Soft Lithography and Minimally Human Invasive Technique for Rapid Screening of Oral Biofilm Formation on New Microfabricated Dental Material Surfaces

Introduction. Microfabrication offers opportunities to study surface concepts focused to reduce bacterial adhesion on implants using human minimally invasive rapid screening (hMIRS). Wide information is available about cell/biomaterial interactions using eukaryotic and prokaryotic cells on surfaces...

Full description

Autores:
Alvarez Escobar, Marta
Da Cunha Freitas, Sidónio Ricardo
Hansford, Derek
Monteiro, Fernando J.
Peláez Vargas, Alejandro
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/17173
Acceso en línea:
https://doi.org/10.1155/2018/4219625
https://hdl.handle.net/20.500.12494/17173
Palabra clave:
Materiales dentales
Biopelícula
In vivo
Litografía Blanda
Dental Material
Microfabrication
Biofilm
Soft lithography
Minimally Human Invasive Technique
Rights
openAccess
License
Atribución
id COOPER2_4c97921543f66ccd6d58348fcb0648e4
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/17173
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Soft Lithography and Minimally Human Invasive Technique for Rapid Screening of Oral Biofilm Formation on New Microfabricated Dental Material Surfaces
title Soft Lithography and Minimally Human Invasive Technique for Rapid Screening of Oral Biofilm Formation on New Microfabricated Dental Material Surfaces
spellingShingle Soft Lithography and Minimally Human Invasive Technique for Rapid Screening of Oral Biofilm Formation on New Microfabricated Dental Material Surfaces
Materiales dentales
Biopelícula
In vivo
Litografía Blanda
Dental Material
Microfabrication
Biofilm
Soft lithography
Minimally Human Invasive Technique
title_short Soft Lithography and Minimally Human Invasive Technique for Rapid Screening of Oral Biofilm Formation on New Microfabricated Dental Material Surfaces
title_full Soft Lithography and Minimally Human Invasive Technique for Rapid Screening of Oral Biofilm Formation on New Microfabricated Dental Material Surfaces
title_fullStr Soft Lithography and Minimally Human Invasive Technique for Rapid Screening of Oral Biofilm Formation on New Microfabricated Dental Material Surfaces
title_full_unstemmed Soft Lithography and Minimally Human Invasive Technique for Rapid Screening of Oral Biofilm Formation on New Microfabricated Dental Material Surfaces
title_sort Soft Lithography and Minimally Human Invasive Technique for Rapid Screening of Oral Biofilm Formation on New Microfabricated Dental Material Surfaces
dc.creator.fl_str_mv Alvarez Escobar, Marta
Da Cunha Freitas, Sidónio Ricardo
Hansford, Derek
Monteiro, Fernando J.
Peláez Vargas, Alejandro
dc.contributor.advisor.none.fl_str_mv Peláez Vargas, Alejandro
dc.contributor.author.none.fl_str_mv Alvarez Escobar, Marta
Da Cunha Freitas, Sidónio Ricardo
Hansford, Derek
Monteiro, Fernando J.
Peláez Vargas, Alejandro
dc.subject.spa.fl_str_mv Materiales dentales
Biopelícula
In vivo
Litografía Blanda
topic Materiales dentales
Biopelícula
In vivo
Litografía Blanda
Dental Material
Microfabrication
Biofilm
Soft lithography
Minimally Human Invasive Technique
dc.subject.other.spa.fl_str_mv Dental Material
Microfabrication
Biofilm
Soft lithography
Minimally Human Invasive Technique
description Introduction. Microfabrication offers opportunities to study surface concepts focused to reduce bacterial adhesion on implants using human minimally invasive rapid screening (hMIRS). Wide information is available about cell/biomaterial interactions using eukaryotic and prokaryotic cells on surfaces of dental materials with different topographies, but studies using human being are still limited. Objective. To evaluate a synergy of microfabrication and hMIRS to study the bacterial adhesion on micropatterned surfaces for dental materials. Materials and Methods. Micropatterned and flat surfaces on biomedical PDMS disks were produced by soft lithography. The hMIRS approach was used to evaluate the total oral bacterial adhesion on PDMS surfaces placed in the oral cavity of five volunteers (the study was approved by the University Ethical Committee). After 24 h, the disks were analyzed using MTT assay and light microscopy. Results. In the present pilot study, microwell structures were microfabricated on the PDMS surface via soft lithography with a spacing of 5 µm. Overall, bacterial adhesion did not significantly differ between the flat and micropatterned surfaces. However, individual analysis of two subjects showed greater bacterial adhesion on the micropatterned surfaces than on the flat surfaces. Significance. Microfabrication and hMIRS might be implemented to study the cell/biomaterial interactions for dental materials.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018-01-14
dc.date.accessioned.none.fl_str_mv 2020-03-17T15:22:28Z
dc.date.available.none.fl_str_mv 2020-03-17T15:22:28Z
dc.type.none.fl_str_mv Artículo
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 1687-8736 (Online)
dc.identifier.uri.spa.fl_str_mv https://doi.org/10.1155/2018/4219625
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/17173
dc.identifier.bibliographicCitation.spa.fl_str_mv Alvarez-Escobar M., Freitas S.C., Hansford D., Monteiro F.J. y Pelaez-Vargas A. (2018) Soft Lithography and Minimally Human Invasive Technique for Rapid Screening of Oral Biofilm Formation on New Microfabricated Dental Material Surfaces. Int J Dent. 2018 Jan 14;2018:4219625. doi: 10.1155/2018/4219625. PMID: 29593793; PMCID: PMC5821979. Recuperado de: https://www.hindawi.com/journals/ijd/2018/4219625/
identifier_str_mv 1687-8736 (Online)
Alvarez-Escobar M., Freitas S.C., Hansford D., Monteiro F.J. y Pelaez-Vargas A. (2018) Soft Lithography and Minimally Human Invasive Technique for Rapid Screening of Oral Biofilm Formation on New Microfabricated Dental Material Surfaces. Int J Dent. 2018 Jan 14;2018:4219625. doi: 10.1155/2018/4219625. PMID: 29593793; PMCID: PMC5821979. Recuperado de: https://www.hindawi.com/journals/ijd/2018/4219625/
url https://doi.org/10.1155/2018/4219625
https://hdl.handle.net/20.500.12494/17173
dc.relation.isversionof.spa.fl_str_mv https://www.hindawi.com/journals/ijd/2018/4219625/
dc.relation.ispartofjournal.spa.fl_str_mv International Journal of Dentistry
dc.relation.references.spa.fl_str_mv M. Quirynen and W. Teughels, “Microbiologically compromised patients and impact on oral implants,” Periodontology 2000, vol. 33, no. 1, pp. 119–128, 2003.
C. J. Seneviratne, C. F. Zhang, and L. P. Samaranayake, “Dental plaque biofilm in oral health and disease,” Chinese Journal of Dental Research, vol. 14, no. 2, pp. 87–94, 2011.
K. Hori and S. Matsumoto, “Bacterial adhesion: from mechanism to control,” Biochemical Engineering Journal, vol. 48, no. 3, pp. 424–434, 2010.
L. D. Renner and D. B. Weibel, “Physicochemical regulation of biofilm formation,” MRS Bulletin, vol. 36, no. 5, pp. 347–355, 2011.
C. Hannig and M. Hannig, “The oral cavity—a key system to understand substratum-dependent bioadhesion on solid surfaces in man,” Clinical Oral Investigations, vol. 13, no. 2, pp. 123–139, 2009.
L. Rimondini, L. Cerroni, A. Carrassi, and P. Torricelli, “Bacterial colonization of zirconia ceramic surfaces: an in vitro and in vivo study,” International Journal of Oral & Maxillofacial Implants, vol. 17, no. 6, pp. 793–798, 2002.
M. Quirynen and C. M. L. Bollen, “The influence of surface roughness and surface-free energy on supra- and subgingival plaque formation in man. A review of the literature,” Journal of Clinical Periodontology, vol. 22, no. 1, pp. 1–14, 1995.
W. Teughels, N. Van Assche, I. Sliepen, and M. Quirynen, “Effect of material characteristics and/or surface topography on biofilm development,” Clinical Oral Implants Research, vol. 17, no. 2, pp. 68–81, 2006.
A.-S. Andersson, J. Brink, U. Lidberg, and D. S. Sutherland, “Influence of systematically varied nanoscale topography on the morphology of epithelial cells,” IEEE Transactions on Nanobioscience, vol. 2, no. 2, pp. 49–57, 2003.
A. Carvalho, A. Pelaez-Vargas, D. J. Hansford, M. H. Fernandes, and F. J. Monteiro, “Effects of line and pillar array microengineered SiO2 thin films on the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells,” Langmuir, vol. 32, no. 4, pp. 1091–1100, 2016.
A. Carvalho, A. Pelaez-Vargas, D. Gallego-Perez et al., “Micropatterned silica thin films with nanohydroxyapatite micro-aggregates for guided tissue regeneration,” Dental Materials, vol. 28, no. 12, pp. 1250–1260, 2012.
S. Arango-Santander, S. C. Freitas, A. Pelaez-Vargas, and C. Garcia, “Silica sol-gel patterned surfaces based on dip-pen nanolithography and microstamping: a comparison in resolution and throughput,” Key Engineering Materials, vol. 720, pp. 264–268, 2016.
D. B. Weibel, W. R. DiLuzio, and G. M. Whitesides, “Microfabrication meets microbiology,” Nature Reviews Microbiology, vol. 5, no. 3, pp. 209–218, 2007.
T. R. Garrett, M. Bhakoo, and Z. Zhang, “Bacterial adhesion and biofilms on surfaces,” Progress in Natural Science, vol. 18, no. 9, pp. 1049–1056, 2008.
A. I. Hochbaum and J. Aizenberg, “Bacteria pattern spontaneously on periodic nanostructure arrays,” Nano Letters, vol. 10, no. 9, pp. 3717–3721, 2010.
A. Pelaez-Vargas, D. Gallego-Perez, M. Magallanes-Perdomo et al., “Isotropic micropatterned silica coatings on zirconia induce guided cell growth for dental implants,” Dental Materials, vol. 27, no. 6, pp. 581–589, 2011.
J. Schindelin, I. Arganda-Carreras, E. Frise et al., “Fiji: an open-source platform for biological-image analysis,” Nature Methods, vol. 9, no. 7, pp. 676–682, 2012.
C. Restrepo, A. Peláez, E. Alvarez, C. Paucar, and P. Abad, “Digital imaging of patterns of dental wear to diagnose bruxism in children,” International Journal of Paediatric Dentistry, vol. 16, no. 4, pp. 278–285, 2006.
M. Katsikogianni and Y. F. Missirlis, “Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions,” European Cells and Materials, vol. 8, pp. 37–57, 2004.
A. Pelaez-Vargas, D. Gallego-perez, D. F. Gomez, M. H. Fernandes, D. J. Hansford, and F. J. Monteiro, “Propagation of human bone marrow stem cells for craniofacial applications,” in Stem Cells and Cancer Stem Cells, M. A. Hayat, Ed., vol. 7, pp. 107–122, Springer, Dordrecht, Netherlands, 2012.
A. Pelaez-Vargas, D. Gallego-Perez, N. Higuita-Castro et al., “Micropatterned coating for guided tissue regeneration in dental implantology,” in Cell Interaction, S. Gowder, Ed., pp. 273–302, InTech, Rijeka, Croatia, 2012.
A. S. G. Curtis, B. Casey, J. O. Gallagher, D. Pasqui, M. A. Wood, and C. D. W. Wilkinson, “Substratum nanotopography and the adhesion of biological cells. Are symmetry or regularity of nanotopography important?” Biophysical Chemistry, vol. 94, no. 3, pp. 275–283, 2001.
A. M. Turner, N. Dowell, S. W. Turner et al., “Attachment of astroglial cells to microfabricated pillar arrays of different geometries,” Journal of Biomedical Materials Research, vol. 51, no. 3, pp. 430–441, 2000
A.-S. Andersson, F. Bäckhed, A. von Euler, A. Richter-Dahlfors, D. Sutherland, and B. Kasemo, “Nanoscale features influence epithelial cell morphology and cytokine production,” Biomaterials, vol. 24, no. 20, pp. 3427–3436, 2003.
M. J. Dalby, S. Childs, M. O. Riehle, H. J. H. Johnstone, S. Affrossman, and A. S. G. Curtis, “Fibroblast reaction to island topography: changes in cytoskeleton and morphology with time,” Biomaterials, vol. 24, no. 6, pp. 927–935, 2003.
M. J. Dalby, M. O. Riehle, H. J. H. Johnstone, S. Affrossman, and A. S. G. Curtis, “Nonadhesive nanotopography: fibroblast response to poly(n-butyl methacrylate)-poly(styrene) demixed surface features,” Journal of Biomedical Materials Research Part A, vol. 67, no. 3, pp. 1025–1032, 2003.
J. M. Rice, J. A. Hunt, J. A. Gallagher, P. Hanarp, D. S. Sutherland, and J. Gold, “Quantitative assessment of the response of primary derived human osteoblasts and macrophages to a range of nanotopography surfaces in a single culture model in vitro,” Biomaterials, vol. 24, no. 26, pp. 4799–4818, 2003.
K. K. Chung, J. F. Schumacher, E. M. Sampson, R. A. Burne, P. J. Antonelli, and A. B. Brennan, “Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus,” Biointerphases, vol. 2, no. 2, pp. 89–94, 2007.
F. Bremer, S. Grade, P. Kohorst, and M. Stiesch, “In vivo biofilm formation on different dental ceramics,” Quintessence International, vol. 42, no. 7, pp. 565–574, 2011.
M. M. de Freitas, C. H. da Silva, M. Groisman, and G. M. Vidigal, “Comparative analysis of microorganism species succession on three implant surfaces with different roughness: an in vivo study,” Implant Dentistry, vol. 20, no. 2, pp. e14–e23, 2011.
T. M. Auschill, N. B. Arweiler, M. Brecx, E. Reich, A. Sculean, and L. Netuschil, “The effect of dental restorative materials on dental biofilm,” European Journal of Oral Sciences, vol. 110, no. 1, pp. 48–53, 2002.
dc.rights.license.none.fl_str_mv Atribución
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 5
dc.coverage.temporal.spa.fl_str_mv 2018
dc.publisher.spa.fl_str_mv Silvio M. Meloni
Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Odontología, Medellín y Envigado
dc.publisher.program.spa.fl_str_mv Odontología
dc.publisher.place.spa.fl_str_mv Medellín
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/afa82be6-0191-44ac-846c-e8fb41962b99/download
https://repository.ucc.edu.co/bitstreams/20b9d6ed-e362-4e79-be64-e37500ebe574/download
https://repository.ucc.edu.co/bitstreams/d60d3d74-c31c-46f6-9bce-65e3bb8974f6/download
https://repository.ucc.edu.co/bitstreams/d8b5d98c-4d80-4f79-8b91-e385a53a9193/download
bitstream.checksum.fl_str_mv 78914cb392948d8666f8ecfa67b128f1
3bce4f7ab09dfc588f126e1e36e98a45
4f824c22def5d542ba6fdfcb271b1898
f59f65628643f80fa6073905a0b975a8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814246995509903360
spelling Peláez Vargas, AlejandroAlvarez Escobar, MartaDa Cunha Freitas, Sidónio RicardoHansford, DerekMonteiro, Fernando J.Peláez Vargas, Alejandro20182020-03-17T15:22:28Z2020-03-17T15:22:28Z2018-01-141687-8736 (Online)https://doi.org/10.1155/2018/4219625https://hdl.handle.net/20.500.12494/17173Alvarez-Escobar M., Freitas S.C., Hansford D., Monteiro F.J. y Pelaez-Vargas A. (2018) Soft Lithography and Minimally Human Invasive Technique for Rapid Screening of Oral Biofilm Formation on New Microfabricated Dental Material Surfaces. Int J Dent. 2018 Jan 14;2018:4219625. doi: 10.1155/2018/4219625. PMID: 29593793; PMCID: PMC5821979. Recuperado de: https://www.hindawi.com/journals/ijd/2018/4219625/Introduction. Microfabrication offers opportunities to study surface concepts focused to reduce bacterial adhesion on implants using human minimally invasive rapid screening (hMIRS). Wide information is available about cell/biomaterial interactions using eukaryotic and prokaryotic cells on surfaces of dental materials with different topographies, but studies using human being are still limited. Objective. To evaluate a synergy of microfabrication and hMIRS to study the bacterial adhesion on micropatterned surfaces for dental materials. Materials and Methods. Micropatterned and flat surfaces on biomedical PDMS disks were produced by soft lithography. The hMIRS approach was used to evaluate the total oral bacterial adhesion on PDMS surfaces placed in the oral cavity of five volunteers (the study was approved by the University Ethical Committee). After 24 h, the disks were analyzed using MTT assay and light microscopy. Results. In the present pilot study, microwell structures were microfabricated on the PDMS surface via soft lithography with a spacing of 5 µm. Overall, bacterial adhesion did not significantly differ between the flat and micropatterned surfaces. However, individual analysis of two subjects showed greater bacterial adhesion on the micropatterned surfaces than on the flat surfaces. Significance. Microfabrication and hMIRS might be implemented to study the cell/biomaterial interactions for dental materials.http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000141070http://orcid.org/0000-0001-7582-2760https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000005649alejandro.pelaezv@ucc.edu.cohttps://scholar.google.com.co/citations?user=jNJHWGsAAAAJ&hl=es5Silvio M. MeloniUniversidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Odontología, Medellín y EnvigadoOdontologíaMedellínhttps://www.hindawi.com/journals/ijd/2018/4219625/International Journal of DentistryM. Quirynen and W. Teughels, “Microbiologically compromised patients and impact on oral implants,” Periodontology 2000, vol. 33, no. 1, pp. 119–128, 2003.C. J. Seneviratne, C. F. Zhang, and L. P. Samaranayake, “Dental plaque biofilm in oral health and disease,” Chinese Journal of Dental Research, vol. 14, no. 2, pp. 87–94, 2011.K. Hori and S. Matsumoto, “Bacterial adhesion: from mechanism to control,” Biochemical Engineering Journal, vol. 48, no. 3, pp. 424–434, 2010.L. D. Renner and D. B. Weibel, “Physicochemical regulation of biofilm formation,” MRS Bulletin, vol. 36, no. 5, pp. 347–355, 2011.C. Hannig and M. Hannig, “The oral cavity—a key system to understand substratum-dependent bioadhesion on solid surfaces in man,” Clinical Oral Investigations, vol. 13, no. 2, pp. 123–139, 2009.L. Rimondini, L. Cerroni, A. Carrassi, and P. Torricelli, “Bacterial colonization of zirconia ceramic surfaces: an in vitro and in vivo study,” International Journal of Oral & Maxillofacial Implants, vol. 17, no. 6, pp. 793–798, 2002.M. Quirynen and C. M. L. Bollen, “The influence of surface roughness and surface-free energy on supra- and subgingival plaque formation in man. A review of the literature,” Journal of Clinical Periodontology, vol. 22, no. 1, pp. 1–14, 1995.W. Teughels, N. Van Assche, I. Sliepen, and M. Quirynen, “Effect of material characteristics and/or surface topography on biofilm development,” Clinical Oral Implants Research, vol. 17, no. 2, pp. 68–81, 2006.A.-S. Andersson, J. Brink, U. Lidberg, and D. S. Sutherland, “Influence of systematically varied nanoscale topography on the morphology of epithelial cells,” IEEE Transactions on Nanobioscience, vol. 2, no. 2, pp. 49–57, 2003.A. Carvalho, A. Pelaez-Vargas, D. J. Hansford, M. H. Fernandes, and F. J. Monteiro, “Effects of line and pillar array microengineered SiO2 thin films on the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells,” Langmuir, vol. 32, no. 4, pp. 1091–1100, 2016.A. Carvalho, A. Pelaez-Vargas, D. Gallego-Perez et al., “Micropatterned silica thin films with nanohydroxyapatite micro-aggregates for guided tissue regeneration,” Dental Materials, vol. 28, no. 12, pp. 1250–1260, 2012.S. Arango-Santander, S. C. Freitas, A. Pelaez-Vargas, and C. Garcia, “Silica sol-gel patterned surfaces based on dip-pen nanolithography and microstamping: a comparison in resolution and throughput,” Key Engineering Materials, vol. 720, pp. 264–268, 2016.D. B. Weibel, W. R. DiLuzio, and G. M. Whitesides, “Microfabrication meets microbiology,” Nature Reviews Microbiology, vol. 5, no. 3, pp. 209–218, 2007.T. R. Garrett, M. Bhakoo, and Z. Zhang, “Bacterial adhesion and biofilms on surfaces,” Progress in Natural Science, vol. 18, no. 9, pp. 1049–1056, 2008.A. I. Hochbaum and J. Aizenberg, “Bacteria pattern spontaneously on periodic nanostructure arrays,” Nano Letters, vol. 10, no. 9, pp. 3717–3721, 2010.A. Pelaez-Vargas, D. Gallego-Perez, M. Magallanes-Perdomo et al., “Isotropic micropatterned silica coatings on zirconia induce guided cell growth for dental implants,” Dental Materials, vol. 27, no. 6, pp. 581–589, 2011.J. Schindelin, I. Arganda-Carreras, E. Frise et al., “Fiji: an open-source platform for biological-image analysis,” Nature Methods, vol. 9, no. 7, pp. 676–682, 2012.C. Restrepo, A. Peláez, E. Alvarez, C. Paucar, and P. Abad, “Digital imaging of patterns of dental wear to diagnose bruxism in children,” International Journal of Paediatric Dentistry, vol. 16, no. 4, pp. 278–285, 2006.M. Katsikogianni and Y. F. Missirlis, “Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions,” European Cells and Materials, vol. 8, pp. 37–57, 2004.A. Pelaez-Vargas, D. Gallego-perez, D. F. Gomez, M. H. Fernandes, D. J. Hansford, and F. J. Monteiro, “Propagation of human bone marrow stem cells for craniofacial applications,” in Stem Cells and Cancer Stem Cells, M. A. Hayat, Ed., vol. 7, pp. 107–122, Springer, Dordrecht, Netherlands, 2012.A. Pelaez-Vargas, D. Gallego-Perez, N. Higuita-Castro et al., “Micropatterned coating for guided tissue regeneration in dental implantology,” in Cell Interaction, S. Gowder, Ed., pp. 273–302, InTech, Rijeka, Croatia, 2012.A. S. G. Curtis, B. Casey, J. O. Gallagher, D. Pasqui, M. A. Wood, and C. D. W. Wilkinson, “Substratum nanotopography and the adhesion of biological cells. Are symmetry or regularity of nanotopography important?” Biophysical Chemistry, vol. 94, no. 3, pp. 275–283, 2001.A. M. Turner, N. Dowell, S. W. Turner et al., “Attachment of astroglial cells to microfabricated pillar arrays of different geometries,” Journal of Biomedical Materials Research, vol. 51, no. 3, pp. 430–441, 2000A.-S. Andersson, F. Bäckhed, A. von Euler, A. Richter-Dahlfors, D. Sutherland, and B. Kasemo, “Nanoscale features influence epithelial cell morphology and cytokine production,” Biomaterials, vol. 24, no. 20, pp. 3427–3436, 2003.M. J. Dalby, S. Childs, M. O. Riehle, H. J. H. Johnstone, S. Affrossman, and A. S. G. Curtis, “Fibroblast reaction to island topography: changes in cytoskeleton and morphology with time,” Biomaterials, vol. 24, no. 6, pp. 927–935, 2003.M. J. Dalby, M. O. Riehle, H. J. H. Johnstone, S. Affrossman, and A. S. G. Curtis, “Nonadhesive nanotopography: fibroblast response to poly(n-butyl methacrylate)-poly(styrene) demixed surface features,” Journal of Biomedical Materials Research Part A, vol. 67, no. 3, pp. 1025–1032, 2003.J. M. Rice, J. A. Hunt, J. A. Gallagher, P. Hanarp, D. S. Sutherland, and J. Gold, “Quantitative assessment of the response of primary derived human osteoblasts and macrophages to a range of nanotopography surfaces in a single culture model in vitro,” Biomaterials, vol. 24, no. 26, pp. 4799–4818, 2003.K. K. Chung, J. F. Schumacher, E. M. Sampson, R. A. Burne, P. J. Antonelli, and A. B. Brennan, “Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus,” Biointerphases, vol. 2, no. 2, pp. 89–94, 2007.F. Bremer, S. Grade, P. Kohorst, and M. Stiesch, “In vivo biofilm formation on different dental ceramics,” Quintessence International, vol. 42, no. 7, pp. 565–574, 2011.M. M. de Freitas, C. H. da Silva, M. Groisman, and G. M. Vidigal, “Comparative analysis of microorganism species succession on three implant surfaces with different roughness: an in vivo study,” Implant Dentistry, vol. 20, no. 2, pp. e14–e23, 2011.T. M. Auschill, N. B. Arweiler, M. Brecx, E. Reich, A. Sculean, and L. Netuschil, “The effect of dental restorative materials on dental biofilm,” European Journal of Oral Sciences, vol. 110, no. 1, pp. 48–53, 2002.Materiales dentalesBiopelículaIn vivoLitografía BlandaDental MaterialMicrofabricationBiofilmSoft lithographyMinimally Human Invasive TechniqueSoft Lithography and Minimally Human Invasive Technique for Rapid Screening of Oral Biofilm Formation on New Microfabricated Dental Material SurfacesArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINAL4219625.pdf4219625.pdfArtículoapplication/pdf2138295https://repository.ucc.edu.co/bitstreams/afa82be6-0191-44ac-846c-e8fb41962b99/download78914cb392948d8666f8ecfa67b128f1MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/20b9d6ed-e362-4e79-be64-e37500ebe574/download3bce4f7ab09dfc588f126e1e36e98a45MD52THUMBNAIL4219625.pdf.jpg4219625.pdf.jpgGenerated Thumbnailimage/jpeg5433https://repository.ucc.edu.co/bitstreams/d60d3d74-c31c-46f6-9bce-65e3bb8974f6/download4f824c22def5d542ba6fdfcb271b1898MD53TEXT4219625.pdf.txt4219625.pdf.txtExtracted texttext/plain23692https://repository.ucc.edu.co/bitstreams/d8b5d98c-4d80-4f79-8b91-e385a53a9193/downloadf59f65628643f80fa6073905a0b975a8MD5420.500.12494/17173oai:repository.ucc.edu.co:20.500.12494/171732024-08-10 22:41:48.945restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=