Seroprevalence and Risk Factors Possibly Associated with Emerging Zoonotic Vaccinia Virus in a Farming Community, Colombia
In 2014, vaccinia virus (VACV) infections were identified among farmworkers in Caquetá Department, Colombia; additional cases were identified in Cundinamarca Department in 2015. VACV, an orthopoxvirus (OPXV) used in the smallpox vaccine, has caused sporadic bovine and human outbreaks in countries su...
- Autores:
-
Styczynski, Ashley
Burgado, Jillybeth
Walteros, Diana Marcela
Usme Ciro, José Aldemar
Laiton Donato, Katherine
Pinilla Farias, Alejandra
Nakazawa, Yoshinori
Chapman, Christina
Davidson, Whitni
Mauldin, Matthew R.
Morgan, Clint
Martinez Ceron, Juan
Patiña, Edilson
Lopez Sepulveda, Leidy
Torres, Claudia Patricia
Cruz Suarez, Anyely Eliana
Paez Olaya, Gina
Riveros, Carlos Elkin
Cepeda, Diana Yaneth
Acosta Lopez, Leydi
Gomez Espinosa, Daniela
Gutierrez Lozada, Faiber Antonio
Li, Yu
Satheshkumar, Panayampalli S.
Reynolds, Mary G.
Gracia Romero, Martha
Petersen, Brett W.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/32703
- Acceso en línea:
- https://hdl.handle.net/20.500.12494/32703
- Palabra clave:
- Seroprevalencia
Virus Vaccinia
Colombia
Factores de riesgo
Seroprevalence
Vaccinia virus
Colombia
Risk factors
- Rights
- openAccess
- License
- Atribución
id |
COOPER2_45553cff8bd06ce23bf3ee76abf37f06 |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/32703 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Seroprevalence and Risk Factors Possibly Associated with Emerging Zoonotic Vaccinia Virus in a Farming Community, Colombia |
title |
Seroprevalence and Risk Factors Possibly Associated with Emerging Zoonotic Vaccinia Virus in a Farming Community, Colombia |
spellingShingle |
Seroprevalence and Risk Factors Possibly Associated with Emerging Zoonotic Vaccinia Virus in a Farming Community, Colombia Seroprevalencia Virus Vaccinia Colombia Factores de riesgo Seroprevalence Vaccinia virus Colombia Risk factors |
title_short |
Seroprevalence and Risk Factors Possibly Associated with Emerging Zoonotic Vaccinia Virus in a Farming Community, Colombia |
title_full |
Seroprevalence and Risk Factors Possibly Associated with Emerging Zoonotic Vaccinia Virus in a Farming Community, Colombia |
title_fullStr |
Seroprevalence and Risk Factors Possibly Associated with Emerging Zoonotic Vaccinia Virus in a Farming Community, Colombia |
title_full_unstemmed |
Seroprevalence and Risk Factors Possibly Associated with Emerging Zoonotic Vaccinia Virus in a Farming Community, Colombia |
title_sort |
Seroprevalence and Risk Factors Possibly Associated with Emerging Zoonotic Vaccinia Virus in a Farming Community, Colombia |
dc.creator.fl_str_mv |
Styczynski, Ashley Burgado, Jillybeth Walteros, Diana Marcela Usme Ciro, José Aldemar Laiton Donato, Katherine Pinilla Farias, Alejandra Nakazawa, Yoshinori Chapman, Christina Davidson, Whitni Mauldin, Matthew R. Morgan, Clint Martinez Ceron, Juan Patiña, Edilson Lopez Sepulveda, Leidy Torres, Claudia Patricia Cruz Suarez, Anyely Eliana Paez Olaya, Gina Riveros, Carlos Elkin Cepeda, Diana Yaneth Acosta Lopez, Leydi Gomez Espinosa, Daniela Gutierrez Lozada, Faiber Antonio Li, Yu Satheshkumar, Panayampalli S. Reynolds, Mary G. Gracia Romero, Martha Petersen, Brett W. |
dc.contributor.author.none.fl_str_mv |
Styczynski, Ashley Burgado, Jillybeth Walteros, Diana Marcela Usme Ciro, José Aldemar Laiton Donato, Katherine Pinilla Farias, Alejandra Nakazawa, Yoshinori Chapman, Christina Davidson, Whitni Mauldin, Matthew R. Morgan, Clint Martinez Ceron, Juan Patiña, Edilson Lopez Sepulveda, Leidy Torres, Claudia Patricia Cruz Suarez, Anyely Eliana Paez Olaya, Gina Riveros, Carlos Elkin Cepeda, Diana Yaneth Acosta Lopez, Leydi Gomez Espinosa, Daniela Gutierrez Lozada, Faiber Antonio Li, Yu Satheshkumar, Panayampalli S. Reynolds, Mary G. Gracia Romero, Martha Petersen, Brett W. |
dc.subject.spa.fl_str_mv |
Seroprevalencia Virus Vaccinia Colombia Factores de riesgo |
topic |
Seroprevalencia Virus Vaccinia Colombia Factores de riesgo Seroprevalence Vaccinia virus Colombia Risk factors |
dc.subject.other.spa.fl_str_mv |
Seroprevalence Vaccinia virus Colombia Risk factors |
description |
In 2014, vaccinia virus (VACV) infections were identified among farmworkers in Caquetá Department, Colombia; additional cases were identified in Cundinamarca Department in 2015. VACV, an orthopoxvirus (OPXV) used in the smallpox vaccine, has caused sporadic bovine and human outbreaks in countries such as Brazil and India. In response to the emergence of this disease in Colombia, we surveyed and collected blood from 134 farmworkers and household members from 56 farms in Cundinamarca Department. We tested serum samples for OPXV antibodies and correlated risk factors with seropositivity by using multivariate analyses. Fifty-two percent of farmworkers had OPXV antibodies; this percentage decreased to 31% when we excluded persons who would have been eligible for smallpox vaccination. The major risk factors for seropositivity were municipality, age, smallpox vaccination scar, duration of time working on a farm, and animals having vaccinia-like lesions. This investigation provides evidence for possible emergence of VACV as a zoonosis in South America. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019-11-14 |
dc.date.accessioned.none.fl_str_mv |
2021-01-20T23:45:37Z |
dc.date.available.none.fl_str_mv |
2021-01-20T23:45:37Z |
dc.type.none.fl_str_mv |
Artículo |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
1080-6059 |
dc.identifier.uri.spa.fl_str_mv |
10.3201/eid2512.181114 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/32703 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Styczynski, A., Burgado, J., Walteros, D., Usme Ciro, J., Laiton, K., Farias, A....Petersen, B. (2019). Seroprevalence and Risk Factors Possibly Associated with Emerging Zoonotic Vaccinia Virus in a Farming Community, Colombia. Emerging Infectious Diseases, 25(12), 2169-2176. https://dx.doi.org/10.3201/eid2512.181114. |
identifier_str_mv |
1080-6059 10.3201/eid2512.181114 Styczynski, A., Burgado, J., Walteros, D., Usme Ciro, J., Laiton, K., Farias, A....Petersen, B. (2019). Seroprevalence and Risk Factors Possibly Associated with Emerging Zoonotic Vaccinia Virus in a Farming Community, Colombia. Emerging Infectious Diseases, 25(12), 2169-2176. https://dx.doi.org/10.3201/eid2512.181114. |
url |
https://hdl.handle.net/20.500.12494/32703 |
dc.relation.isversionof.spa.fl_str_mv |
https://wwwnc.cdc.gov/eid/article/25/12/18-1114_article |
dc.relation.ispartofjournal.spa.fl_str_mv |
Emerging Infectious Diseases |
dc.relation.references.spa.fl_str_mv |
Essbauer S, Pfeffer M, Meyer H. Zoonotic poxviruses. Vet Microbiol. 2010;140:229–36. https://doi.org/10.1016/ j.vetmic.2009.08.026 Carroll DS, Emerson GL, Li Y, Sammons S, Olson V, Frace M, et al. Chasing Jenner’s vaccine: revisiting cowpox virus classification. PLoS One. 2011;6:e23086. https://doi.org/10.1371/ journal.pone.0023086 Damaso CR, Esposito JJ, Condit RC, Moussatché N. An emergent poxvirus from humans and cattle in Rio de Janeiro State: Cantagalo virus may derive from Brazilian smallpox vaccine. Virology. 2000;277:439–49. https://doi.org/10.1006/viro.2000.0603 Fonseca FG, Lanna MC, Campos MA, Kitajima EW, Peres JN, Golgher RR, et al. Morphological and molecular characterization of the poxvirus BeAn 58058. Arch Virol. 1998;143:1171–86. https://doi.org/10.1007/s007050050365 Marques JT, Trindade GD, Da Fonseca FG, Dos Santos JR, Bonjardim CA, Ferreira PC, et al. Characterization of ATI, TK and IFN-alpha/betaR genes in the genome of the BeAn 58058 virus, a naturally attenuated wild orthopoxvirus. Virus Genes. 2001;23:291–301. https://doi.org/10.1023/A:1012521322845 Peres MG, Bacchiega TS, Appolinário CM, Vicente AF, Mioni MSR, Ribeiro BLD, et al. Vaccinia virus in feces and urine of wild rodents from São Paulo State, Brazil. Viruses. 2018;10:E51. https://doi.org/10.3390/v10020051 Medaglia ML, Moussatché N, Nitsche A, Dabrowski PW, Li Y, Damon IK, et al. Genomic analysis, phenotype, and virulence of the historical Brazilian smallpox vaccine strain IOC: implications for the origins and evolutionary relationships of vaccinia Virus. J Virol. 2015;89:11909–25. https://doi.org/10.1128/JVI.01833-15 Gómez Pando V, Hernán López J, Restrepo A, Forero P. Study of an outbreak of vaccinia in dairy cattle of their milkers [in Spanish]. Bol Oficina Sanit Panam. 1967;63:111–21. Lum GS, Soriano F, Trejos A, Llerena J. Vaccinia epidemic and epizootic in El Salvador. Am J Trop Med Hyg. 1967;16:332–8. https://doi.org/10.4269/ajtmh.1967.16.332 Trindade GS, Emerson GL, Carroll DS, Kroon EG, Damon IK. Brazilian vaccinia viruses and their origins. Emerg Infect Dis. 2007;13:965–72. https://doi.org/10.3201/eid1307.061404 Trindade GS, Lobato ZI, Drumond BP, Leite JA, Trigueiro RC, Guedes MI, et al. Isolation of two vaccinia virus strains from a single bovine vaccinia outbreak in rural area from Brazil: implications on the emergence of zoonotic orthopoxviruses. Am J Trop Med Hyg. 2006;75:486–90. https://doi.org/10.4269/ ajtmh.2006.75.48 Abrahão JS, Campos RK, Trindade GS, Guimarães da Fonseca F, Ferreira PC, Kroon EG. Outbreak of severe zoonotic vaccinia virus infection, southeastern Brazil. Emerg Infect Dis. 2015;21:695–8. https://doi.org/10.3201/eid2104.140351 Nagasse-Sugahara TK, Kisielius JJ, Ueda-Ito M, Curti SP, Figueiredo CA, Cruz AS, et al. Human vaccinia-like virus outbreaks in São Paulo and Goiás States, Brazil: virus detection, isolation and identification. Rev Inst Med Trop São Paulo. 2004; 46:315–22. https://doi.org/10.1590/S0036-46652004000600004 de Souza Trindade G, da Fonseca FG, Marques JT, Nogueira ML, Mendes LC, Borges AS, et al. Araçatuba virus: a vaccinialike virus associated with infection in humans and cattle. Emerg Infect Dis. 2003;9:155–60. https://doi.org/10.3201/eid0902.020244 Leite JA, Drumond BP, Trindade GS, Lobato ZI, da Fonseca FG, dos SJ, et al. Passatempo virus, a vaccinia virus strain, Brazil. Emerg Infect Dis. 2005;11:1935–8. https://doi.org/10.3201/ eid1112.050773 Megid J, Borges IA, Abrahão JS, Trindade GS, Appolinário CM, Ribeiro MG, et al. Vaccinia virus zoonotic infection, São Paulo State, Brazil. Emerg Infect Dis. 2012;18:189–91. https://doi.org/ 10.3201/eid1801.110692 Silva-Fernandes AT, Travassos CE, Ferreira JM, Abrahão JS, Rocha ES, Viana-Ferreira F, et al. Natural human infections with vaccinia virus during bovine vaccinia outbreaks. J Clin Virol. 2009;44:308–13. https://doi.org/10.1016/j.jcv.2009.01.007 Singh RK, Hosamani M, Balamurugan V, Satheesh CC, Shingal KR, Tatwarti SB, et al. An outbreak of buffalopox in buffalo (Bubalus bubalis) dairy herds in Aurangabad, India. Rev Sci Tech. 2006;25:981–7. https://doi.org/10.20506/ rst.25.3.1708 Yadav S, Hosamani M, Balamurugan V, Bhanuprakash V, Singh RK. Partial genetic characterization of viruses isolated from pox-like infection in cattle and buffaloes: evidence of buffalo pox virus circulation in Indian cows. Arch Virol. 2010;155:255–61. https://doi.org/10.1007/s00705-009-0562-y Abrahão JS, Guedes MI, Trindade GS, Fonseca FG, Campos RK, Mota BF, et al. One more piece in the VACV ecological puzzle: could peridomestic rodents be the link between wildlife and bovine vaccinia outbreaks in Brazil? PLoS One. 2009;4:e7428. https://doi.org/10.1371/journal.pone.0007428 Lopesode S, Lacerda JP, Fonseca IE, Castro DP, Forattini OP, Rabello EX. Cotia virus: a new agent isolated from sentinel mice in Sao Paulo, Brazil. Am J Trop Med Hyg. 1965;14:156–7. https://doi.org/10.4269/ajtmh.1965.14.156 da Fonseca FG, Trindade GS, Silva RL, Bonjardim CA, Ferreira PC, Kroon EG. Characterization of a vaccinia-like virus isolated in a Brazilian forest. J Gen Virol. 2002;83:223–8. https://doi.org/10.1099/0022-1317-83-1-223 Kroon EG, Mota BE, Abrahão JS, da Fonseca FG, de Souza Trindade G. Zoonotic Brazilian vaccinia virus: from field to therapy. Antiviral Res. 2011;92:150–63. https://doi.org/10.1016/ j.antiviral.2011.08.018 Abrahão JS, Trindade GS, Ferreira JM, Campos RK, Bonjardim CA, Ferreira PC, et al. Long-lasting stability of vaccinia virus strains in murine feces: implications for virus circulation and environmental maintenance. Arch Virol. 2009;154:1551–3. https://doi.org/10.1007/s00705-009-0470-1 Ferreira JM, Abrahão JS, Drumond BP, Oliveira FM, Alves PA, Pascoal-Xavier MA, et al. Vaccinia virus: shedding and horizontal transmission in a murine model. J Gen Virol. 2008;89:2986–91. https://doi.org/10.1099/vir.0.2008/003947-0 Abrahão JS, Oliveira TM, Campos RK, Madureira MC, Kroon EG, Lobato ZI. Bovine vaccinia outbreaks: detection and isolation of vaccinia virus in milk samples. Foodborne Pathog Dis. 2009;6:1141–6. https://doi.org/10.1089/fpd.2009.0324 de Oliveira TM, Rehfeld IS, Siqueira JM, Abrahão JS, Campos RK, dos Santos AK, et al. Vaccinia virus is not inactivated after thermal treatment and cheese production using experimentally contaminated milk. Foodborne Pathog Dis. 2010;7:1491–6. https://doi.org/10.1089/fpd.2010.0597 de Oliveira TM, Guedes MI, Rehfeld IS, Matos AC, Rivetti AV Jr, Alves PA, et al. Detection of vaccinia virus in milk: evidence of a systemic and persistent infection in experimentally infected cows. Foodborne Pathog Dis. 2015;12:898–903. https://doi.org/10.1089/ fpd.2015.1974 de Oliveira TML, Guedes MIMC, Rehfeld IS, Matos ACD, Rivetti Júnior AV, da Cunha AF, et al. Vaccinia virus detection in dairy products made with milk from experimentally infected cows. Transbound Emerg Dis. 2018;65:e40–7. https://doi.org/10.1111/ tbed.12666 Rehfeld IS, Fraiha ALS, Matos ACD, Guedes MIMC, Costa EA, de Souza MR, et al. Short communication: survival of vaccinia virus in inoculated cheeses during 60-day ripening. J Dairy Sci. 2017;100:7051–4. https://doi.org/10.3168/ jds.2017-12560 Usme-Ciro JA, Paredes A, Walteros DM, Tolosa-Pérez EN, Laiton-Donato K, Pinzón MD, et al. Detection and molecular characterization of zoonotic poxviruses circulating in the Amazon region of Colombia, 2014. Emerg Infect Dis. 2017;23:649–53. https://doi.org/10.3201/eid2304.161041 Smithson C, Kampman S, Hetman B, Upton C. Incongruencies in vaccinia virus phylogenetic trees. Computation. 2014;2:182–9. https://doi.org/10.3390/computation2040182 Karem KL, Reynolds M, Braden Z, Lou G, Bernard N, Patton J, et al. characterization of acute-phase humoral immunity to monkeypox: use of immunoglobulin M enzyme–linked immunosorbent assay for detection of monkeypox infection during the 2003 North American outbreak. Clin Diagn Lab Immunol. 2005;12:867–72. Fenner F, Henderson DA, Arita I, Jezek Z, Ladnyi ID. Smallpox and its eradication—South America. Geneva: World Health Organization; 1988. de Souza Trindade G, Drumond BP, Guedes MI, Leite JA, Mota BE, Campos MA, et al. Zoonotic vaccinia virus infection in Brazil: clinical description and implications for health professionals. J Clin Microbiol. 2007;45:1370–2. https://doi.org/ 10.1128/JCM.00920-06 Shchelkunov SN. An increasing danger of zoonotic orthopoxvirus infections. PLoS Pathog. 2013;9:e1003756. https://doi.org/10.1371/ journal.ppat.1003756 Costa GB, Borges IA, Alves PA, Miranda JB, Luiz AP, Ferreira PC, et al. Alternative routes of zoonotic vaccinia virus transmission, Brazil. Emerg Infect Dis. 2015;21:2244–6. https://doi.org/10.3201/ eid2112.141249 Assis FL, Borges IA, Mesquita VS, Ferreira PC, Trindade GS, Kroon EG, et al. Vaccinia virus in household environment during bovine vaccinia outbreak, Brazil. Emerg Infect Dis. 2013;19:2045– 7. https://doi.org/10.3201/eid1912.120937 Peres MG, Bacchiega TS, Appolinário CM, Vicente AF, Allendorf SD, Antunes JM, et al. Serological study of vaccinia virus reservoirs in areas with and without official reports of outbreaks in cattle and humans in São Paulo, Brazil. Arch Virol. 2013;158:2433–41. https://doi.org/10.1007/s00705-013-1740-5 Megid J, Appolinário CM, Langoni H, Pituco EM, Okuda LH. Vaccinia virus in humans and cattle in southwest region of São Paulo State, Brazil. Am J Trop Med Hyg. 2008;79:647–51. https://doi.org/10.4269/ajtmh.2008.79.647 Quiner CA, Nakazawa Y. Ecological niche modeling to determine potential niche of vaccinia virus: a case only study. Int J Health Geogr. 2017;16:28. https://doi.org/10.1186/s12942-017-0100-1 |
dc.rights.license.none.fl_str_mv |
Atribución |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
8 |
dc.coverage.temporal.spa.fl_str_mv |
25 |
dc.publisher.spa.fl_str_mv |
Dr. Peter Drotman Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina, Santa Marta |
dc.publisher.program.spa.fl_str_mv |
Medicina |
dc.publisher.place.spa.fl_str_mv |
Santa Marta |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/a8d13289-048e-4653-a6f6-c3e12efd8b4a/download https://repository.ucc.edu.co/bitstreams/1479cfcb-4d76-408a-a765-2d66fa257d73/download https://repository.ucc.edu.co/bitstreams/6f23d13e-e06b-4cdc-a4a9-8919e381e84f/download https://repository.ucc.edu.co/bitstreams/ea5b79b0-5fb2-4dae-8578-deac93c45d15/download |
bitstream.checksum.fl_str_mv |
d41f9979b81a80a2e90874241d44b0e4 3bce4f7ab09dfc588f126e1e36e98a45 b8affc95f4b688730260506001db7294 03e4256065eea096fcf57dcd95330a43 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814247302961823744 |
spelling |
Styczynski, AshleyBurgado, JillybethWalteros, Diana MarcelaUsme Ciro, José AldemarLaiton Donato, KatherinePinilla Farias, AlejandraNakazawa, YoshinoriChapman, ChristinaDavidson, WhitniMauldin, Matthew R.Morgan, ClintMartinez Ceron, JuanPatiña, EdilsonLopez Sepulveda, Leidy Torres, Claudia PatriciaCruz Suarez, Anyely ElianaPaez Olaya, GinaRiveros, Carlos ElkinCepeda, Diana YanethAcosta Lopez, LeydiGomez Espinosa, DanielaGutierrez Lozada, Faiber AntonioLi, YuSatheshkumar, Panayampalli S.Reynolds, Mary G.Gracia Romero, MarthaPetersen, Brett W.252021-01-20T23:45:37Z2021-01-20T23:45:37Z2019-11-141080-605910.3201/eid2512.181114https://hdl.handle.net/20.500.12494/32703Styczynski, A., Burgado, J., Walteros, D., Usme Ciro, J., Laiton, K., Farias, A....Petersen, B. (2019). Seroprevalence and Risk Factors Possibly Associated with Emerging Zoonotic Vaccinia Virus in a Farming Community, Colombia. Emerging Infectious Diseases, 25(12), 2169-2176. https://dx.doi.org/10.3201/eid2512.181114.In 2014, vaccinia virus (VACV) infections were identified among farmworkers in Caquetá Department, Colombia; additional cases were identified in Cundinamarca Department in 2015. VACV, an orthopoxvirus (OPXV) used in the smallpox vaccine, has caused sporadic bovine and human outbreaks in countries such as Brazil and India. In response to the emergence of this disease in Colombia, we surveyed and collected blood from 134 farmworkers and household members from 56 farms in Cundinamarca Department. We tested serum samples for OPXV antibodies and correlated risk factors with seropositivity by using multivariate analyses. Fifty-two percent of farmworkers had OPXV antibodies; this percentage decreased to 31% when we excluded persons who would have been eligible for smallpox vaccination. The major risk factors for seropositivity were municipality, age, smallpox vaccination scar, duration of time working on a farm, and animals having vaccinia-like lesions. This investigation provides evidence for possible emergence of VACV as a zoonosis in South America.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000318507https://orcid.org/0000-0002-8093-0544https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000008981jose.usmec@campusucc.edu.coashley.styczynski@gmail.comhttps://scholar.google.com.co/citations?user=cU2KyT4AAAAJ&hl=en8Dr. Peter DrotmanUniversidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina, Santa MartaMedicinaSanta Martahttps://wwwnc.cdc.gov/eid/article/25/12/18-1114_articleEmerging Infectious DiseasesEssbauer S, Pfeffer M, Meyer H. Zoonotic poxviruses. Vet Microbiol. 2010;140:229–36. https://doi.org/10.1016/ j.vetmic.2009.08.026Carroll DS, Emerson GL, Li Y, Sammons S, Olson V, Frace M, et al. Chasing Jenner’s vaccine: revisiting cowpox virus classification. PLoS One. 2011;6:e23086. https://doi.org/10.1371/ journal.pone.0023086Damaso CR, Esposito JJ, Condit RC, Moussatché N. An emergent poxvirus from humans and cattle in Rio de Janeiro State: Cantagalo virus may derive from Brazilian smallpox vaccine. Virology. 2000;277:439–49. https://doi.org/10.1006/viro.2000.0603Fonseca FG, Lanna MC, Campos MA, Kitajima EW, Peres JN, Golgher RR, et al. Morphological and molecular characterization of the poxvirus BeAn 58058. Arch Virol. 1998;143:1171–86. https://doi.org/10.1007/s007050050365Marques JT, Trindade GD, Da Fonseca FG, Dos Santos JR, Bonjardim CA, Ferreira PC, et al. Characterization of ATI, TK and IFN-alpha/betaR genes in the genome of the BeAn 58058 virus, a naturally attenuated wild orthopoxvirus. Virus Genes. 2001;23:291–301. https://doi.org/10.1023/A:1012521322845Peres MG, Bacchiega TS, Appolinário CM, Vicente AF, Mioni MSR, Ribeiro BLD, et al. Vaccinia virus in feces and urine of wild rodents from São Paulo State, Brazil. Viruses. 2018;10:E51. https://doi.org/10.3390/v10020051Medaglia ML, Moussatché N, Nitsche A, Dabrowski PW, Li Y, Damon IK, et al. Genomic analysis, phenotype, and virulence of the historical Brazilian smallpox vaccine strain IOC: implications for the origins and evolutionary relationships of vaccinia Virus. J Virol. 2015;89:11909–25. https://doi.org/10.1128/JVI.01833-15Gómez Pando V, Hernán López J, Restrepo A, Forero P. Study of an outbreak of vaccinia in dairy cattle of their milkers [in Spanish]. Bol Oficina Sanit Panam. 1967;63:111–21.Lum GS, Soriano F, Trejos A, Llerena J. Vaccinia epidemic and epizootic in El Salvador. Am J Trop Med Hyg. 1967;16:332–8. https://doi.org/10.4269/ajtmh.1967.16.332Trindade GS, Emerson GL, Carroll DS, Kroon EG, Damon IK. Brazilian vaccinia viruses and their origins. Emerg Infect Dis. 2007;13:965–72. https://doi.org/10.3201/eid1307.061404Trindade GS, Lobato ZI, Drumond BP, Leite JA, Trigueiro RC, Guedes MI, et al. Isolation of two vaccinia virus strains from a single bovine vaccinia outbreak in rural area from Brazil: implications on the emergence of zoonotic orthopoxviruses. Am J Trop Med Hyg. 2006;75:486–90. https://doi.org/10.4269/ ajtmh.2006.75.48Abrahão JS, Campos RK, Trindade GS, Guimarães da Fonseca F, Ferreira PC, Kroon EG. Outbreak of severe zoonotic vaccinia virus infection, southeastern Brazil. Emerg Infect Dis. 2015;21:695–8. https://doi.org/10.3201/eid2104.140351Nagasse-Sugahara TK, Kisielius JJ, Ueda-Ito M, Curti SP, Figueiredo CA, Cruz AS, et al. Human vaccinia-like virus outbreaks in São Paulo and Goiás States, Brazil: virus detection, isolation and identification. Rev Inst Med Trop São Paulo. 2004; 46:315–22. https://doi.org/10.1590/S0036-46652004000600004de Souza Trindade G, da Fonseca FG, Marques JT, Nogueira ML, Mendes LC, Borges AS, et al. Araçatuba virus: a vaccinialike virus associated with infection in humans and cattle. Emerg Infect Dis. 2003;9:155–60. https://doi.org/10.3201/eid0902.020244Leite JA, Drumond BP, Trindade GS, Lobato ZI, da Fonseca FG, dos SJ, et al. Passatempo virus, a vaccinia virus strain, Brazil. Emerg Infect Dis. 2005;11:1935–8. https://doi.org/10.3201/ eid1112.050773Megid J, Borges IA, Abrahão JS, Trindade GS, Appolinário CM, Ribeiro MG, et al. Vaccinia virus zoonotic infection, São Paulo State, Brazil. Emerg Infect Dis. 2012;18:189–91. https://doi.org/ 10.3201/eid1801.110692Silva-Fernandes AT, Travassos CE, Ferreira JM, Abrahão JS, Rocha ES, Viana-Ferreira F, et al. Natural human infections with vaccinia virus during bovine vaccinia outbreaks. J Clin Virol. 2009;44:308–13. https://doi.org/10.1016/j.jcv.2009.01.007Singh RK, Hosamani M, Balamurugan V, Satheesh CC, Shingal KR, Tatwarti SB, et al. An outbreak of buffalopox in buffalo (Bubalus bubalis) dairy herds in Aurangabad, India. Rev Sci Tech. 2006;25:981–7. https://doi.org/10.20506/ rst.25.3.1708Yadav S, Hosamani M, Balamurugan V, Bhanuprakash V, Singh RK. Partial genetic characterization of viruses isolated from pox-like infection in cattle and buffaloes: evidence of buffalo pox virus circulation in Indian cows. Arch Virol. 2010;155:255–61. https://doi.org/10.1007/s00705-009-0562-yAbrahão JS, Guedes MI, Trindade GS, Fonseca FG, Campos RK, Mota BF, et al. One more piece in the VACV ecological puzzle: could peridomestic rodents be the link between wildlife and bovine vaccinia outbreaks in Brazil? PLoS One. 2009;4:e7428. https://doi.org/10.1371/journal.pone.0007428Lopesode S, Lacerda JP, Fonseca IE, Castro DP, Forattini OP, Rabello EX. Cotia virus: a new agent isolated from sentinel mice in Sao Paulo, Brazil. Am J Trop Med Hyg. 1965;14:156–7. https://doi.org/10.4269/ajtmh.1965.14.156da Fonseca FG, Trindade GS, Silva RL, Bonjardim CA, Ferreira PC, Kroon EG. Characterization of a vaccinia-like virus isolated in a Brazilian forest. J Gen Virol. 2002;83:223–8. https://doi.org/10.1099/0022-1317-83-1-223Kroon EG, Mota BE, Abrahão JS, da Fonseca FG, de Souza Trindade G. Zoonotic Brazilian vaccinia virus: from field to therapy. Antiviral Res. 2011;92:150–63. https://doi.org/10.1016/ j.antiviral.2011.08.018Abrahão JS, Trindade GS, Ferreira JM, Campos RK, Bonjardim CA, Ferreira PC, et al. Long-lasting stability of vaccinia virus strains in murine feces: implications for virus circulation and environmental maintenance. Arch Virol. 2009;154:1551–3. https://doi.org/10.1007/s00705-009-0470-1Ferreira JM, Abrahão JS, Drumond BP, Oliveira FM, Alves PA, Pascoal-Xavier MA, et al. Vaccinia virus: shedding and horizontal transmission in a murine model. J Gen Virol. 2008;89:2986–91. https://doi.org/10.1099/vir.0.2008/003947-0Abrahão JS, Oliveira TM, Campos RK, Madureira MC, Kroon EG, Lobato ZI. Bovine vaccinia outbreaks: detection and isolation of vaccinia virus in milk samples. Foodborne Pathog Dis. 2009;6:1141–6. https://doi.org/10.1089/fpd.2009.0324de Oliveira TM, Rehfeld IS, Siqueira JM, Abrahão JS, Campos RK, dos Santos AK, et al. Vaccinia virus is not inactivated after thermal treatment and cheese production using experimentally contaminated milk. Foodborne Pathog Dis. 2010;7:1491–6. https://doi.org/10.1089/fpd.2010.0597de Oliveira TM, Guedes MI, Rehfeld IS, Matos AC, Rivetti AV Jr, Alves PA, et al. Detection of vaccinia virus in milk: evidence of a systemic and persistent infection in experimentally infected cows. Foodborne Pathog Dis. 2015;12:898–903. https://doi.org/10.1089/ fpd.2015.1974de Oliveira TML, Guedes MIMC, Rehfeld IS, Matos ACD, Rivetti Júnior AV, da Cunha AF, et al. Vaccinia virus detection in dairy products made with milk from experimentally infected cows. Transbound Emerg Dis. 2018;65:e40–7. https://doi.org/10.1111/ tbed.12666Rehfeld IS, Fraiha ALS, Matos ACD, Guedes MIMC, Costa EA, de Souza MR, et al. Short communication: survival of vaccinia virus in inoculated cheeses during 60-day ripening. J Dairy Sci. 2017;100:7051–4. https://doi.org/10.3168/ jds.2017-12560Usme-Ciro JA, Paredes A, Walteros DM, Tolosa-Pérez EN, Laiton-Donato K, Pinzón MD, et al. Detection and molecular characterization of zoonotic poxviruses circulating in the Amazon region of Colombia, 2014. Emerg Infect Dis. 2017;23:649–53. https://doi.org/10.3201/eid2304.161041Smithson C, Kampman S, Hetman B, Upton C. Incongruencies in vaccinia virus phylogenetic trees. Computation. 2014;2:182–9. https://doi.org/10.3390/computation2040182Karem KL, Reynolds M, Braden Z, Lou G, Bernard N, Patton J, et al. characterization of acute-phase humoral immunity to monkeypox: use of immunoglobulin M enzyme–linked immunosorbent assay for detection of monkeypox infection during the 2003 North American outbreak. Clin Diagn Lab Immunol. 2005;12:867–72.Fenner F, Henderson DA, Arita I, Jezek Z, Ladnyi ID. Smallpox and its eradication—South America. Geneva: World Health Organization; 1988.de Souza Trindade G, Drumond BP, Guedes MI, Leite JA, Mota BE, Campos MA, et al. Zoonotic vaccinia virus infection in Brazil: clinical description and implications for health professionals. J Clin Microbiol. 2007;45:1370–2. https://doi.org/ 10.1128/JCM.00920-06Shchelkunov SN. An increasing danger of zoonotic orthopoxvirus infections. PLoS Pathog. 2013;9:e1003756. https://doi.org/10.1371/ journal.ppat.1003756Costa GB, Borges IA, Alves PA, Miranda JB, Luiz AP, Ferreira PC, et al. Alternative routes of zoonotic vaccinia virus transmission, Brazil. Emerg Infect Dis. 2015;21:2244–6. https://doi.org/10.3201/ eid2112.141249Assis FL, Borges IA, Mesquita VS, Ferreira PC, Trindade GS, Kroon EG, et al. Vaccinia virus in household environment during bovine vaccinia outbreak, Brazil. Emerg Infect Dis. 2013;19:2045– 7. https://doi.org/10.3201/eid1912.120937Peres MG, Bacchiega TS, Appolinário CM, Vicente AF, Allendorf SD, Antunes JM, et al. Serological study of vaccinia virus reservoirs in areas with and without official reports of outbreaks in cattle and humans in São Paulo, Brazil. Arch Virol. 2013;158:2433–41. https://doi.org/10.1007/s00705-013-1740-5Megid J, Appolinário CM, Langoni H, Pituco EM, Okuda LH. Vaccinia virus in humans and cattle in southwest region of São Paulo State, Brazil. Am J Trop Med Hyg. 2008;79:647–51. https://doi.org/10.4269/ajtmh.2008.79.647Quiner CA, Nakazawa Y. Ecological niche modeling to determine potential niche of vaccinia virus: a case only study. Int J Health Geogr. 2017;16:28. https://doi.org/10.1186/s12942-017-0100-1SeroprevalenciaVirus VacciniaColombiaFactores de riesgoSeroprevalenceVaccinia virusColombiaRisk factorsSeroprevalence and Risk Factors Possibly Associated with Emerging Zoonotic Vaccinia Virus in a Farming Community, ColombiaArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINAL26. Seroprevalence and risk factors Styczynski et al 2019.pdf26. Seroprevalence and risk factors Styczynski et al 2019.pdfArtículo publicadoapplication/pdf679189https://repository.ucc.edu.co/bitstreams/a8d13289-048e-4653-a6f6-c3e12efd8b4a/downloadd41f9979b81a80a2e90874241d44b0e4MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/1479cfcb-4d76-408a-a765-2d66fa257d73/download3bce4f7ab09dfc588f126e1e36e98a45MD52THUMBNAIL26. Seroprevalence and risk factors Styczynski et al 2019.pdf.jpg26. Seroprevalence and risk factors Styczynski et al 2019.pdf.jpgGenerated Thumbnailimage/jpeg7256https://repository.ucc.edu.co/bitstreams/6f23d13e-e06b-4cdc-a4a9-8919e381e84f/downloadb8affc95f4b688730260506001db7294MD53TEXT26. Seroprevalence and risk factors Styczynski et al 2019.pdf.txt26. Seroprevalence and risk factors Styczynski et al 2019.pdf.txtExtracted texttext/plain53777https://repository.ucc.edu.co/bitstreams/ea5b79b0-5fb2-4dae-8578-deac93c45d15/download03e4256065eea096fcf57dcd95330a43MD5420.500.12494/32703oai:repository.ucc.edu.co:20.500.12494/327032024-08-10 22:42:38.665restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo= |