Computational framework for the selection of energy solutions in indigenous communities in Colombia: Kanalitojo case study
Este estudio busca analizar diferentes soluciones energéticas para la Comunidad Indígena Kanalitojo que se encuentra ubicada a 25 kilómetros de la cabecera municipal del municipio de Puerto Carreño, en el Estado de Vichada, al oriente de Colombia. Para el desarrollo de este estudio se ha aplicado un...
- Autores:
-
Colmenares Quintero, Ramón Fernando
Latorre Noguera, Luis Fernando
Rojas, Natalia
Kolmsee, Karl
Stansfield, Kim E.
Colmenares Quintero, Juan Carlos
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2021
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/34671
- Acceso en línea:
- https://doi.org/10.1080/23311916.2021.1926406
https://hdl.handle.net/20.500.12494/34671
- Palabra clave:
- Simulación dinámica
TRNSYS
Comunidad vulnerable
Paneles solares
Microcogeneración
Turbina hidrocinética
Objetivo de desarrollo sostenible
Dynamic simulation
TRNSYS
Vulnerable community
Solar Panels
Micro-cogeneration
Hydrokinetic Turbine
Sustainable development goal
- Rights
- openAccess
- License
- Atribución
id |
COOPER2_48fdcde94489c19857d1e50525529a86 |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/34671 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Computational framework for the selection of energy solutions in indigenous communities in Colombia: Kanalitojo case study |
title |
Computational framework for the selection of energy solutions in indigenous communities in Colombia: Kanalitojo case study |
spellingShingle |
Computational framework for the selection of energy solutions in indigenous communities in Colombia: Kanalitojo case study Simulación dinámica TRNSYS Comunidad vulnerable Paneles solares Microcogeneración Turbina hidrocinética Objetivo de desarrollo sostenible Dynamic simulation TRNSYS Vulnerable community Solar Panels Micro-cogeneration Hydrokinetic Turbine Sustainable development goal |
title_short |
Computational framework for the selection of energy solutions in indigenous communities in Colombia: Kanalitojo case study |
title_full |
Computational framework for the selection of energy solutions in indigenous communities in Colombia: Kanalitojo case study |
title_fullStr |
Computational framework for the selection of energy solutions in indigenous communities in Colombia: Kanalitojo case study |
title_full_unstemmed |
Computational framework for the selection of energy solutions in indigenous communities in Colombia: Kanalitojo case study |
title_sort |
Computational framework for the selection of energy solutions in indigenous communities in Colombia: Kanalitojo case study |
dc.creator.fl_str_mv |
Colmenares Quintero, Ramón Fernando Latorre Noguera, Luis Fernando Rojas, Natalia Kolmsee, Karl Stansfield, Kim E. Colmenares Quintero, Juan Carlos |
dc.contributor.author.none.fl_str_mv |
Colmenares Quintero, Ramón Fernando Latorre Noguera, Luis Fernando Rojas, Natalia Kolmsee, Karl Stansfield, Kim E. Colmenares Quintero, Juan Carlos |
dc.subject.spa.fl_str_mv |
Simulación dinámica TRNSYS Comunidad vulnerable Paneles solares Microcogeneración Turbina hidrocinética Objetivo de desarrollo sostenible |
topic |
Simulación dinámica TRNSYS Comunidad vulnerable Paneles solares Microcogeneración Turbina hidrocinética Objetivo de desarrollo sostenible Dynamic simulation TRNSYS Vulnerable community Solar Panels Micro-cogeneration Hydrokinetic Turbine Sustainable development goal |
dc.subject.other.spa.fl_str_mv |
Dynamic simulation TRNSYS Vulnerable community Solar Panels Micro-cogeneration Hydrokinetic Turbine Sustainable development goal |
description |
Este estudio busca analizar diferentes soluciones energéticas para la Comunidad Indígena Kanalitojo que se encuentra ubicada a 25 kilómetros de la cabecera municipal del municipio de Puerto Carreño, en el Estado de Vichada, al oriente de Colombia. Para el desarrollo de este estudio se ha aplicado un análisis de rendimiento técnico a cada solución propuesta considerando la cantidad de generación y demanda de electricidad. La primera solución se refiere a una turbina hidrocinética conectada a una red de distribución. La segunda solución combina el uso de paneles solares, turbina hidrocinética y baterías portátiles con las que es posible transportar la energía generada a los lugares donde la comunidad la necesita. La tercera solución energética propuesta se refiere al uso de unidades de microcogeneración y baterías portátiles. Con el uso de las capacidades del software de simulación energética TRNSYS v17, se realiza el análisis técnico comparativo entre cada solución para una misma demanda de carga. Este análisis ha mostrado una gran ventaja en el uso de los paneles solares, la turbina hidrocinética y las baterías portátiles con un excedente de electricidad del 103,8%. Sin embargo, técnicamente la primera solución basada en una turbina hidrocinética es más adecuada para los retos de la comunidad debido a que satisface la demanda de electricidad de la comunidad con un exceso del 12,4% y los gastos de capital y operación son menores. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-06-21T15:36:25Z |
dc.date.available.none.fl_str_mv |
2021-06-21T15:36:25Z |
dc.date.issued.none.fl_str_mv |
2021-06-01 |
dc.type.none.fl_str_mv |
Artículos Científicos |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
23311916 |
dc.identifier.uri.spa.fl_str_mv |
https://doi.org/10.1080/23311916.2021.1926406 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/34671 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Ramón Fernando Colmenares-Quintero, Luis Fernando LatorreNoguera, Natalia Rojas, Karl Kolmsee, Kim E. Stansfield & Juan Carlos ColmenaresQuintero | (2021) Computational framework for the selection of energy solutions in indigenous communities in Colombia: Kanalitojo c |
identifier_str_mv |
23311916 Ramón Fernando Colmenares-Quintero, Luis Fernando LatorreNoguera, Natalia Rojas, Karl Kolmsee, Kim E. Stansfield & Juan Carlos ColmenaresQuintero | (2021) Computational framework for the selection of energy solutions in indigenous communities in Colombia: Kanalitojo c |
url |
https://doi.org/10.1080/23311916.2021.1926406 https://hdl.handle.net/20.500.12494/34671 |
dc.relation.isversionof.spa.fl_str_mv |
https://www.tandfonline.com/doi/full/10.1080/23311916.2021.1926406 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Cogent Engineering |
dc.relation.references.spa.fl_str_mv |
Anyi, M., & Kirke, B. (2011). Hydrokinetic turbine blades: Design and local construction techniques for remote communities. Energy for Sustainable Development, 15 (3), 223–230. https://doi.org/10.1016/j.esd.2011.06.003 Betancur, J. A. (2016). Análisis de una solución energética para pequeñas comunidades aisladas, mediante la utilización de generación hidro-c)inetica. Pre Degree, Universidad Tecnológica de Pereira Colmenares-Quintero, R. F., Góez-Sánchez, G. D., Colmenares-Quintero, J. C., Latorre-Noguera, L. F., & Kasperczyk, D. (2021). Application of a simulation tool based on a bio-inspired algorithm for optimisation of distributed power generation systems. Cogent Engineering, 8, 1. https://doi.org/10.1080/23311916. 2021.1909791 Colmenares-Quintero, R. F., Latorre-Noguera, L. F., Colmenares-Quintero, J. C., & Dibdiakova, J. (2018). Techno-environmental assessment of a micro-cogeneration system based on natural gas for residential application. CT&F - Ciencia, Tecnología Y Futuro, 8(1), 101–112. https://doi.org/10.29047/ 01225383.97 Florez, J. H., Tobon, D., & Castillo, G. A. (2009). ¿Ha sido efectiva la promoción de soluciones energéticas en las zonas no interconectadas (ZNI) en Colombia?: Un análisis de la estructura institucional. Cuadernos de Administración, 22, 219–245. https://www.redalyc. org/pdf/205/20511730011.pdf Franco, C., Dyner, I., & Hoyos, S. (2008). A Contribution of the Energy at Development of Islated communities in not Interconnected Zones: A Case of application of the Systems Dynamics and Sustainable Livelihoods in the Colombian Southwest. Dyna, 75, 199–214. https://www.researchgate.net/publication/ 262520721_Contribution_of_the_energy_at_development_of_islated_communities_in_not_interconnected_zones_A_case_of_application_of_the_systems_- dynamics_and_sustainable_livelihoods_in_the_Colombian_Southwest Gunawan, B., Sun, X., Sterling, M., Shiono, K., Tsubaki, R., Rameshwaran, P., Knight, D. W., Chandler, J. H., Tang, X., & Fujita, I. (2012). The Application of LS-PIV to a Small Irregular River for Inbank and Overbank Flows. Flow Measurement and Instrumentation, 24, 1–12. https://doi.org/10.1016/j.flowmeasinst.2012.02.001 Güney, M. S., & Kaygusuz, K. (2010). Hydrokinetic Energy Conversion Systems: A Technology Status Review, Renewable and Sustainable Energy Reviews, Vol. 14 (9), 2996–3004. https://doi.org/10.1016/j.rser.2010. 06.016 Jiménez, T. (2014). Alternative energy and community tourism: A joint commitment to sustainable human development in rural communities. Energética, 44, 93–105. https://repositorio.unal.edu.co/bitstream/ handle/unal/52586/45487-236917-1-PB.pdf? sequence=1&isAllowed=y Jiménez, T. (2014). Alternative energy and community tourism: A joint commitment to sustainable human development in rural communities. Energética, 44, 93–105. https://repositorio.unal.edu.co/bitstream/ handle/unal/52586/45487-236917-1-PB.pdf? sequence=1&isAllowed=y Priyadarshi, N., Anand, A., Sharma, A. K., Azam, F., Singh, V. K., & Sinha, R. K. (2017). An Experimental Implementation and Testing of GA based Maximum Power Point Tracking for PV System under Varying Ambient Conditions Using dSPACE DS 1104 Controller. Int. J. Renew. Energy Res, 7, 255–265. https://www.ijrer.org/ijrer/index.php/ijrer/article/ viewFile/5379/pdf Priyadarshi, N., Kumar, V., Yadav, K., & Vardia, M. (2017). An Experimental Study on Zeta buck-boost converter for Application in PV system. In Handbook of Distributed Generation (pp. 393–406). Cham, Switzerland. Priyadarshi, N., Padmanaban, S., Bhaskar, M. S., Blaabjerg, F., & Sharma, A. A. (2018). Fuzzy SVPWM Based Inverter Control Realization of Grid Integrated PV-Wind System with FPSO MPPT Algorithm for a Grid-Connected PV/Wind Power Generation System: Hardware Implementation. IET Electr. Power Appl, 12 (7), 962–971. https://doi.org/10.1049/iet-epa.2017. 0804 Priyadarshi, N., Padmanaban, S., Maroti, P. K., & Sharma, A. (2018). An Extensive Practical Investigation of FPSO-Based MPPT for Grid Integrated PV System Under Variable Operating Conditions with Anti-Islanding Protection. IEEE Syst. J., 13(2), 1–11. doi: 10.1109/JSYST.2018.2817584. Energies, 11(5), 1067. https://doi.org/10.3390/ en11051067 Priyadarshi, N., Sharma, A. K., & Azam, F. (2017). A Hybrid Firefly-Asymmetrical Fuzzy Logic Controller based MPPT for PV-Wind-Fuel Grid Integration. Int. J. Renew. Energy Res, 7, 1546–1560. Searcy, E., & Flynn, P. C. (2010). A criterion for selecting renewable energy processes. Biomass and Bioenergy, 34(5), 798–804. https://doi.org/10.1016/j.biombioe. 2010.01.023 Shastry, A., Suresh, K. V., & Vinayaka, K. U. (2015). Hybrid Wind-Solar Systems using Cuk-Sepic Fused Converter with Quasi-Z-Source Inverter. In Proceedings of the IEEE Power, Communication and Information Technology Conference (PCITC), Bhubaneswar, India, 15–17 October; pp. 856–861. Yuce, M. I., & Muratoglu, A. (2015). Hydrokinetic energy conversion systems: A technology status review. Renewable and Sustainable Energy Reviews, 43, 72–82. https://doi.org/10.1016/j.rser. 2014.10.037 Zapata, C. M., Singh, B., Zuluaga, M. M., & Dyner, I. (2005). Fuentes alternativas de generación de energía, incentivos y mandatos regulatorios: Una aproximación teórica al caso colombiano. Energética, 34, 55–63 |
dc.rights.license.none.fl_str_mv |
Atribución |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
1 - 14 p. |
dc.coverage.temporal.spa.fl_str_mv |
Vol. 8, No. 1 |
dc.publisher.spa.fl_str_mv |
Murat Kunelbayev Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Medellín y Envigado |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Civil |
dc.publisher.place.spa.fl_str_mv |
Medellín |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/19867121-03a5-46ce-a06f-1a7fb331f105/download https://repository.ucc.edu.co/bitstreams/1c59c38d-2c70-40fa-b6dd-f6daa93c5786/download https://repository.ucc.edu.co/bitstreams/9bfee24f-10e3-49f4-9fb5-a516413a5182/download https://repository.ucc.edu.co/bitstreams/7a389b63-4292-4622-8ecd-378e0a17f9d5/download |
bitstream.checksum.fl_str_mv |
36f75a65f844ff8d56d190a0808a80cd 3bce4f7ab09dfc588f126e1e36e98a45 8e267a787a4398110b971c062ee59869 674bf9ab0f83a17eea386a58f74c1c45 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1811565315217162240 |
spelling |
Colmenares Quintero, Ramón FernandoLatorre Noguera, Luis FernandoRojas, NataliaKolmsee, KarlStansfield, Kim E.Colmenares Quintero, Juan Carlos Vol. 8, No. 12021-06-21T15:36:25Z2021-06-21T15:36:25Z2021-06-0123311916https://doi.org/10.1080/23311916.2021.1926406https://hdl.handle.net/20.500.12494/34671Ramón Fernando Colmenares-Quintero, Luis Fernando LatorreNoguera, Natalia Rojas, Karl Kolmsee, Kim E. Stansfield & Juan Carlos ColmenaresQuintero | (2021) Computational framework for the selection of energy solutions in indigenous communities in Colombia: Kanalitojo cEste estudio busca analizar diferentes soluciones energéticas para la Comunidad Indígena Kanalitojo que se encuentra ubicada a 25 kilómetros de la cabecera municipal del municipio de Puerto Carreño, en el Estado de Vichada, al oriente de Colombia. Para el desarrollo de este estudio se ha aplicado un análisis de rendimiento técnico a cada solución propuesta considerando la cantidad de generación y demanda de electricidad. La primera solución se refiere a una turbina hidrocinética conectada a una red de distribución. La segunda solución combina el uso de paneles solares, turbina hidrocinética y baterías portátiles con las que es posible transportar la energía generada a los lugares donde la comunidad la necesita. La tercera solución energética propuesta se refiere al uso de unidades de microcogeneración y baterías portátiles. Con el uso de las capacidades del software de simulación energética TRNSYS v17, se realiza el análisis técnico comparativo entre cada solución para una misma demanda de carga. Este análisis ha mostrado una gran ventaja en el uso de los paneles solares, la turbina hidrocinética y las baterías portátiles con un excedente de electricidad del 103,8%. Sin embargo, técnicamente la primera solución basada en una turbina hidrocinética es más adecuada para los retos de la comunidad debido a que satisface la demanda de electricidad de la comunidad con un exceso del 12,4% y los gastos de capital y operación son menores.This study seeks to analyze different energy solutions for the Kanalitojo Indigenous Community that is located 25 kilometers from the municipal seat of the municipality of Puerto Carreño, in the State of Vichada, eastern Colombia. For the development of this study, a technical performance analysis has been applied to each proposed solution considering the amount of electricity generation and demand. The first solution refers to a hydrokinetic turbine connected to a distribution network. The second solution combines the use of solar panels, hydrokinetic turbine, and portable batteries with which it is possible to transport the generated energy to the places where the community needs it. The third proposed energy solution refers to the use of micro-cogeneration units and portable batteries. With the use of the capabilities of the TRNSYS v17 energy simulation software, the comparative technical analysis between each solution for the same load demand is carried out. This analysis has shown a great advantage in the use of solar panels, hydrokinetic turbine, and portable batteries with an electricity surplus of 103.8%. However, technically the first solution based on a hydrokinetic turbine is more suitable for the community challenges due to it meets the electricity demand of the community by an excess of 12.4% and the capital and operating expenditure are less.https://scienti.colciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000192503https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001595655https://orcid.org/0000-0003-1166-1982https://orcid.org/0000-0003-3701-6340https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000005961ramon.colmenaresq@campusucc.edu.coluis.latorren@campusucc.edu.conatalia.rojas@aquatera.co.ukkarl.kolmsee@smart-hydro.dek.stansfield@warwick.ac.ukjcarloscolmenares@ichf.edu.plhttps://scholar.google.com/citations?user=9HLAZYUAAAAJ&hl=es1 - 14 p.Murat KunelbayevUniversidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Medellín y EnvigadoIngeniería CivilMedellínhttps://www.tandfonline.com/doi/full/10.1080/23311916.2021.1926406Cogent EngineeringAnyi, M., & Kirke, B. (2011). Hydrokinetic turbine blades: Design and local construction techniques for remote communities. Energy for Sustainable Development, 15 (3), 223–230. https://doi.org/10.1016/j.esd.2011.06.003Betancur, J. A. (2016). Análisis de una solución energética para pequeñas comunidades aisladas, mediante la utilización de generación hidro-c)inetica. Pre Degree, Universidad Tecnológica de PereiraColmenares-Quintero, R. F., Góez-Sánchez, G. D., Colmenares-Quintero, J. C., Latorre-Noguera, L. F., & Kasperczyk, D. (2021). Application of a simulation tool based on a bio-inspired algorithm for optimisation of distributed power generation systems. Cogent Engineering, 8, 1. https://doi.org/10.1080/23311916. 2021.1909791Colmenares-Quintero, R. F., Latorre-Noguera, L. F., Colmenares-Quintero, J. C., & Dibdiakova, J. (2018). Techno-environmental assessment of a micro-cogeneration system based on natural gas for residential application. CT&F - Ciencia, Tecnología Y Futuro, 8(1), 101–112. https://doi.org/10.29047/ 01225383.97Florez, J. H., Tobon, D., & Castillo, G. A. (2009). ¿Ha sido efectiva la promoción de soluciones energéticas en las zonas no interconectadas (ZNI) en Colombia?: Un análisis de la estructura institucional. Cuadernos de Administración, 22, 219–245. https://www.redalyc. org/pdf/205/20511730011.pdfFranco, C., Dyner, I., & Hoyos, S. (2008). A Contribution of the Energy at Development of Islated communities in not Interconnected Zones: A Case of application of the Systems Dynamics and Sustainable Livelihoods in the Colombian Southwest. Dyna, 75, 199–214. https://www.researchgate.net/publication/ 262520721_Contribution_of_the_energy_at_development_of_islated_communities_in_not_interconnected_zones_A_case_of_application_of_the_systems_- dynamics_and_sustainable_livelihoods_in_the_Colombian_SouthwestGunawan, B., Sun, X., Sterling, M., Shiono, K., Tsubaki, R., Rameshwaran, P., Knight, D. W., Chandler, J. H., Tang, X., & Fujita, I. (2012). The Application of LS-PIV to a Small Irregular River for Inbank and Overbank Flows. Flow Measurement and Instrumentation, 24, 1–12. https://doi.org/10.1016/j.flowmeasinst.2012.02.001Güney, M. S., & Kaygusuz, K. (2010). Hydrokinetic Energy Conversion Systems: A Technology Status Review, Renewable and Sustainable Energy Reviews, Vol. 14 (9), 2996–3004. https://doi.org/10.1016/j.rser.2010. 06.016Jiménez, T. (2014). Alternative energy and community tourism: A joint commitment to sustainable human development in rural communities. Energética, 44, 93–105. https://repositorio.unal.edu.co/bitstream/ handle/unal/52586/45487-236917-1-PB.pdf? sequence=1&isAllowed=yJiménez, T. (2014). Alternative energy and community tourism: A joint commitment to sustainable human development in rural communities. Energética, 44, 93–105. https://repositorio.unal.edu.co/bitstream/ handle/unal/52586/45487-236917-1-PB.pdf? sequence=1&isAllowed=yPriyadarshi, N., Anand, A., Sharma, A. K., Azam, F., Singh, V. K., & Sinha, R. K. (2017). An Experimental Implementation and Testing of GA based Maximum Power Point Tracking for PV System under Varying Ambient Conditions Using dSPACE DS 1104 Controller. Int. J. Renew. Energy Res, 7, 255–265. https://www.ijrer.org/ijrer/index.php/ijrer/article/ viewFile/5379/pdfPriyadarshi, N., Kumar, V., Yadav, K., & Vardia, M. (2017). An Experimental Study on Zeta buck-boost converter for Application in PV system. In Handbook of Distributed Generation (pp. 393–406). Cham, Switzerland.Priyadarshi, N., Padmanaban, S., Bhaskar, M. S., Blaabjerg, F., & Sharma, A. A. (2018). Fuzzy SVPWM Based Inverter Control Realization of Grid Integrated PV-Wind System with FPSO MPPT Algorithm for a Grid-Connected PV/Wind Power Generation System: Hardware Implementation. IET Electr. Power Appl, 12 (7), 962–971. https://doi.org/10.1049/iet-epa.2017. 0804Priyadarshi, N., Padmanaban, S., Maroti, P. K., & Sharma, A. (2018). An Extensive Practical Investigation of FPSO-Based MPPT for Grid Integrated PV System Under Variable Operating Conditions with Anti-Islanding Protection. IEEE Syst. J., 13(2), 1–11. doi: 10.1109/JSYST.2018.2817584.Energies, 11(5), 1067. https://doi.org/10.3390/ en11051067Priyadarshi, N., Sharma, A. K., & Azam, F. (2017). A Hybrid Firefly-Asymmetrical Fuzzy Logic Controller based MPPT for PV-Wind-Fuel Grid Integration. Int. J. Renew. Energy Res, 7, 1546–1560.Searcy, E., & Flynn, P. C. (2010). A criterion for selecting renewable energy processes. Biomass and Bioenergy, 34(5), 798–804. https://doi.org/10.1016/j.biombioe. 2010.01.023Shastry, A., Suresh, K. V., & Vinayaka, K. U. (2015). Hybrid Wind-Solar Systems using Cuk-Sepic Fused Converter with Quasi-Z-Source Inverter. In Proceedings of the IEEE Power, Communication and Information Technology Conference (PCITC), Bhubaneswar, India, 15–17 October; pp. 856–861.Yuce, M. I., & Muratoglu, A. (2015). Hydrokinetic energy conversion systems: A technology status review. Renewable and Sustainable Energy Reviews, 43, 72–82. https://doi.org/10.1016/j.rser. 2014.10.037Zapata, C. M., Singh, B., Zuluaga, M. M., & Dyner, I. (2005). Fuentes alternativas de generación de energía, incentivos y mandatos regulatorios: Una aproximación teórica al caso colombiano. Energética, 34, 55–63Simulación dinámicaTRNSYSComunidad vulnerablePaneles solaresMicrocogeneraciónTurbina hidrocinéticaObjetivo de desarrollo sostenibleDynamic simulationTRNSYSVulnerable communitySolar PanelsMicro-cogenerationHydrokinetic TurbineSustainable development goalComputational framework for the selection of energy solutions in indigenous communities in Colombia: Kanalitojo case studyArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINAL2021_computational_framework_Kanalitojo_licenciadeuso.pdf2021_computational_framework_Kanalitojo_licenciadeuso.pdfapplication/pdf196663https://repository.ucc.edu.co/bitstreams/19867121-03a5-46ce-a06f-1a7fb331f105/download36f75a65f844ff8d56d190a0808a80cdMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/1c59c38d-2c70-40fa-b6dd-f6daa93c5786/download3bce4f7ab09dfc588f126e1e36e98a45MD53THUMBNAIL2021_computational_framework_Kanalitojo_licenciadeuso.pdf.jpg2021_computational_framework_Kanalitojo_licenciadeuso.pdf.jpgGenerated Thumbnailimage/jpeg5051https://repository.ucc.edu.co/bitstreams/9bfee24f-10e3-49f4-9fb5-a516413a5182/download8e267a787a4398110b971c062ee59869MD54TEXT2021_computational_framework_Kanalitojo_licenciadeuso.pdf.txt2021_computational_framework_Kanalitojo_licenciadeuso.pdf.txtExtracted texttext/plain5736https://repository.ucc.edu.co/bitstreams/7a389b63-4292-4622-8ecd-378e0a17f9d5/download674bf9ab0f83a17eea386a58f74c1c45MD5520.500.12494/34671oai:repository.ucc.edu.co:20.500.12494/346712024-08-10 21:02:56.737restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo= |