Study of cervical cancer through fractals and a method of clustering based on quantum mechanics
Tumor growth in the cervix is a complex process. Understanding this phenomena is quite relevant in order to establish proper diagnosis and therapy strategies and a possible startpoint is to evaluate its complexity through the scaling analysis, which define the tumor growth geometry. In this work, tu...
- Autores:
-
Torres Hoyos, Francisco José
Martín-Landrove, M.
Baena Navarro, Rubén Enrique
Vergara Villadiego, Juan Raul
Cardenas, J. C.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/41424
- Acceso en línea:
- https://doi.org/10.1016/j.fluid.2012.02.009
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062487040&doi=10.1088%2f1742-6596%2f1160%2f1%2f012019&partnerID=40&md5=6e2018f40b33214f2223fe5c736f2276
https://hdl.handle.net/20.500.12494/41424
- Palabra clave:
- Algorithms
Diagnosis
Diseases
Fractal dimension
Fractals
Image enhancement
Magnetic resonance
Quantum theory
Tumors
05
45
Df
68
35
Ct
Cervix
K-means
Local roughness
K-means clustering
Article
cancer staging
clinical protocol
cluster analysis
contrast enhancement
controlled study
female
fractal analysis
human
image analysis
image processing
image segmentation
in vivo study
major clinical study
nuclear magnetic resonance imaging
oncological parameters
priority journal
quantum mechanics
three dimensional imaging
tumor growth
tumor volume
uterine cervix adenocarcinoma
uterine cervix cancer
adenocarcinoma
algorithm
cluster analysis
computer assisted diagnosis
diagnostic imaging
fractal analysis
pathology
procedures
quantum theory
squamous cell carcinoma
uterine cervix tumor
Adenocarcinoma
Algorithms
Carcinoma
Squamous Cell
Cluster Analysis
Female
Fractals
Humans
Image Interpretation
Computer-Assisted
Imaging
Three-Dimensional
Magn
- Rights
- closedAccess
- License
- http://purl.org/coar/access_right/c_14cb
id |
COOPER2_4bb6a44dcd34205172e9fa7470c8141f |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/41424 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
spelling |
Torres Hoyos, Francisco JoséMartín-Landrove, M.Baena Navarro, Rubén EnriqueVergara Villadiego, Juan RaulCardenas, J. C.2021-12-16T22:15:30Z2021-12-16T22:15:30Z2019https://doi.org/10.1016/j.fluid.2012.02.009https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062487040&doi=10.1088%2f1742-6596%2f1160%2f1%2f012019&partnerID=40&md5=6e2018f40b33214f2223fe5c736f227609698043https://hdl.handle.net/20.500.12494/41424Hoyos FT,Martín M,Baena R,Vergara J,Cardenas JC. Study of cervical cancer through fractals and a method of clustering based on quantum mechanics. Appl Radiat Isot. 2019. 150. p. 182-191. .Tumor growth in the cervix is a complex process. Understanding this phenomena is quite relevant in order to establish proper diagnosis and therapy strategies and a possible startpoint is to evaluate its complexity through the scaling analysis, which define the tumor growth geometry. In this work, tumor interface from primary tumors of squamous cells and adenocarcinomas for cervical cancer were extracted. Fractal dimension and local roughness exponent (Barabási and Stanley (1996)), aloc, were calculated to characterize the in vivo 3-D tumor growth. Image acquisition was carried out according to the standard protocol used for cervical cancer radiotherapy, i.e., axial, magnetic resonance T1 - weighted contrast enhanced images comprising the cervix volume for image registration. Image processing was carried out by a classification scheme based on quantum clustering algorithm (Mussa et al. (2015))combined with the application of the K-means procedure upon contrasted images (Demirkaya et al. (2008)). The results show significant variations of the parameters depending on the tumor stage and its histological origin. © 20190000-0001-5055-6515ruben.baena@campusucc.edu.co191-182Elsevier LtdAlgorithmsDiagnosisDiseasesFractal dimensionFractalsImage enhancementMagnetic resonanceQuantum theoryTumors0545Df6835CtCervixK-meansLocal roughnessK-means clusteringArticlecancer stagingclinical protocolcluster analysiscontrast enhancementcontrolled studyfemalefractal analysishumanimage analysisimage processingimage segmentationin vivo studymajor clinical studynuclear magnetic resonance imagingoncological parameterspriority journalquantum mechanicsthree dimensional imagingtumor growthtumor volumeuterine cervix adenocarcinomauterine cervix canceradenocarcinomaalgorithmcluster analysiscomputer assisted diagnosisdiagnostic imagingfractal analysispathologyproceduresquantum theorysquamous cell carcinomauterine cervix tumorAdenocarcinomaAlgorithmsCarcinomaSquamous CellCluster AnalysisFemaleFractalsHumansImage InterpretationComputer-AssistedImagingThree-DimensionalMagnStudy of cervical cancer through fractals and a method of clustering based on quantum mechanicsArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionAPPL RADIAT ISOTOPESinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbPublication20.500.12494/41424oai:repository.ucc.edu.co:20.500.12494/414242024-08-20 16:16:25.552metadata.onlyhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.com |
dc.title.spa.fl_str_mv |
Study of cervical cancer through fractals and a method of clustering based on quantum mechanics |
title |
Study of cervical cancer through fractals and a method of clustering based on quantum mechanics |
spellingShingle |
Study of cervical cancer through fractals and a method of clustering based on quantum mechanics Algorithms Diagnosis Diseases Fractal dimension Fractals Image enhancement Magnetic resonance Quantum theory Tumors 05 45 Df 68 35 Ct Cervix K-means Local roughness K-means clustering Article cancer staging clinical protocol cluster analysis contrast enhancement controlled study female fractal analysis human image analysis image processing image segmentation in vivo study major clinical study nuclear magnetic resonance imaging oncological parameters priority journal quantum mechanics three dimensional imaging tumor growth tumor volume uterine cervix adenocarcinoma uterine cervix cancer adenocarcinoma algorithm cluster analysis computer assisted diagnosis diagnostic imaging fractal analysis pathology procedures quantum theory squamous cell carcinoma uterine cervix tumor Adenocarcinoma Algorithms Carcinoma Squamous Cell Cluster Analysis Female Fractals Humans Image Interpretation Computer-Assisted Imaging Three-Dimensional Magn |
title_short |
Study of cervical cancer through fractals and a method of clustering based on quantum mechanics |
title_full |
Study of cervical cancer through fractals and a method of clustering based on quantum mechanics |
title_fullStr |
Study of cervical cancer through fractals and a method of clustering based on quantum mechanics |
title_full_unstemmed |
Study of cervical cancer through fractals and a method of clustering based on quantum mechanics |
title_sort |
Study of cervical cancer through fractals and a method of clustering based on quantum mechanics |
dc.creator.fl_str_mv |
Torres Hoyos, Francisco José Martín-Landrove, M. Baena Navarro, Rubén Enrique Vergara Villadiego, Juan Raul Cardenas, J. C. |
dc.contributor.author.none.fl_str_mv |
Torres Hoyos, Francisco José Martín-Landrove, M. Baena Navarro, Rubén Enrique Vergara Villadiego, Juan Raul Cardenas, J. C. |
dc.subject.spa.fl_str_mv |
Algorithms Diagnosis Diseases Fractal dimension Fractals Image enhancement Magnetic resonance Quantum theory Tumors 05 45 Df 68 35 Ct Cervix K-means Local roughness K-means clustering Article cancer staging clinical protocol cluster analysis contrast enhancement controlled study female fractal analysis human image analysis image processing image segmentation in vivo study major clinical study nuclear magnetic resonance imaging oncological parameters priority journal quantum mechanics three dimensional imaging tumor growth tumor volume uterine cervix adenocarcinoma uterine cervix cancer adenocarcinoma algorithm cluster analysis computer assisted diagnosis diagnostic imaging fractal analysis pathology procedures quantum theory squamous cell carcinoma uterine cervix tumor Adenocarcinoma Algorithms Carcinoma Squamous Cell Cluster Analysis Female Fractals Humans Image Interpretation Computer-Assisted Imaging Three-Dimensional Magn |
topic |
Algorithms Diagnosis Diseases Fractal dimension Fractals Image enhancement Magnetic resonance Quantum theory Tumors 05 45 Df 68 35 Ct Cervix K-means Local roughness K-means clustering Article cancer staging clinical protocol cluster analysis contrast enhancement controlled study female fractal analysis human image analysis image processing image segmentation in vivo study major clinical study nuclear magnetic resonance imaging oncological parameters priority journal quantum mechanics three dimensional imaging tumor growth tumor volume uterine cervix adenocarcinoma uterine cervix cancer adenocarcinoma algorithm cluster analysis computer assisted diagnosis diagnostic imaging fractal analysis pathology procedures quantum theory squamous cell carcinoma uterine cervix tumor Adenocarcinoma Algorithms Carcinoma Squamous Cell Cluster Analysis Female Fractals Humans Image Interpretation Computer-Assisted Imaging Three-Dimensional Magn |
description |
Tumor growth in the cervix is a complex process. Understanding this phenomena is quite relevant in order to establish proper diagnosis and therapy strategies and a possible startpoint is to evaluate its complexity through the scaling analysis, which define the tumor growth geometry. In this work, tumor interface from primary tumors of squamous cells and adenocarcinomas for cervical cancer were extracted. Fractal dimension and local roughness exponent (Barabási and Stanley (1996)), aloc, were calculated to characterize the in vivo 3-D tumor growth. Image acquisition was carried out according to the standard protocol used for cervical cancer radiotherapy, i.e., axial, magnetic resonance T1 - weighted contrast enhanced images comprising the cervix volume for image registration. Image processing was carried out by a classification scheme based on quantum clustering algorithm (Mussa et al. (2015))combined with the application of the K-means procedure upon contrasted images (Demirkaya et al. (2008)). The results show significant variations of the parameters depending on the tumor stage and its histological origin. © 2019 |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2021-12-16T22:15:30Z |
dc.date.available.none.fl_str_mv |
2021-12-16T22:15:30Z |
dc.type.none.fl_str_mv |
Artículo |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://doi.org/10.1016/j.fluid.2012.02.009 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062487040&doi=10.1088%2f1742-6596%2f1160%2f1%2f012019&partnerID=40&md5=6e2018f40b33214f2223fe5c736f2276 |
dc.identifier.issn.spa.fl_str_mv |
09698043 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/41424 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Hoyos FT,Martín M,Baena R,Vergara J,Cardenas JC. Study of cervical cancer through fractals and a method of clustering based on quantum mechanics. Appl Radiat Isot. 2019. 150. p. 182-191. . |
url |
https://doi.org/10.1016/j.fluid.2012.02.009 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062487040&doi=10.1088%2f1742-6596%2f1160%2f1%2f012019&partnerID=40&md5=6e2018f40b33214f2223fe5c736f2276 https://hdl.handle.net/20.500.12494/41424 |
identifier_str_mv |
09698043 Hoyos FT,Martín M,Baena R,Vergara J,Cardenas JC. Study of cervical cancer through fractals and a method of clustering based on quantum mechanics. Appl Radiat Isot. 2019. 150. p. 182-191. . |
dc.relation.ispartofjournal.spa.fl_str_mv |
APPL RADIAT ISOTOPES |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/closedAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
eu_rights_str_mv |
closedAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.format.extent.spa.fl_str_mv |
191-182 |
dc.publisher.spa.fl_str_mv |
Elsevier Ltd |
institution |
Universidad Cooperativa de Colombia |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814246637278593024 |