccess
- License
- Atribución
id |
COOPER2_4e05ec5f1a74a64eedb66a1d398fba68 |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/15306 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting |
title |
In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting |
spellingShingle |
In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting Antiviral; Catechin Bioprospecting Dengue virus Gallic acid Psidium guajava Quercetin Catechin |
title_short |
In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting |
title_full |
In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting |
title_fullStr |
In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting |
title_full_unstemmed |
In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting |
title_sort |
In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting |
dc.creator.fl_str_mv |
Martínez Gutiérrez, Marlén Trujillo Correa, Andrea Isabel Quintero Gil, Diana Carolina Diaz Castillo, Fredyc Quiñones, Winston Robledo, Sara M |
dc.contributor.author.none.fl_str_mv |
Martínez Gutiérrez, Marlén Trujillo Correa, Andrea Isabel Quintero Gil, Diana Carolina Diaz Castillo, Fredyc Quiñones, Winston Robledo, Sara M |
dc.subject.spa.fl_str_mv |
Antiviral; Catechin Bioprospecting Dengue virus Gallic acid Psidium guajava Quercetin Catechin |
topic |
Antiviral; Catechin Bioprospecting Dengue virus Gallic acid Psidium guajava Quercetin Catechin |
description |
For decades, bioprospecting has proven to be useful for the identification of compounds with pharmacological potential. Considering the great diversity of Colombian plants and the serious worldwide public health problem of dengue-a disease caused by the dengue virus (DENV)-in the present study, we evaluated the anti-DENV effects of 12 ethanolic extracts derived from plants collected in the Colombian Caribbean coast, and 5 fractions and 5 compounds derived from Psidium guajava. METHODS: The cytotoxicity and antiviral effect of 12 ethanolic extracts derived from plants collected in the Colombian Caribbean coast was evaluated in epithelial VERO cells. Five fractions were obtained by open column chromatography from the ethanolic extract with the highest selectivity index (SI) (derived from P. guajava, SI: 128.2). From the fraction with the highest selectivity (Pg-YP-I-22C, SI: 35.5), five compounds were identified by one- and two-dimensional nuclear magnetic resonance spectroscopy. The antiviral effect in vitro of the fractions and compounds was evaluated by different experimental strategies (Pre- and post-treatment) using non-toxic concentrations calculated by MTT method. The DENV inhibition was evaluated by plate focus assay. The results were analyzed by means of statistical analysis using Student's t-test. Finally the antiviral effect in Silico was evaluated by molecular docking. RESULTS: In vitro evaluation of these compounds showed that three of them (gallic acid, quercetin, and catechin) were promising antivirals as they inhibit the production of infectious viral particles via different experimental strategies, with the best antiviral being catechin (100% inhibition with a pre-treatment strategy and 91.8% with a post-treatment strategy). When testing the interactions of these compounds with the viral envelope protein in silico by docking, only naringin and hesperidin had better scores than the theoretical threshold of - 7.0 kcal/mol (- 8.0 kcal/mol and - 8.2 kcal/mol, respectively). All ligands tested except gallic acid showed higher affinity to the NS5 protein than the theoretical threshold. CONCLUSION: Even though bioprospecting has recently been replaced by more targeted tools for identifying compounds with pharmacological potential, our results show it is still useful for this purpose. Additionally, combining in vitro and in silico evaluations allowed us to identify promising antivirals as well as their possible mechanisms of action. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-11-28T14:04:50Z |
dc.date.available.none.fl_str_mv |
2019-11-28T14:04:50Z |
dc.date.issued.none.fl_str_mv |
2019-11 |
dc.type.none.fl_str_mv |
Artículo |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
1472-6882 |
dc.identifier.uri.spa.fl_str_mv |
doi: 10.1186/s12906-019-2695-1. |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/15306 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Trujillo-Correa AI, Quintero-Gil DC, Diaz-Castillo F, Quiñones W, Robledo SM, Martinez-Gutierrez M. In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting. BMC Complement Altern Med. 2019 Nov 6;19(1):298. |
identifier_str_mv |
1472-6882 doi: 10.1186/s12906-019-2695-1. Trujillo-Correa AI, Quintero-Gil DC, Diaz-Castillo F, Quiñones W, Robledo SM, Martinez-Gutierrez M. In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting. BMC Complement Altern Med. 2019 Nov 6;19(1):298. |
url |
https://hdl.handle.net/20.500.12494/15306 |
dc.relation.isversionof.spa.fl_str_mv |
https://bmccomplementalternmed.biomedcentral.com/articles/10.1186/s12906-019-2695-1 |
dc.relation.ispartofjournal.spa.fl_str_mv |
BMC Complement Altern Med. |
dc.relation.references.spa.fl_str_mv |
1. Guzman MG, Harris E. Dengue. Lancet. 2015;385(9966):453–65. 2. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O. The global distribution and burden of dengue. Nature. 2013;496(7446):504–7. 3. OPS. Programa Regional de Dengue de la OPS. In: vol. Actualizado a la SE 43 del 2013: Organización Panamericana de la Salud; 2013. 4. Salles TS, da Encarnação S-GT, de Alvarenga ESL, Guimarães-Ribeiro V, MDF d M, de Castro-Salles PF, dos Santos CR, do Amaral Melo AC, Soares MR, Ferreira DF. History, epidemiology and diagnostics of dengue in the American and Brazilian contexts: a review. Parasit Vectors. 2018;11(1):264. 5. Organization WH, Research SPf, Diseases TiT, Diseases WHODoCoNT, Epidemic WHO, Alert P. Dengue: guidelines for diagnosis, treatment, prevention and control. Geneva: World Health Organization; 2009. 6. Simmons CP, Farrar JJ, van Vinh CN, Wills B. Dengue. N Engl J Med. 2012;366(15):1423–32. 7. Halstead SB. Pathogenesis of dengue: challenges to molecular biology. Science. 1988;239(4839):476–81. 8. Vaughn DW, Green S, Kalayanarooj S, Innis BL, Nimmannitya S, Suntayakorn S, Endy TP, Raengsakulrach B, Rothman AL, Ennis FA. Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis. 2000;181(1):2–9. 9. Chambers TJ, Hahn CS, Galler R, Rice CM. Flavivirus genome organization, expression, and replication. Ann Rev Microbiol. 1990;44(1):649–88. 10. Xie Q, Zhang B, Yu J, Wu Q, Yang F, Cao H, Zhao W. Structure and function of the non-structural protein of dengue virus and its applications in antiviral therapy. Curr Top Med Chem. 2017;17(3):371–80. 11. Bartenschlager R, Miller S. Molecular aspects of dengue virus replication; 2008. 12. Rodenhuis-Zybert IA, Wilschut J, Smit JM. Dengue virus life cycle: viral and host factors modulating infectivity. Cell Mol Life Sci. 2010;67(16):2773–86. 13. Lin Y-L, Lei H-Y, Lin Y-S, Yeh T-M, Chen S-H, Liu H-S. Heparin inhibits dengue-2 virus infection of five human liver cell lines. Antivir Res. 2002;56(1):93–6. 14. Takhampunya R, Ubol S, Houng H-S, Cameron CE, Padmanabhan R. Inhibition of dengue virus replication by mycophenolic acid and ribavirin. J Gen Virol. 2006;87(7):1947–52. 15. Whitby K, Pierson TC, Geiss B, Lane K, Engle M, Zhou Y, Doms RW, Diamond MS. Castanospermine, a potent inhibitor of dengue virus infection in vitro and in vivo. J Virol. 2005;79(14):8698–706. 16. Martínez-Gutierrez M, Castellanos JE, Gallego-Gómez JC. Statins reduce dengue virus production via decreased virion assembly. Intervirology. 2011;54(4):202–16. 17. Low JG, Ooi EE, Vasudevan SG. Current Status of Dengue Therapeutics Research and Development. J Infect Dis. 2017;215(suppl_2):S96–S102. 18. Kaptein SJ, Neyts J. Towards antiviral therapies for treating dengue virus infections. Curr Opin Pharmacol. 2016;30:1–7. 19. Lai J-H, Lin Y-L, Hsieh S-L. Pharmacological intervention for dengue virus infection. Biochem Pharmacol. 2017;129:14–25. 20. Farrar J, Focks D, Gubler D, Barrera R, Guzman M, Simmons C, Kalayanarooj S, Lum L, McCall P, Lloyd L. Towards a global dengue research agenda. Tropical Med Int Health. 2007;12(6):695–9. |
dc.rights.license.none.fl_str_mv |
Atribución |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina Veterinaría y Zootecnia, Bucaramanga BMC |
dc.publisher.program.spa.fl_str_mv |
Medicina veterinaria y zootecnia |
dc.publisher.place.spa.fl_str_mv |
Bucaramanga |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/816b2ff5-bbb1-4979-b68e-25195c1282ca/download https://repository.ucc.edu.co/bitstreams/0249eeec-2fbc-4ebc-a32a-90c8b59b18c6/download https://repository.ucc.edu.co/bitstreams/9e66b4b2-7988-4557-85fa-597fe7e70231/download https://repository.ucc.edu.co/bitstreams/28e12866-1602-4177-9413-902262fac565/download https://repository.ucc.edu.co/bitstreams/d361a9e3-675b-4c35-9054-8e9012f44627/download https://repository.ucc.edu.co/bitstreams/f212e542-0f84-4e84-a483-a691b2f005fb/download https://repository.ucc.edu.co/bitstreams/ac2d46e5-51ac-45b0-bbeb-a02d8eba2fe7/download |
bitstream.checksum.fl_str_mv |
a796a17c49aa24684b907447b0be81aa d88c81d78708d7df7fc5a446ec1586d8 3bce4f7ab09dfc588f126e1e36e98a45 0194e20e40fbe5e988cf08f228dfa286 5c93de07d15ef0a9df9d3eacd4b798eb 59afe81cb06cf29b859660de8a202ecc 2c0dad09ce11df5b5c07513f49812321 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1818158398917574656 |
spelling |
Martínez Gutiérrez, MarlénTrujillo Correa, Andrea IsabelQuintero Gil, Diana CarolinaDiaz Castillo, FredycQuiñones, WinstonRobledo, Sara M2019-11-28T14:04:50Z2019-11-28T14:04:50Z2019-111472-6882doi: 10.1186/s12906-019-2695-1.https://hdl.handle.net/20.500.12494/15306Trujillo-Correa AI, Quintero-Gil DC, Diaz-Castillo F, Quiñones W, Robledo SM, Martinez-Gutierrez M. In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting. BMC Complement Altern Med. 2019 Nov 6;19(1):298.For decades, bioprospecting has proven to be useful for the identification of compounds with pharmacological potential. Considering the great diversity of Colombian plants and the serious worldwide public health problem of dengue-a disease caused by the dengue virus (DENV)-in the present study, we evaluated the anti-DENV effects of 12 ethanolic extracts derived from plants collected in the Colombian Caribbean coast, and 5 fractions and 5 compounds derived from Psidium guajava. METHODS: The cytotoxicity and antiviral effect of 12 ethanolic extracts derived from plants collected in the Colombian Caribbean coast was evaluated in epithelial VERO cells. Five fractions were obtained by open column chromatography from the ethanolic extract with the highest selectivity index (SI) (derived from P. guajava, SI: 128.2). From the fraction with the highest selectivity (Pg-YP-I-22C, SI: 35.5), five compounds were identified by one- and two-dimensional nuclear magnetic resonance spectroscopy. The antiviral effect in vitro of the fractions and compounds was evaluated by different experimental strategies (Pre- and post-treatment) using non-toxic concentrations calculated by MTT method. The DENV inhibition was evaluated by plate focus assay. The results were analyzed by means of statistical analysis using Student's t-test. Finally the antiviral effect in Silico was evaluated by molecular docking. RESULTS: In vitro evaluation of these compounds showed that three of them (gallic acid, quercetin, and catechin) were promising antivirals as they inhibit the production of infectious viral particles via different experimental strategies, with the best antiviral being catechin (100% inhibition with a pre-treatment strategy and 91.8% with a post-treatment strategy). When testing the interactions of these compounds with the viral envelope protein in silico by docking, only naringin and hesperidin had better scores than the theoretical threshold of - 7.0 kcal/mol (- 8.0 kcal/mol and - 8.2 kcal/mol, respectively). All ligands tested except gallic acid showed higher affinity to the NS5 protein than the theoretical threshold. CONCLUSION: Even though bioprospecting has recently been replaced by more targeted tools for identifying compounds with pharmacological potential, our results show it is still useful for this purpose. Additionally, combining in vitro and in silico evaluations allowed us to identify promising antivirals as well as their possible mechanisms of action.https://scienti.colciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000213748https://orcid.org/0000-0002-9429-0058Marlen.martinezg@campucucc.edu.cohttps://scholar.google.es/citations?user=flSrsSIAAAAJ&hl=esUniversidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina Veterinaría y Zootecnia, BucaramangaBMCMedicina veterinaria y zootecniaBucaramangahttps://bmccomplementalternmed.biomedcentral.com/articles/10.1186/s12906-019-2695-1BMC Complement Altern Med.1. Guzman MG, Harris E. Dengue. Lancet. 2015;385(9966):453–65.2. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O. The global distribution and burden of dengue. Nature. 2013;496(7446):504–7.3. OPS. Programa Regional de Dengue de la OPS. In: vol. Actualizado a la SE 43 del 2013: Organización Panamericana de la Salud; 2013.4. Salles TS, da Encarnação S-GT, de Alvarenga ESL, Guimarães-Ribeiro V, MDF d M, de Castro-Salles PF, dos Santos CR, do Amaral Melo AC, Soares MR, Ferreira DF. History, epidemiology and diagnostics of dengue in the American and Brazilian contexts: a review. Parasit Vectors. 2018;11(1):264.5. Organization WH, Research SPf, Diseases TiT, Diseases WHODoCoNT, Epidemic WHO, Alert P. Dengue: guidelines for diagnosis, treatment, prevention and control. Geneva: World Health Organization; 2009.6. Simmons CP, Farrar JJ, van Vinh CN, Wills B. Dengue. N Engl J Med. 2012;366(15):1423–32.7. Halstead SB. Pathogenesis of dengue: challenges to molecular biology. Science. 1988;239(4839):476–81.8. Vaughn DW, Green S, Kalayanarooj S, Innis BL, Nimmannitya S, Suntayakorn S, Endy TP, Raengsakulrach B, Rothman AL, Ennis FA. Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis. 2000;181(1):2–9.9. Chambers TJ, Hahn CS, Galler R, Rice CM. Flavivirus genome organization, expression, and replication. Ann Rev Microbiol. 1990;44(1):649–88.10. Xie Q, Zhang B, Yu J, Wu Q, Yang F, Cao H, Zhao W. Structure and function of the non-structural protein of dengue virus and its applications in antiviral therapy. Curr Top Med Chem. 2017;17(3):371–80.11. Bartenschlager R, Miller S. Molecular aspects of dengue virus replication; 2008.12. Rodenhuis-Zybert IA, Wilschut J, Smit JM. Dengue virus life cycle: viral and host factors modulating infectivity. Cell Mol Life Sci. 2010;67(16):2773–86.13. Lin Y-L, Lei H-Y, Lin Y-S, Yeh T-M, Chen S-H, Liu H-S. Heparin inhibits dengue-2 virus infection of five human liver cell lines. Antivir Res. 2002;56(1):93–6.14. Takhampunya R, Ubol S, Houng H-S, Cameron CE, Padmanabhan R. Inhibition of dengue virus replication by mycophenolic acid and ribavirin. J Gen Virol. 2006;87(7):1947–52.15. Whitby K, Pierson TC, Geiss B, Lane K, Engle M, Zhou Y, Doms RW, Diamond MS. Castanospermine, a potent inhibitor of dengue virus infection in vitro and in vivo. J Virol. 2005;79(14):8698–706.16. Martínez-Gutierrez M, Castellanos JE, Gallego-Gómez JC. Statins reduce dengue virus production via decreased virion assembly. Intervirology. 2011;54(4):202–16.17. Low JG, Ooi EE, Vasudevan SG. Current Status of Dengue Therapeutics Research and Development. J Infect Dis. 2017;215(suppl_2):S96–S102.18. Kaptein SJ, Neyts J. Towards antiviral therapies for treating dengue virus infections. Curr Opin Pharmacol. 2016;30:1–7.19. Lai J-H, Lin Y-L, Hsieh S-L. Pharmacological intervention for dengue virus infection. Biochem Pharmacol. 2017;129:14–25.20. Farrar J, Focks D, Gubler D, Barrera R, Guzman M, Simmons C, Kalayanarooj S, Lum L, McCall P, Lloyd L. Towards a global dengue research agenda. Tropical Med Int Health. 2007;12(6):695–9.Antiviral; CatechinBioprospectingDengue virusGallic acidPsidium guajavaQuercetinCatechinIn vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospectingArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINALs12906-019-2695-1 (1).pdfs12906-019-2695-1 (1).pdfapplication/pdf2750715https://repository.ucc.edu.co/bitstreams/816b2ff5-bbb1-4979-b68e-25195c1282ca/downloada796a17c49aa24684b907447b0be81aaMD51Licencia_de_uso_InVitroandInVivo.pdfLicencia_de_uso_InVitroandInVivo.pdfapplication/pdf191989https://repository.ucc.edu.co/bitstreams/0249eeec-2fbc-4ebc-a32a-90c8b59b18c6/downloadd88c81d78708d7df7fc5a446ec1586d8MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/9e66b4b2-7988-4557-85fa-597fe7e70231/download3bce4f7ab09dfc588f126e1e36e98a45MD54THUMBNAILs12906-019-2695-1 (1).pdf.jpgs12906-019-2695-1 (1).pdf.jpgGenerated Thumbnailimage/jpeg5599https://repository.ucc.edu.co/bitstreams/28e12866-1602-4177-9413-902262fac565/download0194e20e40fbe5e988cf08f228dfa286MD55Licencia_de_uso_InVitroandInVivo.pdf.jpgLicencia_de_uso_InVitroandInVivo.pdf.jpgGenerated Thumbnailimage/jpeg5282https://repository.ucc.edu.co/bitstreams/d361a9e3-675b-4c35-9054-8e9012f44627/download5c93de07d15ef0a9df9d3eacd4b798ebMD56TEXTs12906-019-2695-1 (1).pdf.txts12906-019-2695-1 (1).pdf.txtExtracted texttext/plain80402https://repository.ucc.edu.co/bitstreams/f212e542-0f84-4e84-a483-a691b2f005fb/download59afe81cb06cf29b859660de8a202eccMD57Licencia_de_uso_InVitroandInVivo.pdf.txtLicencia_de_uso_InVitroandInVivo.pdf.txtExtracted texttext/plain5449https://repository.ucc.edu.co/bitstreams/ac2d46e5-51ac-45b0-bbeb-a02d8eba2fe7/download2c0dad09ce11df5b5c07513f49812321MD5820.500.12494/15306oai:repository.ucc.edu.co:20.500.12494/153062024-08-10 22:40:56.874restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.com |