In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting

For decades, bioprospecting has proven to be useful for the identification of compounds with pharmacological potential. Considering the great diversity of Colombian plants and the serious worldwide public health problem of dengue-a disease caused by the dengue virus (DENV)-in the present study, we e...

Full description

Autores:
Martínez Gutiérrez, Marlén
Trujillo Correa, Andrea Isabel
Quintero Gil, Diana Carolina
Diaz Castillo, Fredyc
Quiñones, Winston
Robledo, Sara M
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/15306
Acceso en línea:
https://hdl.handle.net/20.500.12494/15306
Palabra clave:
Antiviral; Catechin
Bioprospecting
Dengue virus
Gallic acid
Psidium guajava
Quercetin
Catechin
Rights
openAccess
License
Atribución
id COOPER2_4e05ec5f1a74a64eedb66a1d398fba68
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/15306
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting
title In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting
spellingShingle In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting
Antiviral; Catechin
Bioprospecting
Dengue virus
Gallic acid
Psidium guajava
Quercetin
Catechin
title_short In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting
title_full In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting
title_fullStr In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting
title_full_unstemmed In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting
title_sort In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting
dc.creator.fl_str_mv Martínez Gutiérrez, Marlén
Trujillo Correa, Andrea Isabel
Quintero Gil, Diana Carolina
Diaz Castillo, Fredyc
Quiñones, Winston
Robledo, Sara M
dc.contributor.author.none.fl_str_mv Martínez Gutiérrez, Marlén
Trujillo Correa, Andrea Isabel
Quintero Gil, Diana Carolina
Diaz Castillo, Fredyc
Quiñones, Winston
Robledo, Sara M
dc.subject.spa.fl_str_mv Antiviral; Catechin
Bioprospecting
Dengue virus
Gallic acid
Psidium guajava
Quercetin
Catechin
topic Antiviral; Catechin
Bioprospecting
Dengue virus
Gallic acid
Psidium guajava
Quercetin
Catechin
description For decades, bioprospecting has proven to be useful for the identification of compounds with pharmacological potential. Considering the great diversity of Colombian plants and the serious worldwide public health problem of dengue-a disease caused by the dengue virus (DENV)-in the present study, we evaluated the anti-DENV effects of 12 ethanolic extracts derived from plants collected in the Colombian Caribbean coast, and 5 fractions and 5 compounds derived from Psidium guajava. METHODS: The cytotoxicity and antiviral effect of 12 ethanolic extracts derived from plants collected in the Colombian Caribbean coast was evaluated in epithelial VERO cells. Five fractions were obtained by open column chromatography from the ethanolic extract with the highest selectivity index (SI) (derived from P. guajava, SI: 128.2). From the fraction with the highest selectivity (Pg-YP-I-22C, SI: 35.5), five compounds were identified by one- and two-dimensional nuclear magnetic resonance spectroscopy. The antiviral effect in vitro of the fractions and compounds was evaluated by different experimental strategies (Pre- and post-treatment) using non-toxic concentrations calculated by MTT method. The DENV inhibition was evaluated by plate focus assay. The results were analyzed by means of statistical analysis using Student's t-test. Finally the antiviral effect in Silico was evaluated by molecular docking. RESULTS: In vitro evaluation of these compounds showed that three of them (gallic acid, quercetin, and catechin) were promising antivirals as they inhibit the production of infectious viral particles via different experimental strategies, with the best antiviral being catechin (100% inhibition with a pre-treatment strategy and 91.8% with a post-treatment strategy). When testing the interactions of these compounds with the viral envelope protein in silico by docking, only naringin and hesperidin had better scores than the theoretical threshold of - 7.0 kcal/mol (- 8.0 kcal/mol and - 8.2 kcal/mol, respectively). All ligands tested except gallic acid showed higher affinity to the NS5 protein than the theoretical threshold. CONCLUSION: Even though bioprospecting has recently been replaced by more targeted tools for identifying compounds with pharmacological potential, our results show it is still useful for this purpose. Additionally, combining in vitro and in silico evaluations allowed us to identify promising antivirals as well as their possible mechanisms of action.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-11-28T14:04:50Z
dc.date.available.none.fl_str_mv 2019-11-28T14:04:50Z
dc.date.issued.none.fl_str_mv 2019-11
dc.type.none.fl_str_mv Artículo
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 1472-6882
dc.identifier.uri.spa.fl_str_mv doi: 10.1186/s12906-019-2695-1.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/15306
dc.identifier.bibliographicCitation.spa.fl_str_mv Trujillo-Correa AI, Quintero-Gil DC, Diaz-Castillo F, Quiñones W, Robledo SM, Martinez-Gutierrez M. In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting. BMC Complement Altern Med. 2019 Nov 6;19(1):298.
identifier_str_mv 1472-6882
doi: 10.1186/s12906-019-2695-1.
Trujillo-Correa AI, Quintero-Gil DC, Diaz-Castillo F, Quiñones W, Robledo SM, Martinez-Gutierrez M. In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting. BMC Complement Altern Med. 2019 Nov 6;19(1):298.
url https://hdl.handle.net/20.500.12494/15306
dc.relation.isversionof.spa.fl_str_mv https://bmccomplementalternmed.biomedcentral.com/articles/10.1186/s12906-019-2695-1
dc.relation.ispartofjournal.spa.fl_str_mv BMC Complement Altern Med.
dc.relation.references.spa.fl_str_mv 1. Guzman MG, Harris E. Dengue. Lancet. 2015;385(9966):453–65.
2. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O. The global distribution and burden of dengue. Nature. 2013;496(7446):504–7.
3. OPS. Programa Regional de Dengue de la OPS. In: vol. Actualizado a la SE 43 del 2013: Organización Panamericana de la Salud; 2013.
4. Salles TS, da Encarnação S-GT, de Alvarenga ESL, Guimarães-Ribeiro V, MDF d M, de Castro-Salles PF, dos Santos CR, do Amaral Melo AC, Soares MR, Ferreira DF. History, epidemiology and diagnostics of dengue in the American and Brazilian contexts: a review. Parasit Vectors. 2018;11(1):264.
5. Organization WH, Research SPf, Diseases TiT, Diseases WHODoCoNT, Epidemic WHO, Alert P. Dengue: guidelines for diagnosis, treatment, prevention and control. Geneva: World Health Organization; 2009.
6. Simmons CP, Farrar JJ, van Vinh CN, Wills B. Dengue. N Engl J Med. 2012;366(15):1423–32.
7. Halstead SB. Pathogenesis of dengue: challenges to molecular biology. Science. 1988;239(4839):476–81.
8. Vaughn DW, Green S, Kalayanarooj S, Innis BL, Nimmannitya S, Suntayakorn S, Endy TP, Raengsakulrach B, Rothman AL, Ennis FA. Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis. 2000;181(1):2–9.
9. Chambers TJ, Hahn CS, Galler R, Rice CM. Flavivirus genome organization, expression, and replication. Ann Rev Microbiol. 1990;44(1):649–88.
10. Xie Q, Zhang B, Yu J, Wu Q, Yang F, Cao H, Zhao W. Structure and function of the non-structural protein of dengue virus and its applications in antiviral therapy. Curr Top Med Chem. 2017;17(3):371–80.
11. Bartenschlager R, Miller S. Molecular aspects of dengue virus replication; 2008.
12. Rodenhuis-Zybert IA, Wilschut J, Smit JM. Dengue virus life cycle: viral and host factors modulating infectivity. Cell Mol Life Sci. 2010;67(16):2773–86.
13. Lin Y-L, Lei H-Y, Lin Y-S, Yeh T-M, Chen S-H, Liu H-S. Heparin inhibits dengue-2 virus infection of five human liver cell lines. Antivir Res. 2002;56(1):93–6.
14. Takhampunya R, Ubol S, Houng H-S, Cameron CE, Padmanabhan R. Inhibition of dengue virus replication by mycophenolic acid and ribavirin. J Gen Virol. 2006;87(7):1947–52.
15. Whitby K, Pierson TC, Geiss B, Lane K, Engle M, Zhou Y, Doms RW, Diamond MS. Castanospermine, a potent inhibitor of dengue virus infection in vitro and in vivo. J Virol. 2005;79(14):8698–706.
16. Martínez-Gutierrez M, Castellanos JE, Gallego-Gómez JC. Statins reduce dengue virus production via decreased virion assembly. Intervirology. 2011;54(4):202–16.
17. Low JG, Ooi EE, Vasudevan SG. Current Status of Dengue Therapeutics Research and Development. J Infect Dis. 2017;215(suppl_2):S96–S102.
18. Kaptein SJ, Neyts J. Towards antiviral therapies for treating dengue virus infections. Curr Opin Pharmacol. 2016;30:1–7.
19. Lai J-H, Lin Y-L, Hsieh S-L. Pharmacological intervention for dengue virus infection. Biochem Pharmacol. 2017;129:14–25.
20. Farrar J, Focks D, Gubler D, Barrera R, Guzman M, Simmons C, Kalayanarooj S, Lum L, McCall P, Lloyd L. Towards a global dengue research agenda. Tropical Med Int Health. 2007;12(6):695–9.
dc.rights.license.none.fl_str_mv Atribución
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina Veterinaría y Zootecnia, Bucaramanga
BMC
dc.publisher.program.spa.fl_str_mv Medicina veterinaria y zootecnia
dc.publisher.place.spa.fl_str_mv Bucaramanga
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/816b2ff5-bbb1-4979-b68e-25195c1282ca/download
https://repository.ucc.edu.co/bitstreams/0249eeec-2fbc-4ebc-a32a-90c8b59b18c6/download
https://repository.ucc.edu.co/bitstreams/9e66b4b2-7988-4557-85fa-597fe7e70231/download
https://repository.ucc.edu.co/bitstreams/28e12866-1602-4177-9413-902262fac565/download
https://repository.ucc.edu.co/bitstreams/d361a9e3-675b-4c35-9054-8e9012f44627/download
https://repository.ucc.edu.co/bitstreams/f212e542-0f84-4e84-a483-a691b2f005fb/download
https://repository.ucc.edu.co/bitstreams/ac2d46e5-51ac-45b0-bbeb-a02d8eba2fe7/download
bitstream.checksum.fl_str_mv a796a17c49aa24684b907447b0be81aa
d88c81d78708d7df7fc5a446ec1586d8
3bce4f7ab09dfc588f126e1e36e98a45
0194e20e40fbe5e988cf08f228dfa286
5c93de07d15ef0a9df9d3eacd4b798eb
59afe81cb06cf29b859660de8a202ecc
2c0dad09ce11df5b5c07513f49812321
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808788849248174080
spelling Martínez Gutiérrez, MarlénTrujillo Correa, Andrea IsabelQuintero Gil, Diana CarolinaDiaz Castillo, FredycQuiñones, WinstonRobledo, Sara M2019-11-28T14:04:50Z2019-11-28T14:04:50Z2019-111472-6882doi: 10.1186/s12906-019-2695-1.https://hdl.handle.net/20.500.12494/15306Trujillo-Correa AI, Quintero-Gil DC, Diaz-Castillo F, Quiñones W, Robledo SM, Martinez-Gutierrez M. In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting. BMC Complement Altern Med. 2019 Nov 6;19(1):298.For decades, bioprospecting has proven to be useful for the identification of compounds with pharmacological potential. Considering the great diversity of Colombian plants and the serious worldwide public health problem of dengue-a disease caused by the dengue virus (DENV)-in the present study, we evaluated the anti-DENV effects of 12 ethanolic extracts derived from plants collected in the Colombian Caribbean coast, and 5 fractions and 5 compounds derived from Psidium guajava. METHODS: The cytotoxicity and antiviral effect of 12 ethanolic extracts derived from plants collected in the Colombian Caribbean coast was evaluated in epithelial VERO cells. Five fractions were obtained by open column chromatography from the ethanolic extract with the highest selectivity index (SI) (derived from P. guajava, SI: 128.2). From the fraction with the highest selectivity (Pg-YP-I-22C, SI: 35.5), five compounds were identified by one- and two-dimensional nuclear magnetic resonance spectroscopy. The antiviral effect in vitro of the fractions and compounds was evaluated by different experimental strategies (Pre- and post-treatment) using non-toxic concentrations calculated by MTT method. The DENV inhibition was evaluated by plate focus assay. The results were analyzed by means of statistical analysis using Student's t-test. Finally the antiviral effect in Silico was evaluated by molecular docking. RESULTS: In vitro evaluation of these compounds showed that three of them (gallic acid, quercetin, and catechin) were promising antivirals as they inhibit the production of infectious viral particles via different experimental strategies, with the best antiviral being catechin (100% inhibition with a pre-treatment strategy and 91.8% with a post-treatment strategy). When testing the interactions of these compounds with the viral envelope protein in silico by docking, only naringin and hesperidin had better scores than the theoretical threshold of - 7.0 kcal/mol (- 8.0 kcal/mol and - 8.2 kcal/mol, respectively). All ligands tested except gallic acid showed higher affinity to the NS5 protein than the theoretical threshold. CONCLUSION: Even though bioprospecting has recently been replaced by more targeted tools for identifying compounds with pharmacological potential, our results show it is still useful for this purpose. Additionally, combining in vitro and in silico evaluations allowed us to identify promising antivirals as well as their possible mechanisms of action.https://scienti.colciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000213748https://orcid.org/0000-0002-9429-0058Marlen.martinezg@campucucc.edu.cohttps://scholar.google.es/citations?user=flSrsSIAAAAJ&hl=esUniversidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina Veterinaría y Zootecnia, BucaramangaBMCMedicina veterinaria y zootecniaBucaramangahttps://bmccomplementalternmed.biomedcentral.com/articles/10.1186/s12906-019-2695-1BMC Complement Altern Med.1. Guzman MG, Harris E. Dengue. Lancet. 2015;385(9966):453–65.2. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O. The global distribution and burden of dengue. Nature. 2013;496(7446):504–7.3. OPS. Programa Regional de Dengue de la OPS. In: vol. Actualizado a la SE 43 del 2013: Organización Panamericana de la Salud; 2013.4. Salles TS, da Encarnação S-GT, de Alvarenga ESL, Guimarães-Ribeiro V, MDF d M, de Castro-Salles PF, dos Santos CR, do Amaral Melo AC, Soares MR, Ferreira DF. History, epidemiology and diagnostics of dengue in the American and Brazilian contexts: a review. Parasit Vectors. 2018;11(1):264.5. Organization WH, Research SPf, Diseases TiT, Diseases WHODoCoNT, Epidemic WHO, Alert P. Dengue: guidelines for diagnosis, treatment, prevention and control. Geneva: World Health Organization; 2009.6. Simmons CP, Farrar JJ, van Vinh CN, Wills B. Dengue. N Engl J Med. 2012;366(15):1423–32.7. Halstead SB. Pathogenesis of dengue: challenges to molecular biology. Science. 1988;239(4839):476–81.8. Vaughn DW, Green S, Kalayanarooj S, Innis BL, Nimmannitya S, Suntayakorn S, Endy TP, Raengsakulrach B, Rothman AL, Ennis FA. Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis. 2000;181(1):2–9.9. Chambers TJ, Hahn CS, Galler R, Rice CM. Flavivirus genome organization, expression, and replication. Ann Rev Microbiol. 1990;44(1):649–88.10. Xie Q, Zhang B, Yu J, Wu Q, Yang F, Cao H, Zhao W. Structure and function of the non-structural protein of dengue virus and its applications in antiviral therapy. Curr Top Med Chem. 2017;17(3):371–80.11. Bartenschlager R, Miller S. Molecular aspects of dengue virus replication; 2008.12. Rodenhuis-Zybert IA, Wilschut J, Smit JM. Dengue virus life cycle: viral and host factors modulating infectivity. Cell Mol Life Sci. 2010;67(16):2773–86.13. Lin Y-L, Lei H-Y, Lin Y-S, Yeh T-M, Chen S-H, Liu H-S. Heparin inhibits dengue-2 virus infection of five human liver cell lines. Antivir Res. 2002;56(1):93–6.14. Takhampunya R, Ubol S, Houng H-S, Cameron CE, Padmanabhan R. Inhibition of dengue virus replication by mycophenolic acid and ribavirin. J Gen Virol. 2006;87(7):1947–52.15. Whitby K, Pierson TC, Geiss B, Lane K, Engle M, Zhou Y, Doms RW, Diamond MS. Castanospermine, a potent inhibitor of dengue virus infection in vitro and in vivo. J Virol. 2005;79(14):8698–706.16. Martínez-Gutierrez M, Castellanos JE, Gallego-Gómez JC. Statins reduce dengue virus production via decreased virion assembly. Intervirology. 2011;54(4):202–16.17. Low JG, Ooi EE, Vasudevan SG. Current Status of Dengue Therapeutics Research and Development. J Infect Dis. 2017;215(suppl_2):S96–S102.18. Kaptein SJ, Neyts J. Towards antiviral therapies for treating dengue virus infections. Curr Opin Pharmacol. 2016;30:1–7.19. Lai J-H, Lin Y-L, Hsieh S-L. Pharmacological intervention for dengue virus infection. Biochem Pharmacol. 2017;129:14–25.20. Farrar J, Focks D, Gubler D, Barrera R, Guzman M, Simmons C, Kalayanarooj S, Lum L, McCall P, Lloyd L. Towards a global dengue research agenda. Tropical Med Int Health. 2007;12(6):695–9.Antiviral; CatechinBioprospectingDengue virusGallic acidPsidium guajavaQuercetinCatechinIn vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospectingArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINALs12906-019-2695-1 (1).pdfs12906-019-2695-1 (1).pdfapplication/pdf2750715https://repository.ucc.edu.co/bitstreams/816b2ff5-bbb1-4979-b68e-25195c1282ca/downloada796a17c49aa24684b907447b0be81aaMD51Licencia_de_uso_InVitroandInVivo.pdfLicencia_de_uso_InVitroandInVivo.pdfapplication/pdf191989https://repository.ucc.edu.co/bitstreams/0249eeec-2fbc-4ebc-a32a-90c8b59b18c6/downloadd88c81d78708d7df7fc5a446ec1586d8MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/9e66b4b2-7988-4557-85fa-597fe7e70231/download3bce4f7ab09dfc588f126e1e36e98a45MD54THUMBNAILs12906-019-2695-1 (1).pdf.jpgs12906-019-2695-1 (1).pdf.jpgGenerated Thumbnailimage/jpeg5599https://repository.ucc.edu.co/bitstreams/28e12866-1602-4177-9413-902262fac565/download0194e20e40fbe5e988cf08f228dfa286MD55Licencia_de_uso_InVitroandInVivo.pdf.jpgLicencia_de_uso_InVitroandInVivo.pdf.jpgGenerated Thumbnailimage/jpeg5282https://repository.ucc.edu.co/bitstreams/d361a9e3-675b-4c35-9054-8e9012f44627/download5c93de07d15ef0a9df9d3eacd4b798ebMD56TEXTs12906-019-2695-1 (1).pdf.txts12906-019-2695-1 (1).pdf.txtExtracted texttext/plain80402https://repository.ucc.edu.co/bitstreams/f212e542-0f84-4e84-a483-a691b2f005fb/download59afe81cb06cf29b859660de8a202eccMD57Licencia_de_uso_InVitroandInVivo.pdf.txtLicencia_de_uso_InVitroandInVivo.pdf.txtExtracted texttext/plain5449https://repository.ucc.edu.co/bitstreams/ac2d46e5-51ac-45b0-bbeb-a02d8eba2fe7/download2c0dad09ce11df5b5c07513f49812321MD5820.500.12494/15306oai:repository.ucc.edu.co:20.500.12494/153062024-08-10 22:40:56.874restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.com