Soft Lithography and Minimally Human Invasive Technique for Rapid Screening of Oral Biofilm Formation on New Microfabricated Dental Material Surfaces
Introduction. Microfabrication offers opportunities to study surface concepts focused to reduce bacterial adhesion on implants using human minimally invasive rapid screening (hMIRS). Wide information is available about cell/biomaterial interactions using eukaryotic and prokaryotic cells on surfaces...
- Autores:
-
Alvarez Escobar, Marta
Da Cunha Freitas, Sidónio Ricardo
Hansford, Derek
Monteiro, Fernando J.
Peláez Vargas, Alejandro
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2018
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/17173
- Palabra clave:
- Materiales dentales
Biopelícula
In vivo
Litografía Blanda
Dental Material
Microfabrication
Biofilm
Soft lithography
Minimally Human Invasive Technique
- Rights
- openAccess
- License
- Atribución
id |
COOPER2_4c97921543f66ccd6d58348fcb0648e4 |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/17173 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Soft Lithography and Minimally Human Invasive Technique for Rapid Screening of Oral Biofilm Formation on New Microfabricated Dental Material Surfaces |
title |
Soft Lithography and Minimally Human Invasive Technique for Rapid Screening of Oral Biofilm Formation on New Microfabricated Dental Material Surfaces |
spellingShingle |
Soft Lithography and Minimally Human Invasive Technique for Rapid Screening of Oral Biofilm Formation on New Microfabricated Dental Material Surfaces Materiales dentales Biopelícula In vivo Litografía Blanda Dental Material Microfabrication Biofilm Soft lithography Minimally Human Invasive Technique |
title_short |
Soft Lithography and Minimally Human Invasive Technique for Rapid Screening of Oral Biofilm Formation on New Microfabricated Dental Material Surfaces |
title_full |
Soft Lithography and Minimally Human Invasive Technique for Rapid Screening of Oral Biofilm Formation on New Microfabricated Dental Material Surfaces |
title_fullStr |
Soft Lithography and Minimally Human Invasive Technique for Rapid Screening of Oral Biofilm Formation on New Microfabricated Dental Material Surfaces |
title_full_unstemmed |
Soft Lithography and Minimally Human Invasive Technique for Rapid Screening of Oral Biofilm Formation on New Microfabricated Dental Material Surfaces |
title_sort |
Soft Lithography and Minimally Human Invasive Technique for Rapid Screening of Oral Biofilm Formation on New Microfabricated Dental Material Surfaces |
dc.creator.fl_str_mv |
Alvarez Escobar, Marta Da Cunha Freitas, Sidónio Ricardo Hansford, Derek Monteiro, Fernando J. Peláez Vargas, Alejandro |
dc.contributor.advisor.none.fl_str_mv |
Peláez Vargas, Alejandro |
dc.contributor.author.none.fl_str_mv |
Alvarez Escobar, Marta Da Cunha Freitas, Sidónio Ricardo Hansford, Derek Monteiro, Fernando J. Peláez Vargas, Alejandro |
dc.subject.spa.fl_str_mv |
Materiales dentales Biopelícula In vivo Litografía Blanda |
topic |
Materiales dentales Biopelícula In vivo Litografía Blanda Dental Material Microfabrication Biofilm Soft lithography Minimally Human Invasive Technique |
dc.subject.other.spa.fl_str_mv |
Dental Material Microfabrication Biofilm Soft lithography Minimally Human Invasive Technique |
description |
Introduction. Microfabrication offers opportunities to study surface concepts focused to reduce bacterial adhesion on implants using human minimally invasive rapid screening (hMIRS). Wide information is available about cell/biomaterial interactions using eukaryotic and prokaryotic cells on surfaces of dental materials with different topographies, but studies using human being are still limited. Objective. To evaluate a synergy of microfabrication and hMIRS to study the bacterial adhesion on micropatterned surfaces for dental materials. Materials and Methods. Micropatterned and flat surfaces on biomedical PDMS disks were produced by soft lithography. The hMIRS approach was used to evaluate the total oral bacterial adhesion on PDMS surfaces placed in the oral cavity of five volunteers (the study was approved by the University Ethical Committee). After 24 h, the disks were analyzed using MTT assay and light microscopy. Results. In the present pilot study, microwell structures were microfabricated on the PDMS surface via soft lithography with a spacing of 5 µm. Overall, bacterial adhesion did not significantly differ between the flat and micropatterned surfaces. However, individual analysis of two subjects showed greater bacterial adhesion on the micropatterned surfaces than on the flat surfaces. Significance. Microfabrication and hMIRS might be implemented to study the cell/biomaterial interactions for dental materials. |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018-01-14 |
dc.date.accessioned.none.fl_str_mv |
2020-03-17T15:22:28Z |
dc.date.available.none.fl_str_mv |
2020-03-17T15:22:28Z |
dc.type.none.fl_str_mv |
Artículo |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
1687-8736 (Online) |
dc.identifier.uri.spa.fl_str_mv |
https://doi.org/10.1155/2018/4219625 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/17173 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Alvarez-Escobar M., Freitas S.C., Hansford D., Monteiro F.J. y Pelaez-Vargas A. (2018) Soft Lithography and Minimally Human Invasive Technique for Rapid Screening of Oral Biofilm Formation on New Microfabricated Dental Material Surfaces. Int J Dent. 2018 Jan 14;2018:4219625. doi: 10.1155/2018/4219625. PMID: 29593793; PMCID: PMC5821979. Recuperado de: https://www.hindawi.com/journals/ijd/2018/4219625/ |
identifier_str_mv |
1687-8736 (Online) Alvarez-Escobar M., Freitas S.C., Hansford D., Monteiro F.J. y Pelaez-Vargas A. (2018) Soft Lithography and Minimally Human Invasive Technique for Rapid Screening of Oral Biofilm Formation on New Microfabricated Dental Material Surfaces. Int J Dent. 2018 Jan 14;2018:4219625. doi: 10.1155/2018/4219625. PMID: 29593793; PMCID: PMC5821979. Recuperado de: https://www.hindawi.com/journals/ijd/2018/4219625/ |
url |
https://doi.org/10.1155/2018/4219625 https://hdl.handle.net/20.500.12494/17173 |
dc.relation.isversionof.spa.fl_str_mv |
https://www.hindawi.com/journals/ijd/2018/4219625/ |
dc.relation.ispartofjournal.spa.fl_str_mv |
International Journal of Dentistry |
dc.relation.references.spa.fl_str_mv |
M. Quirynen and W. Teughels, “Microbiologically compromised patients and impact on oral implants,” Periodontology 2000, vol. 33, no. 1, pp. 119–128, 2003. C. J. Seneviratne, C. F. Zhang, and L. P. Samaranayake, “Dental plaque biofilm in oral health and disease,” Chinese Journal of Dental Research, vol. 14, no. 2, pp. 87–94, 2011. K. Hori and S. Matsumoto, “Bacterial adhesion: from mechanism to control,” Biochemical Engineering Journal, vol. 48, no. 3, pp. 424–434, 2010. L. D. Renner and D. B. Weibel, “Physicochemical regulation of biofilm formation,” MRS Bulletin, vol. 36, no. 5, pp. 347–355, 2011. C. Hannig and M. Hannig, “The oral cavity—a key system to understand substratum-dependent bioadhesion on solid surfaces in man,” Clinical Oral Investigations, vol. 13, no. 2, pp. 123–139, 2009. L. Rimondini, L. Cerroni, A. Carrassi, and P. Torricelli, “Bacterial colonization of zirconia ceramic surfaces: an in vitro and in vivo study,” International Journal of Oral & Maxillofacial Implants, vol. 17, no. 6, pp. 793–798, 2002. M. Quirynen and C. M. L. Bollen, “The influence of surface roughness and surface-free energy on supra- and subgingival plaque formation in man. A review of the literature,” Journal of Clinical Periodontology, vol. 22, no. 1, pp. 1–14, 1995. W. Teughels, N. Van Assche, I. Sliepen, and M. Quirynen, “Effect of material characteristics and/or surface topography on biofilm development,” Clinical Oral Implants Research, vol. 17, no. 2, pp. 68–81, 2006. A.-S. Andersson, J. Brink, U. Lidberg, and D. S. Sutherland, “Influence of systematically varied nanoscale topography on the morphology of epithelial cells,” IEEE Transactions on Nanobioscience, vol. 2, no. 2, pp. 49–57, 2003. A. Carvalho, A. Pelaez-Vargas, D. J. Hansford, M. H. Fernandes, and F. J. Monteiro, “Effects of line and pillar array microengineered SiO2 thin films on the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells,” Langmuir, vol. 32, no. 4, pp. 1091–1100, 2016. A. Carvalho, A. Pelaez-Vargas, D. Gallego-Perez et al., “Micropatterned silica thin films with nanohydroxyapatite micro-aggregates for guided tissue regeneration,” Dental Materials, vol. 28, no. 12, pp. 1250–1260, 2012. S. Arango-Santander, S. C. Freitas, A. Pelaez-Vargas, and C. Garcia, “Silica sol-gel patterned surfaces based on dip-pen nanolithography and microstamping: a comparison in resolution and throughput,” Key Engineering Materials, vol. 720, pp. 264–268, 2016. D. B. Weibel, W. R. DiLuzio, and G. M. Whitesides, “Microfabrication meets microbiology,” Nature Reviews Microbiology, vol. 5, no. 3, pp. 209–218, 2007. T. R. Garrett, M. Bhakoo, and Z. Zhang, “Bacterial adhesion and biofilms on surfaces,” Progress in Natural Science, vol. 18, no. 9, pp. 1049–1056, 2008. A. I. Hochbaum and J. Aizenberg, “Bacteria pattern spontaneously on periodic nanostructure arrays,” Nano Letters, vol. 10, no. 9, pp. 3717–3721, 2010. A. Pelaez-Vargas, D. Gallego-Perez, M. Magallanes-Perdomo et al., “Isotropic micropatterned silica coatings on zirconia induce guided cell growth for dental implants,” Dental Materials, vol. 27, no. 6, pp. 581–589, 2011. J. Schindelin, I. Arganda-Carreras, E. Frise et al., “Fiji: an open-source platform for biological-image analysis,” Nature Methods, vol. 9, no. 7, pp. 676–682, 2012. C. Restrepo, A. Peláez, E. Alvarez, C. Paucar, and P. Abad, “Digital imaging of patterns of dental wear to diagnose bruxism in children,” International Journal of Paediatric Dentistry, vol. 16, no. 4, pp. 278–285, 2006. M. Katsikogianni and Y. F. Missirlis, “Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions,” European Cells and Materials, vol. 8, pp. 37–57, 2004. A. Pelaez-Vargas, D. Gallego-perez, D. F. Gomez, M. H. Fernandes, D. J. Hansford, and F. J. Monteiro, “Propagation of human bone marrow stem cells for craniofacial applications,” in Stem Cells and Cancer Stem Cells, M. A. Hayat, Ed., vol. 7, pp. 107–122, Springer, Dordrecht, Netherlands, 2012. A. Pelaez-Vargas, D. Gallego-Perez, N. Higuita-Castro et al., “Micropatterned coating for guided tissue regeneration in dental implantology,” in Cell Interaction, S. Gowder, Ed., pp. 273–302, InTech, Rijeka, Croatia, 2012. A. S. G. Curtis, B. Casey, J. O. Gallagher, D. Pasqui, M. A. Wood, and C. D. W. Wilkinson, “Substratum nanotopography and the adhesion of biological cells. Are symmetry or regularity of nanotopography important?” Biophysical Chemistry, vol. 94, no. 3, pp. 275–283, 2001. A. M. Turner, N. Dowell, S. W. Turner et al., “Attachment of astroglial cells to microfabricated pillar arrays of different geometries,” Journal of Biomedical Materials Research, vol. 51, no. 3, pp. 430–441, 2000 A.-S. Andersson, F. Bäckhed, A. von Euler, A. Richter-Dahlfors, D. Sutherland, and B. Kasemo, “Nanoscale features influence epithelial cell morphology and cytokine production,” Biomaterials, vol. 24, no. 20, pp. 3427–3436, 2003. M. J. Dalby, S. Childs, M. O. Riehle, H. J. H. Johnstone, S. Affrossman, and A. S. G. Curtis, “Fibroblast reaction to island topography: changes in cytoskeleton and morphology with time,” Biomaterials, vol. 24, no. 6, pp. 927–935, 2003. M. J. Dalby, M. O. Riehle, H. J. H. Johnstone, S. Affrossman, and A. S. G. Curtis, “Nonadhesive nanotopography: fibroblast response to poly(n-butyl methacrylate)-poly(styrene) demixed surface features,” Journal of Biomedical Materials Research Part A, vol. 67, no. 3, pp. 1025–1032, 2003. J. M. Rice, J. A. Hunt, J. A. Gallagher, P. Hanarp, D. S. Sutherland, and J. Gold, “Quantitative assessment of the response of primary derived human osteoblasts and macrophages to a range of nanotopography surfaces in a single culture model in vitro,” Biomaterials, vol. 24, no. 26, pp. 4799–4818, 2003. K. K. Chung, J. F. Schumacher, E. M. Sampson, R. A. Burne, P. J. Antonelli, and A. B. Brennan, “Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus,” Biointerphases, vol. 2, no. 2, pp. 89–94, 2007. F. Bremer, S. Grade, P. Kohorst, and M. Stiesch, “In vivo biofilm formation on different dental ceramics,” Quintessence International, vol. 42, no. 7, pp. 565–574, 2011. M. M. de Freitas, C. H. da Silva, M. Groisman, and G. M. Vidigal, “Comparative analysis of microorganism species succession on three implant surfaces with different roughness: an in vivo study,” Implant Dentistry, vol. 20, no. 2, pp. e14–e23, 2011. T. M. Auschill, N. B. Arweiler, M. Brecx, E. Reich, A. Sculean, and L. Netuschil, “The effect of dental restorative materials on dental biofilm,” European Journal of Oral Sciences, vol. 110, no. 1, pp. 48–53, 2002. |
dc.rights.license.none.fl_str_mv |
Atribución |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
5 |
dc.coverage.temporal.spa.fl_str_mv |
2018 |
dc.publisher.spa.fl_str_mv |
Silvio M. Meloni Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Odontología, Medellín y Envigado |
dc.publisher.program.spa.fl_str_mv |
Odontología |
dc.publisher.place.spa.fl_str_mv |
Medellín |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/afa82be6-0191-44ac-846c-e8fb41962b99/download https://repository.ucc.edu.co/bitstreams/20b9d6ed-e362-4e79-be64-e37500ebe574/download https://repository.ucc.edu.co/bitstreams/d60d3d74-c31c-46f6-9bce-65e3bb8974f6/download https://repository.ucc.edu.co/bitstreams/d8b5d98c-4d80-4f79-8b91-e385a53a9193/download |
bitstream.checksum.fl_str_mv |
78914cb392948d8666f8ecfa67b128f1 3bce4f7ab09dfc588f126e1e36e98a45 4f824c22def5d542ba6fdfcb271b1898 f59f65628643f80fa6073905a0b975a8 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814246995509903360 |
spelling |
Peláez Vargas, AlejandroAlvarez Escobar, MartaDa Cunha Freitas, Sidónio RicardoHansford, DerekMonteiro, Fernando J.Peláez Vargas, Alejandro20182020-03-17T15:22:28Z2020-03-17T15:22:28Z2018-01-141687-8736 (Online)https://doi.org/10.1155/2018/4219625https://hdl.handle.net/20.500.12494/17173Alvarez-Escobar M., Freitas S.C., Hansford D., Monteiro F.J. y Pelaez-Vargas A. (2018) Soft Lithography and Minimally Human Invasive Technique for Rapid Screening of Oral Biofilm Formation on New Microfabricated Dental Material Surfaces. Int J Dent. 2018 Jan 14;2018:4219625. doi: 10.1155/2018/4219625. PMID: 29593793; PMCID: PMC5821979. Recuperado de: https://www.hindawi.com/journals/ijd/2018/4219625/Introduction. Microfabrication offers opportunities to study surface concepts focused to reduce bacterial adhesion on implants using human minimally invasive rapid screening (hMIRS). Wide information is available about cell/biomaterial interactions using eukaryotic and prokaryotic cells on surfaces of dental materials with different topographies, but studies using human being are still limited. Objective. To evaluate a synergy of microfabrication and hMIRS to study the bacterial adhesion on micropatterned surfaces for dental materials. Materials and Methods. Micropatterned and flat surfaces on biomedical PDMS disks were produced by soft lithography. The hMIRS approach was used to evaluate the total oral bacterial adhesion on PDMS surfaces placed in the oral cavity of five volunteers (the study was approved by the University Ethical Committee). After 24 h, the disks were analyzed using MTT assay and light microscopy. Results. In the present pilot study, microwell structures were microfabricated on the PDMS surface via soft lithography with a spacing of 5 µm. Overall, bacterial adhesion did not significantly differ between the flat and micropatterned surfaces. However, individual analysis of two subjects showed greater bacterial adhesion on the micropatterned surfaces than on the flat surfaces. Significance. Microfabrication and hMIRS might be implemented to study the cell/biomaterial interactions for dental materials.http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000141070http://orcid.org/0000-0001-7582-2760https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000005649alejandro.pelaezv@ucc.edu.cohttps://scholar.google.com.co/citations?user=jNJHWGsAAAAJ&hl=es5Silvio M. MeloniUniversidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Odontología, Medellín y EnvigadoOdontologíaMedellínhttps://www.hindawi.com/journals/ijd/2018/4219625/International Journal of DentistryM. Quirynen and W. Teughels, “Microbiologically compromised patients and impact on oral implants,” Periodontology 2000, vol. 33, no. 1, pp. 119–128, 2003.C. J. Seneviratne, C. F. Zhang, and L. P. Samaranayake, “Dental plaque biofilm in oral health and disease,” Chinese Journal of Dental Research, vol. 14, no. 2, pp. 87–94, 2011.K. Hori and S. Matsumoto, “Bacterial adhesion: from mechanism to control,” Biochemical Engineering Journal, vol. 48, no. 3, pp. 424–434, 2010.L. D. Renner and D. B. Weibel, “Physicochemical regulation of biofilm formation,” MRS Bulletin, vol. 36, no. 5, pp. 347–355, 2011.C. Hannig and M. Hannig, “The oral cavity—a key system to understand substratum-dependent bioadhesion on solid surfaces in man,” Clinical Oral Investigations, vol. 13, no. 2, pp. 123–139, 2009.L. Rimondini, L. Cerroni, A. Carrassi, and P. Torricelli, “Bacterial colonization of zirconia ceramic surfaces: an in vitro and in vivo study,” International Journal of Oral & Maxillofacial Implants, vol. 17, no. 6, pp. 793–798, 2002.M. Quirynen and C. M. L. Bollen, “The influence of surface roughness and surface-free energy on supra- and subgingival plaque formation in man. A review of the literature,” Journal of Clinical Periodontology, vol. 22, no. 1, pp. 1–14, 1995.W. Teughels, N. Van Assche, I. Sliepen, and M. Quirynen, “Effect of material characteristics and/or surface topography on biofilm development,” Clinical Oral Implants Research, vol. 17, no. 2, pp. 68–81, 2006.A.-S. Andersson, J. Brink, U. Lidberg, and D. S. Sutherland, “Influence of systematically varied nanoscale topography on the morphology of epithelial cells,” IEEE Transactions on Nanobioscience, vol. 2, no. 2, pp. 49–57, 2003.A. Carvalho, A. Pelaez-Vargas, D. J. Hansford, M. H. Fernandes, and F. J. Monteiro, “Effects of line and pillar array microengineered SiO2 thin films on the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells,” Langmuir, vol. 32, no. 4, pp. 1091–1100, 2016.A. Carvalho, A. Pelaez-Vargas, D. Gallego-Perez et al., “Micropatterned silica thin films with nanohydroxyapatite micro-aggregates for guided tissue regeneration,” Dental Materials, vol. 28, no. 12, pp. 1250–1260, 2012.S. Arango-Santander, S. C. Freitas, A. Pelaez-Vargas, and C. Garcia, “Silica sol-gel patterned surfaces based on dip-pen nanolithography and microstamping: a comparison in resolution and throughput,” Key Engineering Materials, vol. 720, pp. 264–268, 2016.D. B. Weibel, W. R. DiLuzio, and G. M. Whitesides, “Microfabrication meets microbiology,” Nature Reviews Microbiology, vol. 5, no. 3, pp. 209–218, 2007.T. R. Garrett, M. Bhakoo, and Z. Zhang, “Bacterial adhesion and biofilms on surfaces,” Progress in Natural Science, vol. 18, no. 9, pp. 1049–1056, 2008.A. I. Hochbaum and J. Aizenberg, “Bacteria pattern spontaneously on periodic nanostructure arrays,” Nano Letters, vol. 10, no. 9, pp. 3717–3721, 2010.A. Pelaez-Vargas, D. Gallego-Perez, M. Magallanes-Perdomo et al., “Isotropic micropatterned silica coatings on zirconia induce guided cell growth for dental implants,” Dental Materials, vol. 27, no. 6, pp. 581–589, 2011.J. Schindelin, I. Arganda-Carreras, E. Frise et al., “Fiji: an open-source platform for biological-image analysis,” Nature Methods, vol. 9, no. 7, pp. 676–682, 2012.C. Restrepo, A. Peláez, E. Alvarez, C. Paucar, and P. Abad, “Digital imaging of patterns of dental wear to diagnose bruxism in children,” International Journal of Paediatric Dentistry, vol. 16, no. 4, pp. 278–285, 2006.M. Katsikogianni and Y. F. Missirlis, “Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions,” European Cells and Materials, vol. 8, pp. 37–57, 2004.A. Pelaez-Vargas, D. Gallego-perez, D. F. Gomez, M. H. Fernandes, D. J. Hansford, and F. J. Monteiro, “Propagation of human bone marrow stem cells for craniofacial applications,” in Stem Cells and Cancer Stem Cells, M. A. Hayat, Ed., vol. 7, pp. 107–122, Springer, Dordrecht, Netherlands, 2012.A. Pelaez-Vargas, D. Gallego-Perez, N. Higuita-Castro et al., “Micropatterned coating for guided tissue regeneration in dental implantology,” in Cell Interaction, S. Gowder, Ed., pp. 273–302, InTech, Rijeka, Croatia, 2012.A. S. G. Curtis, B. Casey, J. O. Gallagher, D. Pasqui, M. A. Wood, and C. D. W. Wilkinson, “Substratum nanotopography and the adhesion of biological cells. Are symmetry or regularity of nanotopography important?” Biophysical Chemistry, vol. 94, no. 3, pp. 275–283, 2001.A. M. Turner, N. Dowell, S. W. Turner et al., “Attachment of astroglial cells to microfabricated pillar arrays of different geometries,” Journal of Biomedical Materials Research, vol. 51, no. 3, pp. 430–441, 2000A.-S. Andersson, F. Bäckhed, A. von Euler, A. Richter-Dahlfors, D. Sutherland, and B. Kasemo, “Nanoscale features influence epithelial cell morphology and cytokine production,” Biomaterials, vol. 24, no. 20, pp. 3427–3436, 2003.M. J. Dalby, S. Childs, M. O. Riehle, H. J. H. Johnstone, S. Affrossman, and A. S. G. Curtis, “Fibroblast reaction to island topography: changes in cytoskeleton and morphology with time,” Biomaterials, vol. 24, no. 6, pp. 927–935, 2003.M. J. Dalby, M. O. Riehle, H. J. H. Johnstone, S. Affrossman, and A. S. G. Curtis, “Nonadhesive nanotopography: fibroblast response to poly(n-butyl methacrylate)-poly(styrene) demixed surface features,” Journal of Biomedical Materials Research Part A, vol. 67, no. 3, pp. 1025–1032, 2003.J. M. Rice, J. A. Hunt, J. A. Gallagher, P. Hanarp, D. S. Sutherland, and J. Gold, “Quantitative assessment of the response of primary derived human osteoblasts and macrophages to a range of nanotopography surfaces in a single culture model in vitro,” Biomaterials, vol. 24, no. 26, pp. 4799–4818, 2003.K. K. Chung, J. F. Schumacher, E. M. Sampson, R. A. Burne, P. J. Antonelli, and A. B. Brennan, “Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus,” Biointerphases, vol. 2, no. 2, pp. 89–94, 2007.F. Bremer, S. Grade, P. Kohorst, and M. Stiesch, “In vivo biofilm formation on different dental ceramics,” Quintessence International, vol. 42, no. 7, pp. 565–574, 2011.M. M. de Freitas, C. H. da Silva, M. Groisman, and G. M. Vidigal, “Comparative analysis of microorganism species succession on three implant surfaces with different roughness: an in vivo study,” Implant Dentistry, vol. 20, no. 2, pp. e14–e23, 2011.T. M. Auschill, N. B. Arweiler, M. Brecx, E. Reich, A. Sculean, and L. Netuschil, “The effect of dental restorative materials on dental biofilm,” European Journal of Oral Sciences, vol. 110, no. 1, pp. 48–53, 2002.Materiales dentalesBiopelículaIn vivoLitografía BlandaDental MaterialMicrofabricationBiofilmSoft lithographyMinimally Human Invasive TechniqueSoft Lithography and Minimally Human Invasive Technique for Rapid Screening of Oral Biofilm Formation on New Microfabricated Dental Material SurfacesArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINAL4219625.pdf4219625.pdfArtículoapplication/pdf2138295https://repository.ucc.edu.co/bitstreams/afa82be6-0191-44ac-846c-e8fb41962b99/download78914cb392948d8666f8ecfa67b128f1MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/20b9d6ed-e362-4e79-be64-e37500ebe574/download3bce4f7ab09dfc588f126e1e36e98a45MD52THUMBNAIL4219625.pdf.jpg4219625.pdf.jpgGenerated Thumbnailimage/jpeg5433https://repository.ucc.edu.co/bitstreams/d60d3d74-c31c-46f6-9bce-65e3bb8974f6/download4f824c22def5d542ba6fdfcb271b1898MD53TEXT4219625.pdf.txt4219625.pdf.txtExtracted texttext/plain23692https://repository.ucc.edu.co/bitstreams/d8b5d98c-4d80-4f79-8b91-e385a53a9193/downloadf59f65628643f80fa6073905a0b975a8MD5420.500.12494/17173oai:repository.ucc.edu.co:20.500.12494/171732024-08-10 22:41:48.945restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo= |