Development of an optimized method for processing peripheral blood mononuclear cells for 1H-nuclear magnetic resonance-based metabolomic profiling

Human peripheral blood mononuclear cells (PBMCs) are part of the innate and adaptive immune system, and form a critical interface between both systems. Studying the metabolic profile of PBMC could provide valuable information about the response to pathogens, toxins or cancer, the detection of drug t...

Full description

Autores:
Zapata Builes, Wildeman
Gómez Archila, León Gabriel
Galeano, Elkin
Palomino Schätzlein, Martina
Tipo de recurso:
Article of investigation
Fecha de publicación:
2021
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/33500
Acceso en línea:
https://hdl.handle.net/20.500.12494/33500
Palabra clave:
Human peripheral blood mononuclear cells
Metabolomic profiling
Nuclear magnetic resonance
Folch Method
Human peripheral blood mononuclear cells
Metabolomic profiling
Nuclear magnetic resonance
Folch Method
Rights
openAccess
License
Atribución
id COOPER2_4cee4545c4132bc93e036744cfe03f47
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/33500
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Development of an optimized method for processing peripheral blood mononuclear cells for 1H-nuclear magnetic resonance-based metabolomic profiling
title Development of an optimized method for processing peripheral blood mononuclear cells for 1H-nuclear magnetic resonance-based metabolomic profiling
spellingShingle Development of an optimized method for processing peripheral blood mononuclear cells for 1H-nuclear magnetic resonance-based metabolomic profiling
Human peripheral blood mononuclear cells
Metabolomic profiling
Nuclear magnetic resonance
Folch Method
Human peripheral blood mononuclear cells
Metabolomic profiling
Nuclear magnetic resonance
Folch Method
title_short Development of an optimized method for processing peripheral blood mononuclear cells for 1H-nuclear magnetic resonance-based metabolomic profiling
title_full Development of an optimized method for processing peripheral blood mononuclear cells for 1H-nuclear magnetic resonance-based metabolomic profiling
title_fullStr Development of an optimized method for processing peripheral blood mononuclear cells for 1H-nuclear magnetic resonance-based metabolomic profiling
title_full_unstemmed Development of an optimized method for processing peripheral blood mononuclear cells for 1H-nuclear magnetic resonance-based metabolomic profiling
title_sort Development of an optimized method for processing peripheral blood mononuclear cells for 1H-nuclear magnetic resonance-based metabolomic profiling
dc.creator.fl_str_mv Zapata Builes, Wildeman
Gómez Archila, León Gabriel
Galeano, Elkin
Palomino Schätzlein, Martina
dc.contributor.advisor.none.fl_str_mv Zapata Builes, Wildeman
dc.contributor.author.none.fl_str_mv Zapata Builes, Wildeman
Gómez Archila, León Gabriel
Galeano, Elkin
Palomino Schätzlein, Martina
dc.subject.spa.fl_str_mv Human peripheral blood mononuclear cells
Metabolomic profiling
Nuclear magnetic resonance
Folch Method
topic Human peripheral blood mononuclear cells
Metabolomic profiling
Nuclear magnetic resonance
Folch Method
Human peripheral blood mononuclear cells
Metabolomic profiling
Nuclear magnetic resonance
Folch Method
dc.subject.other.spa.fl_str_mv Human peripheral blood mononuclear cells
Metabolomic profiling
Nuclear magnetic resonance
Folch Method
description Human peripheral blood mononuclear cells (PBMCs) are part of the innate and adaptive immune system, and form a critical interface between both systems. Studying the metabolic profile of PBMC could provide valuable information about the response to pathogens, toxins or cancer, the detection of drug toxicity, in drug discovery and cell replacement therapy. The primary purpose of this study was to develop an improved processing method for PBMCs metabolomic profiling with nuclear magnetic resonance (NMR) spectroscopy. To this end, an experimental design was applied to develop an alternative method to process PBMCs at low concentrations. The design included the isolation of PBMCs from the whole blood of four different volunteers, of whom 27 cell samples were processed by two different techniques for quenching and extraction of metabolites: a traditional one using organic solvents and an alternative one employing a high-intensity ultrasound probe, the latter with a variation that includes the use of deproteinizing filters. Finally, all the samples were characterized by 1H-NMR and the metabolomic profiles were compared by the method. As a result, two new methods for PBMCs processing, called Ultrasound Method (UM) and Ultrasound and Ultrafiltration Method (UUM), are described and compared to the Folch Method (FM), which is the standard protocol for extracting metabolites from cell samples. We found that UM and UUM were superior to FM in terms of sensitivity, processing time, spectrum quality, amount of identifiable, quantifiable metabolites and reproducibility.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-03-01T16:10:41Z
dc.date.available.none.fl_str_mv 2021-03-01T16:10:41Z
dc.date.issued.none.fl_str_mv 2021-02-25
dc.type.none.fl_str_mv Artículos Científicos
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 1932-6203
dc.identifier.uri.spa.fl_str_mv 10.1371/journal.pone.0247668
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/33500
dc.identifier.bibliographicCitation.spa.fl_str_mv Gómez-Archila, L.G., Palomino-Schätzlein, M., Zapata-Builes, W. y Galeano, E. (2021) Development of an optimized method for processing peripheral blood mononuclear cells for 1H-nuclear magnetic resonance-based metabolomic profiling. PLoS ONE 16(2): e0247668. https://doi.org/10.1371/journal.pone.0247668
identifier_str_mv 1932-6203
10.1371/journal.pone.0247668
Gómez-Archila, L.G., Palomino-Schätzlein, M., Zapata-Builes, W. y Galeano, E. (2021) Development of an optimized method for processing peripheral blood mononuclear cells for 1H-nuclear magnetic resonance-based metabolomic profiling. PLoS ONE 16(2): e0247668. https://doi.org/10.1371/journal.pone.0247668
url https://hdl.handle.net/20.500.12494/33500
dc.relation.isversionof.spa.fl_str_mv https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0247668
dc.relation.ispartofjournal.spa.fl_str_mv PLOS ONE
dc.relation.references.spa.fl_str_mv Delves PJ, Martin SJ, Burton DR, Roitt IM. Roitt’s essential immunology. 2017.
Kleiveland CR. Peripheral Blood Mononuclear Cells BT—The Impact of Food Bioactives on Health: in vitro and ex vivo models. In: Verhoeckx K, Cotter P, Lo´pez-Expo´ sito I, Kleiveland C, Lea T, Mackie A, et al., editors. Cham: Springer International Publishing; 2015. p. 161–7.
Autissier P, Soulas C, Burdo TH, Williams KC. Evaluation of a 12-color flow cytometry panel to study lymphocyte, monocyte, and dendritic cell subsets in humans. Cytom Part A. 2010; 77A(5):410–9.
Gulati P. Janeway’s Immunobiology, 7th Edition by Kenneth Murphy, Paul Travers, and Mark Walport. Biochem Mol Biol Educ. 2009 Mar 1; 37(2):134.
Corkum CP, Ings DP, Burgess C, Karwowska S, Kroll W, Michalak TI. Immune cell subsets and their gene expression profiles from human PBMC isolated by Vacutainer Cell Preparation Tube (CPTTM) and standard density gradient. BMC Immunol. 2015; 16(1):1–18.
Von Andrian UH, Mackay CR. T-Cell fuction and migration Two sides of the same coin. N Engl J Med. 2000;(10–11):338–9.
Delves PJ, Roitt IM. The Immune System. N Engl J Med. 2000 Jul 13; 343(2):108–17. https://doi.org/ 10.1056/NEJM200007133430207 PMID: 10891520
Templeton AJ, McNamara MG,S ˇ eruga B, Vera-Badillo FE, Aneja P, Ocaña A, et al. Prognostic Role of Neutrophil-to-Lymphocyte Ratio in Solid Tumors: A Systematic Review and Meta-Analysis. JNCI J Natl Cancer Inst. 2014 May 29; 106(6). https://doi.org/10.1093/jnci/dju124 PMID: 24875653
Li M-X, Liu X-M, Zhang X-F, Zhang J-F, Wang W-L, Zhu Y, et al. Prognostic role of neutrophil-to-lymphocyte ratio in colorectal cancer: A systematic review and meta-analysis. Int J Cancer. 2014 May 15; 134(10):2403–13. https://doi.org/10.1002/ijc.28536 PMID: 24122750
Baine MJ, Chakraborty S, Smith LM, Mallya K, Sasson AR, Brand RE, et al. Transcriptional Profiling of Peripheral Blood Mononuclear Cells in Pancreatic Cancer Patients Identifies Novel Genes with Potential Diagnostic Utility. PLoS One. 2011 Feb 10; 6(2):e17014. https://doi.org/10.1371/journal.pone. 0017014 PMID: 21347333
Herazo-Maya JD, Noth I, Duncan SR, Kim S, Ma S-F, Tseng GC, et al. Peripheral blood mononuclear cell gene expression profiles predict poor outcome in idiopathic pulmonary fibrosis. Sci Transl Med. 2013 Oct 2; 5(205):205ra136–205ra136. https://doi.org/10.1126/scitranslmed.3005964 PMID: 24089408
Srivastava S, Macaubas C, Deshpande C, Alexander HC, Chang S-Y, Sun Y, et al. Monocytes are resistant to apoptosis in systemic juvenile idiopathic arthritis. Clin Immunol. 2010; 136(2):257–68. https://doi.org/10.1016/j.clim.2010.04.003 PMID: 20462799
Miao Y-L, Xiao Y-L, Du Y, Duan L-P. Gene expression profiles in peripheral blood mononuclear cells of ulcerative colitis patients. World J Gastroenterol. 2013 Jun 7; 19(21):3339–46. https://doi.org/10.3748/ wjg.v19.i21.3339 PMID: 23745037
Pourahmad J, Salimi A. Isolated Human Peripheral Blood Mononuclear Cell (PBMC), a Cost Effective Tool for Predicting Immunosuppressive Effects of Drugs and Xenobiotics. Iran J Pharm Res IJPR. 2015; 14(4):979. PMID: 26664364
Steuer AE, Brockbals L, Kraemer T. Metabolomic Strategies in Biomarker Research–New Approach for Indirect Identification of Drug Consumption and Sample Manipulation in Clinical and Forensic Toxicology?. Vol. 7, Frontiers in Chemistry. 2019. p. 319. https://doi.org/10.3389/fchem.2019.00319 PMID: 31134189
Rasmussen AL, Wang I-M, Shuhart MC, Proll SC, He Y, Cristescu R, et al. Chronic immune activation is a distinguishing feature of liver and PBMC gene signatures from HCV/HIV coinfected patients and may contribute to hepatic fibrogenesis. Virology. 2012/05/16. 2012 Aug 15; 430(1):43–52. https://doi. org/10.1016/j.virol.2012.04.011 PMID: 22608059
Sidharthan S, Kim C-W, Murphy AA, Zhang X, Yang J, Lempicki RA, et al. Hepatitis C-associated mixed cryoglobulinemic vasculitis induces differential gene expression in peripheral mononuclear cells. Front Immunol. 2014 May 27; 5:248. https://doi.org/10.3389/fimmu.2014.00248 PMID: 24904592
Rallon NI, Lopez-Fernandez LA, Garcia MI, Benguria A, Fiorante S, Soriano V, et al. Interferon-stimulated genes are associated with peginterferon/ribavirin treatment response regardless of IL28B alleles in hepatitis C virus/HIV-coinfected patients. AIDS. 2013; 27(5). https://doi.org/10.1097/QAD. 0b013e32835ce2c1 PMID: 23196939
Neunkirchner A, Schmetterer KG, Pickl WF. Lymphocyte-Based Model Systems for Allergy Research: A Historic Overview. Int Arch Allergy Immunol. 2014; 163(4):259–91. https://doi.org/10.1159/ 000360163 PMID: 24777172
Wang X, Zhao H, Andersson R. Proteomics and Leukocytes: An Approach to Understanding Potential Molecular Mechanisms of Inflammatory Responses. J Proteome Res. 2004 Oct 1; 3(5):921–9. https:// doi.org/10.1021/pr0499601 PMID: 15473680
Wigren M, Nilsson J, Kolbus D. Lymphocytes in atherosclerosis. Clin Chim Acta. 2012; 413(19):1562– 8. https://doi.org/10.1016/j.cca.2012.04.031 PMID: 22565046
Bhat T, Teli S, Rijal J, Bhat H, Raza M, Khoueiry G, et al. Neutrophil to lymphocyte ratio and cardiovascular diseases: a review. Expert Rev Cardiovasc Ther. 2013 Jan 1; 11(1):55–9. https://doi.org/10.1586/ erc.12.159 PMID: 23259445
Ishimura M, Yamamoto H, Mizuno Y, Takada H, Goto M, Doi T, et al. A Non-invasive Diagnosis of Histiocytic Necrotizing Lymphadenitis by Means of Gene Expression Profile Analysis of Peripheral Blood Mononuclear Cells. J Clin Immunol. 2013; 33(5):1018–26. https://doi.org/10.1007/s10875-013-9897-y PMID: 23609111
Grigoryev YA, Kurian SM, Avnur Z, Borie D, Deng J, Campbell D, et al. Deconvoluting Post-Transplant Immunity: Cell Subset-Specific Mapping Reveals Pathways for Activation and Expansion of Memory T, Monocytes and B Cells. PLoS One. 2010 Oct 14; 5(10):e13358. https://doi.org/10.1371/journal.pone. 0013358 PMID: 20976225
Tan Y, Tamayo P, Nakaya H, Pulendran B, Mesirov JP, Haining WN. Gene signatures related to B-cell proliferation predict influenza vaccine-induced antibody response. Eur J Immunol. 2014 Jan 1; 44 (1):285–95. https://doi.org/10.1002/eji.201343657 PMID: 24136404
Komatsu N, Matsueda S, Tashiro K, Ioji T, Shichijo S, Noguchi M, et al. Gene expression profiles in peripheral blood as a biomarker in cancer patients receiving peptide vaccination. Cancer. 2012 Jun 15; 118(12):3208–21. https://doi.org/10.1002/cncr.26636 PMID: 22071976
Gardeux V, Bosco A, Li J, Halonen MJ, Jackson D, Martinez FD, et al. Towards a PBMC “virogram assay” for precision medicine: Concordance between ex vivo and in vivo viral infection transcriptomes. J Biomed Inform. 2015; 55:94–103. https://doi.org/10.1016/j.jbi.2015.03.003 PMID: 25797143
Kammula US, Lee K-H, Riker AI, Wang E, Ohnmacht GA, Rosenberg SA, et al. Functional Analysis of Antigen-Specific T Lymphocytes by Serial Measurement of Gene Expression in Peripheral Blood Mononuclear Cells and Tumor Specimens. J Immunol. 1999 Dec 15; 163(12):6867 LP– 6875. PMID: 10586088
Davis JM, Knutson KL, Strausbauch MA, Crowson CS, Therneau TM, Wettstein PJ, et al. Analysis of Complex Biomarkers for Human Immune-Mediated Disorders Based on Cytokine Responsiveness of Peripheral Blood Cells. J Immunol. 2010 May 21;ji_0904180. https://doi.org/10.4049/jimmunol.0904180 PMID: 20495063
Hokayem J El, Cukier HN, Dykxhoorn DM. Blood Derived Induced Pluripotent Stem Cells (iPSCs): Benefits, Challenges and the Road Ahead. J Alzheimer’s Dis Park. 2016; 6(5):5–7.
Martin F-PJ, Collino S, Rezzi S. 1H NMR-based metabonomic applications to decipher gut microbial metabolic influence on mammalian health. Magn Reson Chem. 2011 Dec 1; 49(S1):S47–54. https://doi. org/10.1002/mrc.2810 PMID: 22290709
Blow N. Biochemistry’s new look. Nature. 2008; 455(7213):697–8. https://doi.org/10.1038/455697a PMID: 18833281
Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Va´zquez-Fresno R, et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 2018 Jan 4; 46(D1):D608–17. https://doi.org/10. 1093/nar/gkx1089 PMID: 29140435
Yang Z. Pharmacometabolomics in Drug Discovery & Development: Applications and Challenges. J Postgenomics Drug Biomark Dev. 2012; 02(05):2–4.
Robertson DG, Frevert U. Metabolomics in Drug Discovery and Development. Clin Pharmacol Ther. 2013 Nov 1; 94(5):559–61. https://doi.org/10.1038/clpt.2013.120 PMID: 24145714
Sitole LJ, Williams AA, Meyer D. Metabonomic analysis of HIV-infected biofluids. Mol Biosyst. 2013; 9 (1):18–28. https://doi.org/10.1039/c2mb25318f PMID: 23114495
Aranibar N, Borys M, Mackin NA, Ly V, Abu-Absi N, Abu-Absi S, et al. NMR-based metabolomics of mammalian cell and tissue cultures. J Biomol NMR. 2011; 49(3):195–206. https://doi.org/10.1007/ s10858-011-9490-8 PMID: 21373840
Palomino-Schtzlein M, Garcı´a H, Gutie´rrez-Carcedo P, Pineda-Lucena A, Herance JR. Assessment of gold nanoparticles on human peripheral blood cells by metabolic profiling with 1H-NMR spectroscopy, a novel translational approach on a patient-specific basis. PLoS One. 2017; 12(8):e0182985. https://doi. org/10.1371/journal.pone.0182985 PMID: 28793337
Shen Y, Wang J, Wang Z, Shen J, Qi T, Song W, et al. A cross-sectional study of leukopenia and thrombocytopenia among Chinese adults with newly diagnosed HIV/AIDS. Biosci Trends. 2015; 9(2):91–6. https://doi.org/10.5582/bst.2015.01024 PMID: 26173294
Zhou J-G, Tian X, Cheng L, Zhou Q, Liu Y, Zhang Y, et al. The Risk of Neutropenia and Leukopenia in Advanced Non-Small Cell Lung Cancer Patients Treated With Erlotinib: A Prisma-Compliant Systematic Review and Meta-Analysis. Medicine (Baltimore). 2015; 94(40). https://doi.org/10.1097/MD. 0000000000001719 PMID: 26448029
Posevitz-Fejfa´ r A, Posevitz V, Gross CC, Bhatia U, Kurth F, Schu¨ tte V, et al. Effects of Blood Transportation on Human Peripheral Mononuclear Cell Yield, Phenotype and Function: Implications for Immune Cell Biobanking. PLoS One. 2014 Dec 26; 9(12):e115920. https://doi.org/10.1371/journal.pone. 0115920 PMID: 25541968
Schlenke P, Klu¨ ter H, Mu¨ ller-Steinhardt M, Hammers HJ, Borchert K, Bein G. Evaluation of a novel mononuclear cell isolation procedure for serological HLA typing. Clin Diagn Lab Immunol. 1998 Nov; 5 (6):808–13. PMID: 9801339
Mckenna K, Beatty K, Vicetti Miguel R, Bilonick R. Delayed processing of blood increases the frequency of activated CD11b+ CD15+ granulocytes which inhibit T cell function. J Immunol Methods. 2008 Dec 1; 341:68–75. https://doi.org/10.1016/j.jim.2008.10.019 PMID: 19041316
Reimann KA, Chernoff M, Wilkening CL, Nickerson CE, Landay AL. Preservation of Lymphocyte Immunophenotype and Proliferative Responses in Cryopreserved Peripheral Blood Mononuclear Cells from Human Immunodeficiency Virus Type 1-Infected Donors: Implications for Multicenter Clinical Trials. Clin Diagn Lab Immunol. 2000 May 1; 7(3):352 LP– 359. https://doi.org/10.1128/cdli.7.3.352-359.2000 PMID: 10799445
Brown LM, Clark JW, Neuland CY, Mann DL, Pankiw-Trost LK, Blattner WA, et al. Cryopreservation and long-term liquid nitrogen storage of peripheral blood mononuclear cells for flow cytometry analysis effects on cell subset proportions and fluorescence intensity. J Clin Lab Anal. 1991 Jan 1; 5(4):255–61. https://doi.org/10.1002/jcla.1860050406 PMID: 1890539
Matheus N, Hansen S, Rozet E, Peixoto P, Maquoi E, Lambert V, et al. An easy, convenient cell and tissue extraction protocol for nuclear magnetic resonance metabolomics. Phytochem Anal. 2014; 25 (4):342–9. https://doi.org/10.1002/pca.2498 PMID: 24453161
Lauri I, Savorani F, Iaccarino N, Zizza P, Pavone LM, Novellino E, et al. Development of an optimized protocol for NMR metabolomics studies of human colon cancer cell lines and first insight from testing of the protocol using DNA G-quadruplex ligands as novel anti-cancer drugs. Metabolites. 2016; 6(1):1–14. https://doi.org/10.3390/metabo6010004 PMID: 26784246
Kostidis S, Addie RD, Morreau H, Mayboroda OA, Giera M. Quantitative NMR analysis of intra- and extracellular metabolism of mammalian cells: A tutorial. Anal Chim Acta. 2017; 980:1–24. https://doi. org/10.1016/j.aca.2017.05.011 PMID: 28622799
Lari Z, Ahmadzadeh H, Hosseini M. Chapter 2—Cell Wall Disruption: A Critical Upstream Process for Biofuel Production. In: Hosseini MBT-A in FCT for AF and B, editor. Woodhead Publishing Series in Energy. Woodhead Publishing; 2019. p. 21–35.
Folch J, Lees M, Stanley GHS. A SIMPLE METHOD FOR THE ISOLATION AND PURIFICATION OF TOTAL LIPIDES FROM ANIMAL TISSUES. J Biol Chem. 1957 May 1; 226(1):497–509. PMID: 13428781
Van Noorden R, Maher B, Nuzzo R. The top 100 papers. Nature. 2014; 514(7524):550–3. https://doi. org/10.1038/514550a PMID: 25355343
Wishart DS. Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov. 2016; 15(7):473–84. https://doi.org/10.1038/nrd.2016.32 PMID: 26965202
NOBLE PB CUTTS JH, CARROLL KK. Ficoll Flotation for the Separation of Blood Leukocyte Types. Blood. 1968 Jan 1; 31(1):66–73. PMID: 4966278
Strober W. Trypan Blue Exclusion Test of Cell Viability. Curr Protoc Immunol. 1997 Mar 1; 21(1): A.3B.1–A.3B.2.
Strober W. Trypan Blue Exclusion Test of Cell Viability. Curr Protoc Immunol. 2015 Nov 2; 111:A3.B.1– A3.B.3. https://doi.org/10.1002/0471142735.ima03bs111 PMID: 26529666
Louis KS, Siegel AC. Cell Viability Analysis Using Trypan Blue: Manual and Automated Methods BT— Mammalian Cell Viability: Methods and Protocols. In: Stoddart MJ, editor. Totowa, NJ: Humana Press; 2011. p. 7–12.
Kim JS, Nam MH, An SSA, Lim CS, Hur DS, Chung C, et al. Comparison of the automated fluorescence microscopic viability test with the conventional and flow cytometry methods. J Clin Lab Anal. 2011 Jan 1; 25(2):90–4. https://doi.org/10.1002/jcla.20438 PMID: 21437999
Eggers LF, Schwudke D. Liquid Extraction: Folch BT—Encyclopedia of Lipidomics. In: Wenk MR, editor. Dordrecht: Springer Netherlands; 2016. p. 1–6.
Eggers LF, Schwudke D. Encyclopedia of Lipidomics. Encycl Lipidomics. 2019; 3:1–6.
Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, et al. BioMagResBank. Nucleic Acids Res. 2007 Nov 4; 36(suppl_1):D402–8. https://doi.org/10.1093/nar/gkm957 PMID: 17984079
Kim TK, Park JH. More about the basic assumptions of t-test: normality and sample size. Korean J Anesthesiol. 2019/04/01. 2019 Aug; 72(4):331–5. https://doi.org/10.4097/kja.d.18.00292 PMID: 30929413
Lin CY, Wu H, Tjeerdema RS, Viant MR. Evaluation of metabolite extraction strategies from tissue samples using NMR metabolomics. Metabolomics. 2007; 3(1):55–67.
Martineau E, Tea I, Loae¨c G, Giraudeau P, Akoka S. Strategy for choosing extraction procedures for NMR-based metabolomic analysis of mammalian cells. Anal Bioanal Chem. 2011; 401(7):2133. https:// doi.org/10.1007/s00216-011-5310-y PMID: 21837464
Cooper ML, Choi J, Staser K, Ritchey JK, Devenport JM, Eckardt K, et al. An “off-the-shelf” fratricideresistant CAR-T for the treatment of T cell hematologic malignancies. Leukemia. 2018; 32(9):1970–83. https://doi.org/10.1038/s41375-018-0065-5 PMID: 29483708
Mu¨lleder M, Calvani E, Alam MT, Wang RK, Eckerstorfer F, Zelezniak A, et al. Functional Metabolomics Describes the Yeast Biosynthetic Regulome. Cell. 2016 Oct 6; 167(2):553–565.e12. https://doi.org/10. 1016/j.cell.2016.09.007 PMID: 27693354
D’Alessandro A, Blasi B, D’Amici GM, Marrocco C, Zolla L. Red blood cell subpopulations in freshly drawn blood: Application of proteomics and metabolomics to a decades-long biological issue. Blood Transfus. 2013; 11(1):75–87. https://doi.org/10.2450/2012.0164-11 PMID: 22871816
Catala´nU´ , Rodrı´guez M-A´ , Ras M-R, Macia´ A, Mallol R, Vinaixa M, et al. Biomarkers of food intake and metabolite differences between plasma and red blood cell matrices; a human metabolomic profile approach. Mol Biosyst. 2013; 9(6):1411–22. https://doi.org/10.1039/c3mb25554a PMID: 23493899
Sana TR, Gordon DB, Fischer SM, Tichy SE, Kitagawa N, Lai C, et al. Global Mass Spectrometry Based Metabolomics Profiling of Erythrocytes Infected with Plasmodium falciparum. PLoS One. 2013 Apr 9; 8(4):e60840. https://doi.org/10.1371/journal.pone.0060840 PMID: 23593322
D’Alessandro A, Nemkov T, Kelher M, West FB, Schwindt RK, Banerjee A, et al. Routine storage of red blood cell (RBC) units in additive solution-3: a comprehensive investigation of the RBC metabolome. Transfusion. 2015 Jun 1; 55(6):1155–68. https://doi.org/10.1111/trf.12975 PMID: 25556331
Otiko G, Razi MT, Sadler PJ, Isab AA, Rabenstein DL. A 1H nmr study of the interaction of aurothiomalate (“Myocrisin”) with human red blood cells in vitro. J Inorg Biochem. 1983; 19(3):227–35. https://doi. org/10.1016/0162-0134(83)85027-2 PMID: 6417270
Humpfer E, Spraul M, Nicholls AW, Nicholson JK, Lindon JC. Direct observation of resolved intracellular and extracellular water signals in intact human red blood cells using 1H MAS NMR spectroscopy. Magn Reson Med. 1997 Aug 1; 38(2):334–6. https://doi.org/10.1002/mrm.1910380224 PMID: 9256115
Brindle KM, Campbell ID, Simpson RJ. A 1H n.m.r. study of the kinetic properties expressed by glyceraldehyde phosphate dehydrogenase in the intact human erythrocyte. Biochem J. 1982 Dec 15; 208 (3):583–92. https://doi.org/10.1042/bj2080583 PMID: 7165719
Freikman I, Amer J, Cohen JS, Ringel I, Fibach E. Oxidative stress causes membrane phospholipid rearrangement and shedding from RBC membranes—An NMR study. Biochim Biophys Acta—Biomembr. 2008; 1778(10):2388–94. https://doi.org/10.1016/j.bbamem.2008.06.008 PMID: 18621018
Wright LC, Obbink KLG, Delikatny EJ, Santangelo RT, Sorrell TC. The origin of 1H NMR-visible triacylglycerol in human neutrophils. Eur J Biochem. 2000 Jan 1; 267(1):68–78. https://doi.org/10.1046/j. 1432-1327.2000.00955.x PMID: 10601852
Palomino-Scha¨ tzlein M, Simo´ R, Herna´ndez C, Ciudin A, Mateos-Gregorio P, Herna´ndez-Mijares A, et al. Metabolic fingerprint of insulin resistance in human polymorphonuclear leucocytes. PLoS One. 2018; 13(7):1–15. https://doi.org/10.1371/journal.pone.0199351 PMID: 30005063
dc.rights.license.none.fl_str_mv Atribución
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 20
dc.coverage.temporal.spa.fl_str_mv 16 (2)
dc.publisher.spa.fl_str_mv Oscar Millet, CIC bioGUNE, SPAIN
Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina, Medellín y Envigado
dc.publisher.program.spa.fl_str_mv Medicina
dc.publisher.place.spa.fl_str_mv Medellín
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/44684556-a980-46d5-a627-595447558bbe/download
https://repository.ucc.edu.co/bitstreams/81ccdf86-3542-4266-869d-ce1c1e9f9cc2/download
https://repository.ucc.edu.co/bitstreams/ce454998-5345-4ef2-818f-0fda1bc44d82/download
https://repository.ucc.edu.co/bitstreams/6348e98b-ebc3-47a2-beab-2320b1662b3d/download
bitstream.checksum.fl_str_mv 023fcebc6b894fe23330631ade9d282f
3bce4f7ab09dfc588f126e1e36e98a45
9fa0273cb579709474674ad4277bf8cc
1d39d8fe7a4cc0a51e34feb5b5340e49
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808788964491919360
spelling Zapata Builes, WildemanZapata Builes, WildemanGómez Archila, León GabrielGaleano, ElkinPalomino Schätzlein, Martina16 (2)2021-03-01T16:10:41Z2021-03-01T16:10:41Z2021-02-251932-620310.1371/journal.pone.0247668https://hdl.handle.net/20.500.12494/33500Gómez-Archila, L.G., Palomino-Schätzlein, M., Zapata-Builes, W. y Galeano, E. (2021) Development of an optimized method for processing peripheral blood mononuclear cells for 1H-nuclear magnetic resonance-based metabolomic profiling. PLoS ONE 16(2): e0247668. https://doi.org/10.1371/journal.pone.0247668Human peripheral blood mononuclear cells (PBMCs) are part of the innate and adaptive immune system, and form a critical interface between both systems. Studying the metabolic profile of PBMC could provide valuable information about the response to pathogens, toxins or cancer, the detection of drug toxicity, in drug discovery and cell replacement therapy. The primary purpose of this study was to develop an improved processing method for PBMCs metabolomic profiling with nuclear magnetic resonance (NMR) spectroscopy. To this end, an experimental design was applied to develop an alternative method to process PBMCs at low concentrations. The design included the isolation of PBMCs from the whole blood of four different volunteers, of whom 27 cell samples were processed by two different techniques for quenching and extraction of metabolites: a traditional one using organic solvents and an alternative one employing a high-intensity ultrasound probe, the latter with a variation that includes the use of deproteinizing filters. Finally, all the samples were characterized by 1H-NMR and the metabolomic profiles were compared by the method. As a result, two new methods for PBMCs processing, called Ultrasound Method (UM) and Ultrasound and Ultrafiltration Method (UUM), are described and compared to the Folch Method (FM), which is the standard protocol for extracting metabolites from cell samples. We found that UM and UUM were superior to FM in terms of sensitivity, processing time, spectrum quality, amount of identifiable, quantifiable metabolites and reproducibility.Human peripheral blood mononuclear cells (PBMCs) are part of the innate and adaptive immune system, and form a critical interface between both systems. Studying the metabolic profile of PBMC could provide valuable information about the response to pathogens, toxins or cancer, the detection of drug toxicity, in drug discovery and cell replacement therapy. The primary purpose of this study was to develop an improved processing method for PBMCs metabolomic profiling with nuclear magnetic resonance (NMR) spectroscopy. To this end, an experimental design was applied to develop an alternative method to process PBMCs at low concentrations. The design included the isolation of PBMCs from the whole blood of four different volunteers, of whom 27 cell samples were processed by two different techniques for quenching and extraction of metabolites: a traditional one using organic solvents and an alternative one employing a high-intensity ultrasound probe, the latter with a variation that includes the use of deproteinizing filters. Finally, all the samples were characterized by 1H-NMR and the metabolomic profiles were compared by the method. As a result, two new methods for PBMCs processing, called Ultrasound Method (UM) and Ultrasound and Ultrafiltration Method (UUM), are described and compared to the Folch Method (FM), which is the standard protocol for extracting metabolites from cell samples. We found that UM and UUM were superior to FM in terms of sensitivity, processing time, spectrum quality, amount of identifiable, quantifiable metabolites and reproducibility.https://scienti.minciencias.gov.co/cvlac/EnProdArticulo/query.do?cod_producto=73&cod_rh=0000157775https://orcid.org/0000-0002-7351-8738COL0112548wildeman.zapatab@campusucc.edu.cohttps://scholar.google.com.co/citations?hl=en&user=VLZxl1UAAAAJ20Oscar Millet, CIC bioGUNE, SPAINUniversidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina, Medellín y EnvigadoMedicinaMedellínhttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.0247668PLOS ONEDelves PJ, Martin SJ, Burton DR, Roitt IM. Roitt’s essential immunology. 2017.Kleiveland CR. Peripheral Blood Mononuclear Cells BT—The Impact of Food Bioactives on Health: in vitro and ex vivo models. In: Verhoeckx K, Cotter P, Lo´pez-Expo´ sito I, Kleiveland C, Lea T, Mackie A, et al., editors. Cham: Springer International Publishing; 2015. p. 161–7.Autissier P, Soulas C, Burdo TH, Williams KC. Evaluation of a 12-color flow cytometry panel to study lymphocyte, monocyte, and dendritic cell subsets in humans. Cytom Part A. 2010; 77A(5):410–9.Gulati P. Janeway’s Immunobiology, 7th Edition by Kenneth Murphy, Paul Travers, and Mark Walport. Biochem Mol Biol Educ. 2009 Mar 1; 37(2):134.Corkum CP, Ings DP, Burgess C, Karwowska S, Kroll W, Michalak TI. Immune cell subsets and their gene expression profiles from human PBMC isolated by Vacutainer Cell Preparation Tube (CPTTM) and standard density gradient. BMC Immunol. 2015; 16(1):1–18.Von Andrian UH, Mackay CR. T-Cell fuction and migration Two sides of the same coin. N Engl J Med. 2000;(10–11):338–9.Delves PJ, Roitt IM. The Immune System. N Engl J Med. 2000 Jul 13; 343(2):108–17. https://doi.org/ 10.1056/NEJM200007133430207 PMID: 10891520Templeton AJ, McNamara MG,S ˇ eruga B, Vera-Badillo FE, Aneja P, Ocaña A, et al. Prognostic Role of Neutrophil-to-Lymphocyte Ratio in Solid Tumors: A Systematic Review and Meta-Analysis. JNCI J Natl Cancer Inst. 2014 May 29; 106(6). https://doi.org/10.1093/jnci/dju124 PMID: 24875653Li M-X, Liu X-M, Zhang X-F, Zhang J-F, Wang W-L, Zhu Y, et al. Prognostic role of neutrophil-to-lymphocyte ratio in colorectal cancer: A systematic review and meta-analysis. Int J Cancer. 2014 May 15; 134(10):2403–13. https://doi.org/10.1002/ijc.28536 PMID: 24122750Baine MJ, Chakraborty S, Smith LM, Mallya K, Sasson AR, Brand RE, et al. Transcriptional Profiling of Peripheral Blood Mononuclear Cells in Pancreatic Cancer Patients Identifies Novel Genes with Potential Diagnostic Utility. PLoS One. 2011 Feb 10; 6(2):e17014. https://doi.org/10.1371/journal.pone. 0017014 PMID: 21347333Herazo-Maya JD, Noth I, Duncan SR, Kim S, Ma S-F, Tseng GC, et al. Peripheral blood mononuclear cell gene expression profiles predict poor outcome in idiopathic pulmonary fibrosis. Sci Transl Med. 2013 Oct 2; 5(205):205ra136–205ra136. https://doi.org/10.1126/scitranslmed.3005964 PMID: 24089408Srivastava S, Macaubas C, Deshpande C, Alexander HC, Chang S-Y, Sun Y, et al. Monocytes are resistant to apoptosis in systemic juvenile idiopathic arthritis. Clin Immunol. 2010; 136(2):257–68. https://doi.org/10.1016/j.clim.2010.04.003 PMID: 20462799Miao Y-L, Xiao Y-L, Du Y, Duan L-P. Gene expression profiles in peripheral blood mononuclear cells of ulcerative colitis patients. World J Gastroenterol. 2013 Jun 7; 19(21):3339–46. https://doi.org/10.3748/ wjg.v19.i21.3339 PMID: 23745037Pourahmad J, Salimi A. Isolated Human Peripheral Blood Mononuclear Cell (PBMC), a Cost Effective Tool for Predicting Immunosuppressive Effects of Drugs and Xenobiotics. Iran J Pharm Res IJPR. 2015; 14(4):979. PMID: 26664364Steuer AE, Brockbals L, Kraemer T. Metabolomic Strategies in Biomarker Research–New Approach for Indirect Identification of Drug Consumption and Sample Manipulation in Clinical and Forensic Toxicology?. Vol. 7, Frontiers in Chemistry. 2019. p. 319. https://doi.org/10.3389/fchem.2019.00319 PMID: 31134189Rasmussen AL, Wang I-M, Shuhart MC, Proll SC, He Y, Cristescu R, et al. Chronic immune activation is a distinguishing feature of liver and PBMC gene signatures from HCV/HIV coinfected patients and may contribute to hepatic fibrogenesis. Virology. 2012/05/16. 2012 Aug 15; 430(1):43–52. https://doi. org/10.1016/j.virol.2012.04.011 PMID: 22608059Sidharthan S, Kim C-W, Murphy AA, Zhang X, Yang J, Lempicki RA, et al. Hepatitis C-associated mixed cryoglobulinemic vasculitis induces differential gene expression in peripheral mononuclear cells. Front Immunol. 2014 May 27; 5:248. https://doi.org/10.3389/fimmu.2014.00248 PMID: 24904592Rallon NI, Lopez-Fernandez LA, Garcia MI, Benguria A, Fiorante S, Soriano V, et al. Interferon-stimulated genes are associated with peginterferon/ribavirin treatment response regardless of IL28B alleles in hepatitis C virus/HIV-coinfected patients. AIDS. 2013; 27(5). https://doi.org/10.1097/QAD. 0b013e32835ce2c1 PMID: 23196939Neunkirchner A, Schmetterer KG, Pickl WF. Lymphocyte-Based Model Systems for Allergy Research: A Historic Overview. Int Arch Allergy Immunol. 2014; 163(4):259–91. https://doi.org/10.1159/ 000360163 PMID: 24777172Wang X, Zhao H, Andersson R. Proteomics and Leukocytes: An Approach to Understanding Potential Molecular Mechanisms of Inflammatory Responses. J Proteome Res. 2004 Oct 1; 3(5):921–9. https:// doi.org/10.1021/pr0499601 PMID: 15473680Wigren M, Nilsson J, Kolbus D. Lymphocytes in atherosclerosis. Clin Chim Acta. 2012; 413(19):1562– 8. https://doi.org/10.1016/j.cca.2012.04.031 PMID: 22565046Bhat T, Teli S, Rijal J, Bhat H, Raza M, Khoueiry G, et al. Neutrophil to lymphocyte ratio and cardiovascular diseases: a review. Expert Rev Cardiovasc Ther. 2013 Jan 1; 11(1):55–9. https://doi.org/10.1586/ erc.12.159 PMID: 23259445Ishimura M, Yamamoto H, Mizuno Y, Takada H, Goto M, Doi T, et al. A Non-invasive Diagnosis of Histiocytic Necrotizing Lymphadenitis by Means of Gene Expression Profile Analysis of Peripheral Blood Mononuclear Cells. J Clin Immunol. 2013; 33(5):1018–26. https://doi.org/10.1007/s10875-013-9897-y PMID: 23609111Grigoryev YA, Kurian SM, Avnur Z, Borie D, Deng J, Campbell D, et al. Deconvoluting Post-Transplant Immunity: Cell Subset-Specific Mapping Reveals Pathways for Activation and Expansion of Memory T, Monocytes and B Cells. PLoS One. 2010 Oct 14; 5(10):e13358. https://doi.org/10.1371/journal.pone. 0013358 PMID: 20976225Tan Y, Tamayo P, Nakaya H, Pulendran B, Mesirov JP, Haining WN. Gene signatures related to B-cell proliferation predict influenza vaccine-induced antibody response. Eur J Immunol. 2014 Jan 1; 44 (1):285–95. https://doi.org/10.1002/eji.201343657 PMID: 24136404Komatsu N, Matsueda S, Tashiro K, Ioji T, Shichijo S, Noguchi M, et al. Gene expression profiles in peripheral blood as a biomarker in cancer patients receiving peptide vaccination. Cancer. 2012 Jun 15; 118(12):3208–21. https://doi.org/10.1002/cncr.26636 PMID: 22071976Gardeux V, Bosco A, Li J, Halonen MJ, Jackson D, Martinez FD, et al. Towards a PBMC “virogram assay” for precision medicine: Concordance between ex vivo and in vivo viral infection transcriptomes. J Biomed Inform. 2015; 55:94–103. https://doi.org/10.1016/j.jbi.2015.03.003 PMID: 25797143Kammula US, Lee K-H, Riker AI, Wang E, Ohnmacht GA, Rosenberg SA, et al. Functional Analysis of Antigen-Specific T Lymphocytes by Serial Measurement of Gene Expression in Peripheral Blood Mononuclear Cells and Tumor Specimens. J Immunol. 1999 Dec 15; 163(12):6867 LP– 6875. PMID: 10586088Davis JM, Knutson KL, Strausbauch MA, Crowson CS, Therneau TM, Wettstein PJ, et al. Analysis of Complex Biomarkers for Human Immune-Mediated Disorders Based on Cytokine Responsiveness of Peripheral Blood Cells. J Immunol. 2010 May 21;ji_0904180. https://doi.org/10.4049/jimmunol.0904180 PMID: 20495063Hokayem J El, Cukier HN, Dykxhoorn DM. Blood Derived Induced Pluripotent Stem Cells (iPSCs): Benefits, Challenges and the Road Ahead. J Alzheimer’s Dis Park. 2016; 6(5):5–7.Martin F-PJ, Collino S, Rezzi S. 1H NMR-based metabonomic applications to decipher gut microbial metabolic influence on mammalian health. Magn Reson Chem. 2011 Dec 1; 49(S1):S47–54. https://doi. org/10.1002/mrc.2810 PMID: 22290709Blow N. Biochemistry’s new look. Nature. 2008; 455(7213):697–8. https://doi.org/10.1038/455697a PMID: 18833281Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Va´zquez-Fresno R, et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 2018 Jan 4; 46(D1):D608–17. https://doi.org/10. 1093/nar/gkx1089 PMID: 29140435Yang Z. Pharmacometabolomics in Drug Discovery & Development: Applications and Challenges. J Postgenomics Drug Biomark Dev. 2012; 02(05):2–4.Robertson DG, Frevert U. Metabolomics in Drug Discovery and Development. Clin Pharmacol Ther. 2013 Nov 1; 94(5):559–61. https://doi.org/10.1038/clpt.2013.120 PMID: 24145714Sitole LJ, Williams AA, Meyer D. Metabonomic analysis of HIV-infected biofluids. Mol Biosyst. 2013; 9 (1):18–28. https://doi.org/10.1039/c2mb25318f PMID: 23114495Aranibar N, Borys M, Mackin NA, Ly V, Abu-Absi N, Abu-Absi S, et al. NMR-based metabolomics of mammalian cell and tissue cultures. J Biomol NMR. 2011; 49(3):195–206. https://doi.org/10.1007/ s10858-011-9490-8 PMID: 21373840Palomino-Schtzlein M, Garcı´a H, Gutie´rrez-Carcedo P, Pineda-Lucena A, Herance JR. Assessment of gold nanoparticles on human peripheral blood cells by metabolic profiling with 1H-NMR spectroscopy, a novel translational approach on a patient-specific basis. PLoS One. 2017; 12(8):e0182985. https://doi. org/10.1371/journal.pone.0182985 PMID: 28793337Shen Y, Wang J, Wang Z, Shen J, Qi T, Song W, et al. A cross-sectional study of leukopenia and thrombocytopenia among Chinese adults with newly diagnosed HIV/AIDS. Biosci Trends. 2015; 9(2):91–6. https://doi.org/10.5582/bst.2015.01024 PMID: 26173294Zhou J-G, Tian X, Cheng L, Zhou Q, Liu Y, Zhang Y, et al. The Risk of Neutropenia and Leukopenia in Advanced Non-Small Cell Lung Cancer Patients Treated With Erlotinib: A Prisma-Compliant Systematic Review and Meta-Analysis. Medicine (Baltimore). 2015; 94(40). https://doi.org/10.1097/MD. 0000000000001719 PMID: 26448029Posevitz-Fejfa´ r A, Posevitz V, Gross CC, Bhatia U, Kurth F, Schu¨ tte V, et al. Effects of Blood Transportation on Human Peripheral Mononuclear Cell Yield, Phenotype and Function: Implications for Immune Cell Biobanking. PLoS One. 2014 Dec 26; 9(12):e115920. https://doi.org/10.1371/journal.pone. 0115920 PMID: 25541968Schlenke P, Klu¨ ter H, Mu¨ ller-Steinhardt M, Hammers HJ, Borchert K, Bein G. Evaluation of a novel mononuclear cell isolation procedure for serological HLA typing. Clin Diagn Lab Immunol. 1998 Nov; 5 (6):808–13. PMID: 9801339Mckenna K, Beatty K, Vicetti Miguel R, Bilonick R. Delayed processing of blood increases the frequency of activated CD11b+ CD15+ granulocytes which inhibit T cell function. J Immunol Methods. 2008 Dec 1; 341:68–75. https://doi.org/10.1016/j.jim.2008.10.019 PMID: 19041316Reimann KA, Chernoff M, Wilkening CL, Nickerson CE, Landay AL. Preservation of Lymphocyte Immunophenotype and Proliferative Responses in Cryopreserved Peripheral Blood Mononuclear Cells from Human Immunodeficiency Virus Type 1-Infected Donors: Implications for Multicenter Clinical Trials. Clin Diagn Lab Immunol. 2000 May 1; 7(3):352 LP– 359. https://doi.org/10.1128/cdli.7.3.352-359.2000 PMID: 10799445Brown LM, Clark JW, Neuland CY, Mann DL, Pankiw-Trost LK, Blattner WA, et al. Cryopreservation and long-term liquid nitrogen storage of peripheral blood mononuclear cells for flow cytometry analysis effects on cell subset proportions and fluorescence intensity. J Clin Lab Anal. 1991 Jan 1; 5(4):255–61. https://doi.org/10.1002/jcla.1860050406 PMID: 1890539Matheus N, Hansen S, Rozet E, Peixoto P, Maquoi E, Lambert V, et al. An easy, convenient cell and tissue extraction protocol for nuclear magnetic resonance metabolomics. Phytochem Anal. 2014; 25 (4):342–9. https://doi.org/10.1002/pca.2498 PMID: 24453161Lauri I, Savorani F, Iaccarino N, Zizza P, Pavone LM, Novellino E, et al. Development of an optimized protocol for NMR metabolomics studies of human colon cancer cell lines and first insight from testing of the protocol using DNA G-quadruplex ligands as novel anti-cancer drugs. Metabolites. 2016; 6(1):1–14. https://doi.org/10.3390/metabo6010004 PMID: 26784246Kostidis S, Addie RD, Morreau H, Mayboroda OA, Giera M. Quantitative NMR analysis of intra- and extracellular metabolism of mammalian cells: A tutorial. Anal Chim Acta. 2017; 980:1–24. https://doi. org/10.1016/j.aca.2017.05.011 PMID: 28622799Lari Z, Ahmadzadeh H, Hosseini M. Chapter 2—Cell Wall Disruption: A Critical Upstream Process for Biofuel Production. In: Hosseini MBT-A in FCT for AF and B, editor. Woodhead Publishing Series in Energy. Woodhead Publishing; 2019. p. 21–35.Folch J, Lees M, Stanley GHS. A SIMPLE METHOD FOR THE ISOLATION AND PURIFICATION OF TOTAL LIPIDES FROM ANIMAL TISSUES. J Biol Chem. 1957 May 1; 226(1):497–509. PMID: 13428781Van Noorden R, Maher B, Nuzzo R. The top 100 papers. Nature. 2014; 514(7524):550–3. https://doi. org/10.1038/514550a PMID: 25355343Wishart DS. Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov. 2016; 15(7):473–84. https://doi.org/10.1038/nrd.2016.32 PMID: 26965202NOBLE PB CUTTS JH, CARROLL KK. Ficoll Flotation for the Separation of Blood Leukocyte Types. Blood. 1968 Jan 1; 31(1):66–73. PMID: 4966278Strober W. Trypan Blue Exclusion Test of Cell Viability. Curr Protoc Immunol. 1997 Mar 1; 21(1): A.3B.1–A.3B.2.Strober W. Trypan Blue Exclusion Test of Cell Viability. Curr Protoc Immunol. 2015 Nov 2; 111:A3.B.1– A3.B.3. https://doi.org/10.1002/0471142735.ima03bs111 PMID: 26529666Louis KS, Siegel AC. Cell Viability Analysis Using Trypan Blue: Manual and Automated Methods BT— Mammalian Cell Viability: Methods and Protocols. In: Stoddart MJ, editor. Totowa, NJ: Humana Press; 2011. p. 7–12.Kim JS, Nam MH, An SSA, Lim CS, Hur DS, Chung C, et al. Comparison of the automated fluorescence microscopic viability test with the conventional and flow cytometry methods. J Clin Lab Anal. 2011 Jan 1; 25(2):90–4. https://doi.org/10.1002/jcla.20438 PMID: 21437999Eggers LF, Schwudke D. Liquid Extraction: Folch BT—Encyclopedia of Lipidomics. In: Wenk MR, editor. Dordrecht: Springer Netherlands; 2016. p. 1–6.Eggers LF, Schwudke D. Encyclopedia of Lipidomics. Encycl Lipidomics. 2019; 3:1–6.Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, et al. BioMagResBank. Nucleic Acids Res. 2007 Nov 4; 36(suppl_1):D402–8. https://doi.org/10.1093/nar/gkm957 PMID: 17984079Kim TK, Park JH. More about the basic assumptions of t-test: normality and sample size. Korean J Anesthesiol. 2019/04/01. 2019 Aug; 72(4):331–5. https://doi.org/10.4097/kja.d.18.00292 PMID: 30929413Lin CY, Wu H, Tjeerdema RS, Viant MR. Evaluation of metabolite extraction strategies from tissue samples using NMR metabolomics. Metabolomics. 2007; 3(1):55–67.Martineau E, Tea I, Loae¨c G, Giraudeau P, Akoka S. Strategy for choosing extraction procedures for NMR-based metabolomic analysis of mammalian cells. Anal Bioanal Chem. 2011; 401(7):2133. https:// doi.org/10.1007/s00216-011-5310-y PMID: 21837464Cooper ML, Choi J, Staser K, Ritchey JK, Devenport JM, Eckardt K, et al. An “off-the-shelf” fratricideresistant CAR-T for the treatment of T cell hematologic malignancies. Leukemia. 2018; 32(9):1970–83. https://doi.org/10.1038/s41375-018-0065-5 PMID: 29483708Mu¨lleder M, Calvani E, Alam MT, Wang RK, Eckerstorfer F, Zelezniak A, et al. Functional Metabolomics Describes the Yeast Biosynthetic Regulome. Cell. 2016 Oct 6; 167(2):553–565.e12. https://doi.org/10. 1016/j.cell.2016.09.007 PMID: 27693354D’Alessandro A, Blasi B, D’Amici GM, Marrocco C, Zolla L. Red blood cell subpopulations in freshly drawn blood: Application of proteomics and metabolomics to a decades-long biological issue. Blood Transfus. 2013; 11(1):75–87. https://doi.org/10.2450/2012.0164-11 PMID: 22871816Catala´nU´ , Rodrı´guez M-A´ , Ras M-R, Macia´ A, Mallol R, Vinaixa M, et al. Biomarkers of food intake and metabolite differences between plasma and red blood cell matrices; a human metabolomic profile approach. Mol Biosyst. 2013; 9(6):1411–22. https://doi.org/10.1039/c3mb25554a PMID: 23493899Sana TR, Gordon DB, Fischer SM, Tichy SE, Kitagawa N, Lai C, et al. Global Mass Spectrometry Based Metabolomics Profiling of Erythrocytes Infected with Plasmodium falciparum. PLoS One. 2013 Apr 9; 8(4):e60840. https://doi.org/10.1371/journal.pone.0060840 PMID: 23593322D’Alessandro A, Nemkov T, Kelher M, West FB, Schwindt RK, Banerjee A, et al. Routine storage of red blood cell (RBC) units in additive solution-3: a comprehensive investigation of the RBC metabolome. Transfusion. 2015 Jun 1; 55(6):1155–68. https://doi.org/10.1111/trf.12975 PMID: 25556331Otiko G, Razi MT, Sadler PJ, Isab AA, Rabenstein DL. A 1H nmr study of the interaction of aurothiomalate (“Myocrisin”) with human red blood cells in vitro. J Inorg Biochem. 1983; 19(3):227–35. https://doi. org/10.1016/0162-0134(83)85027-2 PMID: 6417270Humpfer E, Spraul M, Nicholls AW, Nicholson JK, Lindon JC. Direct observation of resolved intracellular and extracellular water signals in intact human red blood cells using 1H MAS NMR spectroscopy. Magn Reson Med. 1997 Aug 1; 38(2):334–6. https://doi.org/10.1002/mrm.1910380224 PMID: 9256115Brindle KM, Campbell ID, Simpson RJ. A 1H n.m.r. study of the kinetic properties expressed by glyceraldehyde phosphate dehydrogenase in the intact human erythrocyte. Biochem J. 1982 Dec 15; 208 (3):583–92. https://doi.org/10.1042/bj2080583 PMID: 7165719Freikman I, Amer J, Cohen JS, Ringel I, Fibach E. Oxidative stress causes membrane phospholipid rearrangement and shedding from RBC membranes—An NMR study. Biochim Biophys Acta—Biomembr. 2008; 1778(10):2388–94. https://doi.org/10.1016/j.bbamem.2008.06.008 PMID: 18621018Wright LC, Obbink KLG, Delikatny EJ, Santangelo RT, Sorrell TC. The origin of 1H NMR-visible triacylglycerol in human neutrophils. Eur J Biochem. 2000 Jan 1; 267(1):68–78. https://doi.org/10.1046/j. 1432-1327.2000.00955.x PMID: 10601852Palomino-Scha¨ tzlein M, Simo´ R, Herna´ndez C, Ciudin A, Mateos-Gregorio P, Herna´ndez-Mijares A, et al. Metabolic fingerprint of insulin resistance in human polymorphonuclear leucocytes. PLoS One. 2018; 13(7):1–15. https://doi.org/10.1371/journal.pone.0199351 PMID: 30005063Human peripheral blood mononuclear cellsMetabolomic profilingNuclear magnetic resonanceFolch MethodHuman peripheral blood mononuclear cellsMetabolomic profilingNuclear magnetic resonanceFolch MethodDevelopment of an optimized method for processing peripheral blood mononuclear cells for 1H-nuclear magnetic resonance-based metabolomic profilingArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINALmetabolomica UCC 2021.pdfmetabolomica UCC 2021.pdfArtículoapplication/pdf2002736https://repository.ucc.edu.co/bitstreams/44684556-a980-46d5-a627-595447558bbe/download023fcebc6b894fe23330631ade9d282fMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/81ccdf86-3542-4266-869d-ce1c1e9f9cc2/download3bce4f7ab09dfc588f126e1e36e98a45MD52THUMBNAILmetabolomica UCC 2021.pdf.jpgmetabolomica UCC 2021.pdf.jpgGenerated Thumbnailimage/jpeg5711https://repository.ucc.edu.co/bitstreams/ce454998-5345-4ef2-818f-0fda1bc44d82/download9fa0273cb579709474674ad4277bf8ccMD53TEXTmetabolomica UCC 2021.pdf.txtmetabolomica UCC 2021.pdf.txtExtracted texttext/plain81171https://repository.ucc.edu.co/bitstreams/6348e98b-ebc3-47a2-beab-2320b1662b3d/download1d39d8fe7a4cc0a51e34feb5b5340e49MD5420.500.12494/33500oai:repository.ucc.edu.co:20.500.12494/335002024-08-10 22:47:58.207restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=