Nutritional Characteristics and Digestibility of Woody and Herbaceous Native Plants from Tropical Flooded Savannas Ecosystems

Native plants constitute an enormous source of nutrients for grazing animals, although their use has been limited due to the lack of knowledge about its properties. The aim of this research was to evaluate the nutritional characteristics of native plants from flooded savannas ecosystem. Seven transe...

Full description

Autores:
Vélez Terranova, Oscar Mauricio
Salamanca Carreño, Arcesio
Bejarano Sánchez, Andrés Mauricio
González Castro, Daniela Alexandra
Higuera Pedraza, Rubén Darío
Giraldo, Luis Alfonso
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/46681
Acceso en línea:
https://doi.org/10.3390/agriculture12101613
https://hdl.handle.net/20.500.12494/46681
Palabra clave:
Vegetación nativa
Alternativas nutricionales
Sabanas tropicales inundables
Sustentabilidad ganadera
Native vegetation
Nutritional alternatives
Tropical flooded savannas
Livestock sustainability
Rights
openAccess
License
Atribución – No comercial – Sin Derivar
id COOPER2_451e7aea6a689b6c96b243668aa583bd
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/46681
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Nutritional Characteristics and Digestibility of Woody and Herbaceous Native Plants from Tropical Flooded Savannas Ecosystems
title Nutritional Characteristics and Digestibility of Woody and Herbaceous Native Plants from Tropical Flooded Savannas Ecosystems
spellingShingle Nutritional Characteristics and Digestibility of Woody and Herbaceous Native Plants from Tropical Flooded Savannas Ecosystems
Vegetación nativa
Alternativas nutricionales
Sabanas tropicales inundables
Sustentabilidad ganadera
Native vegetation
Nutritional alternatives
Tropical flooded savannas
Livestock sustainability
title_short Nutritional Characteristics and Digestibility of Woody and Herbaceous Native Plants from Tropical Flooded Savannas Ecosystems
title_full Nutritional Characteristics and Digestibility of Woody and Herbaceous Native Plants from Tropical Flooded Savannas Ecosystems
title_fullStr Nutritional Characteristics and Digestibility of Woody and Herbaceous Native Plants from Tropical Flooded Savannas Ecosystems
title_full_unstemmed Nutritional Characteristics and Digestibility of Woody and Herbaceous Native Plants from Tropical Flooded Savannas Ecosystems
title_sort Nutritional Characteristics and Digestibility of Woody and Herbaceous Native Plants from Tropical Flooded Savannas Ecosystems
dc.creator.fl_str_mv Vélez Terranova, Oscar Mauricio
Salamanca Carreño, Arcesio
Bejarano Sánchez, Andrés Mauricio
González Castro, Daniela Alexandra
Higuera Pedraza, Rubén Darío
Giraldo, Luis Alfonso
dc.contributor.author.none.fl_str_mv Vélez Terranova, Oscar Mauricio
Salamanca Carreño, Arcesio
Bejarano Sánchez, Andrés Mauricio
González Castro, Daniela Alexandra
Higuera Pedraza, Rubén Darío
Giraldo, Luis Alfonso
dc.subject.spa.fl_str_mv Vegetación nativa
Alternativas nutricionales
Sabanas tropicales inundables
Sustentabilidad ganadera
topic Vegetación nativa
Alternativas nutricionales
Sabanas tropicales inundables
Sustentabilidad ganadera
Native vegetation
Nutritional alternatives
Tropical flooded savannas
Livestock sustainability
dc.subject.other.spa.fl_str_mv Native vegetation
Nutritional alternatives
Tropical flooded savannas
Livestock sustainability
description Native plants constitute an enormous source of nutrients for grazing animals, although their use has been limited due to the lack of knowledge about its properties. The aim of this research was to evaluate the nutritional characteristics of native plants from flooded savannas ecosystem. Seven transects (290 km) were carried out through the montane forests, gallery forests and open savannah ecosystems. A total of 42 plant species were collected (22 arboreal, 13 shrubs, 5 climbing and 2 herb plants) and their nutritional composition and digestibility were evaluated. Data analysis included univariate and multivariate methods. Nutritional composition and digestibility varied among the groups of arboreal, shrub, climbing and herb species. At an individual level plants such as G. americana, C. cf minor‐grandiflora and M. nobilis, A.Jahnii, P. hispidium, I. carnea, S. reticulate, H. furcellatus, and C. erosa stood out by their protein, ash, and digestibility. At a group level, a mixed of 19 plants presented the highest digestibility, and the lowest fiber fraction constituted a promising forage alternative. Data variability was explained in the 47% by protein, ash, digestibility, and the different fiber fractions variables. Further studies related with the animal acceptability, performance and the presence of secondary metabolites are needed before being fully recommended.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-10-11T16:14:43Z
dc.date.available.none.fl_str_mv 2022-10-11T16:14:43Z
dc.date.issued.none.fl_str_mv 2022-10-05
dc.type.none.fl_str_mv Artículo
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 2077-0472
dc.identifier.uri.spa.fl_str_mv https://doi.org/10.3390/agriculture12101613
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/46681
dc.identifier.bibliographicCitation.spa.fl_str_mv Vélez-Terranova, M., Salamanca Carreño, A., Bejarano‐Sánchez, A. M., González‐Castro, D. A., Higuera‐Pedraza, R. D. y Giraldo, L. A. (2022). Nutritional Characteristics and Digestibility of Woody and Herbaceous Native Plants from Tropical Flooded Savannas Ecosystems. [Articulo, Universidad Cooperativa Colombia]. Repositorio Institucional UCC.
identifier_str_mv 2077-0472
Vélez-Terranova, M., Salamanca Carreño, A., Bejarano‐Sánchez, A. M., González‐Castro, D. A., Higuera‐Pedraza, R. D. y Giraldo, L. A. (2022). Nutritional Characteristics and Digestibility of Woody and Herbaceous Native Plants from Tropical Flooded Savannas Ecosystems. [Articulo, Universidad Cooperativa Colombia]. Repositorio Institucional UCC.
url https://doi.org/10.3390/agriculture12101613
https://hdl.handle.net/20.500.12494/46681
dc.relation.ispartofjournal.spa.fl_str_mv Agriculture
dc.relation.references.spa.fl_str_mv Rippstein, G. Agroecología y Biodiversidad de las Sabanas en los Llanos Orientales de Colombia; N° 32; Centro Internacional de Agri‐ cultura Tropical: Cali, Columbia, 2001.
Ocampo, A.; Peñuela, L. Manejo y Nutrición en Sabana Inundable como eje de la Producción y Reproducción de la Ganadería de cría.; Fortalecimiento Institucional y de Política para Incrementar la Conservación de la Biodiversidad en Predios Privados en Colombia; Red Colombiana de Reservas Naturales de la Sociedad, Fundación Natura, World Wildlife Fund, The Nature Conservancy, Parques Nacionales Naturales de Colombia: Bogotá – Colombia, 2014.
Vélez‐Terranova, O.M. Estrategias tecnológicas para la intensificación de la productividad ganadera en condiciones de sabanas inundables en la Orinoquía colombiana. Trop. Subtrop. Agroecosystems 2019, 22, 257–266.
FAO. New Zealand Agricultural Greenhouse Gas Research Centre. In Low Emissions Development of the Beef Cattle Sector in Uru‐ guay—Reducing Enteric Methane for Food Security and Livelihoods; FAO: Roma, Italy, 2017.
Latawiec, A.E.; Strassburg BB, N.; Valentim, J.F.; Ramos, F.; Alves‐Pinto, H.N. Intensification of cattle ranching production systems: Socioeconomic and environmental synergies and risks in Brazil. Animal 2014, 8, 1255–1263.
Broom, D.M.; Galindo, F.A.; Murgueitio, E. Sustainable, efficient livestock production with high biodiversity and good welfare for animals. Proc. Royal Soc. B 2013, 280, 2025.
De Moraes, A.; Carvalho, P.C.D.F.; Anghinoni, I.; Lustosa, S.B.C.; Costa, S.E.V.G.D.A.; Kunrath, T.R. Integrated crop–livestock systems in the Brazilian subtropics. Eur. J. Agron. 2014, 57, 4–9.
Reiné, R.; Ascaso, J.; Barrantes, O. Nutritional quality of plant species in pyrenean hay Meadows of high diversity. Agronomy 2020, 10, 883.
Ramos, L.; Apráez, J.; Cortes, K.; Apráez, J. Nutritional, antinutritional and phenological characterization of promising forage species for animal feeding in a cold tropical zone. Rev. Cienc. Agríc. 2021, 38, 86–96.
Arauca. Clima: Arauca, Colombia. Aeropuerto Sntiago Pérez Quiróz. Available online: http://es.allmetsat.com/clima/vene‐ zuela.php?code=80099 (accessed on 20 June 2020).
Holdridge, L.R. Ecología Basada en Zonas de Vida; IICA: San Jose, Costa Rica, 1987; p. 216.
Schultze‐kraft, R. Colección de Germoplasma en el Campo; Manual para la Colección, Preservación y Caracterización de Recursos Forra‐ jeros Tropicales; Centro Internacional de Agricultura Tropical: Cali, Colombia, 1979.
AOAC. Official Methods of Analysis of AOAC International. Agricultural Chemicals. Contaminants and Drugs; Horwitz, W., Ed.; AOAC: Rockville, Maryland, 2000; Volume 1.
Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber. Neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597.
Linn, J.G.; Martin, N.P. Forage Quality Tests and Interpretation—AG‐F0‐2637. Minnesota Extension Service; University of Minnesota Agriculture: St Paul, MN, USA, 1989; pp. 1–5.
InfoStat. InfoStat, Versión 2020. Manual del Usuario; Universidad Nacional de Córdoba: Córdoba, Argentina, 2020.
Al‐Arif, M.A.; Suwanti, L.T.; Estoepangestie, A.S.; Lamid, M. The Nutrients Contents, Dry Matter Digestibility, Organic Matter Di‐ gestibility, Total Digestible Nutrient, and NH3 Rumen Production of Three Kinds of Cattle Feeding Models. The Veterinary Medicine International Conference, KnE Life Sciences: Dubai, UAE, 2017; pp. 338–343.
Fasae, O.A.; Sowande, O.S.; Popoola, A.A. Evaluation of selected leaves of trees and foliage of shrubs as fodder in ruminant production. J. Agric. Sci. Environ. 2010, 10, 36–44.
Zhou, H.; Li, M.; Zi, X.; Xu, T.; Hou, G. Nutritive Value of Several Tropical Legume Shrubs in Hai‐nan Province of China. J. Anim. Vet. Adv. 2011, 10, 1640–1648.
Apráez, E.; Gálvez, A.L.; Navia, J.F. Evaluación nutricional de arbóreas y arbustivas de bosque muy seco tropical (bms‐T) en producción bovina. Rev. Cienc. Agríc. 2017, 34, 98–107.
Holden, J.M.; Harnly, J.M.; Beecher, C.R. Composición de los Alimentos. Conocimientos Actuales Sobre Nutrición; ILSI: Washington, DC, USA, 2003; pp. 645–657
Bakshi, M.P.S.; Singh, M.P.; Wadhwa, M.; Singh, B. Nutritional evaluation of forest tree leaves as livestock feed in sub moun‐ tainous region of India. Indian J. Anim. Sci. 2011, 81, 276–281.
Domínguez‐Gómez, T.G.; González‐Rodríguez, H.; Ramírez‐Lozano, R.G.; Cantú‐Silva, I.; Gómez‐Meza, M.V.; Cantú‐Ayala, C.M.; Alvarado, M.D.S. Nutritional Profile of Four Shrub Species, Northeastern Mexico. Int. J. Bio‐Res. Stress Manag. 2013, 4, 001–008.
Gulizia, J.P.; Downs, K.M. A Review of Kudzu’s Use and Characteristics as Potential Feedstock. Agriculture 2019, 9, 1–15
Salah, N.; Sauvant, D.; Archimède, H. Nutritional requirements of sheep, goats and cattle in warm climates: A meta‐analysis. Animal 2014, 8, 1439–1447.
Khan, S.; Anwar, K.; Kalim, K.; Saeed, A.; Shah, S.Z.; Ahmad, Z.; Ikram, H.M.; Khan, S.; Safirullah. Nutritional Evaluation of Some Top Fodder Tree Leaves and Shrubs of District Dir (Lower), Pakistan as a quality livestock feed. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 941–947.
Debela, M.; Animut, G.; Eshetu, M. Evaluation of the Nutritional Composition of Selected Indigenous Fodder Trees and Shrubs in Daro Labu District, Eastern Ethiopia. J. Biol. Agric. Healthcare 2017, 7, 58–61
Mudau, H.S.; Mokoboki, H.K.; Ravhuhali, K.E.; Mkhize, Z. Nutrients Profile of 52 Browse Species Found in Semi‐Arid Areas of South Africa for Livestock Production: Effect of Harvesting Site. Plants 2021, 10, 1–16.
Lee, M.A. A global comparison of the nutritive values of forage plants grown in contrasting environments. J. Plant Res. 2018, 131, 641–654.
Peñuela, L.; Fernández, A.P.; Castro, F.; Ocampo, A. Uso y Manejo de Forrajes Nativos en la Sabana Inundable de la Orinoquia; Convenio de Cooperación Interinstitucional; The Nature Conservancy, Fundación Horizonte Verde, Fundación Biodiversidad de España, Corporación Autónoma Regional de la Orinoquia. Universidad de los Llanos: Villavicencio, Colombia, 2011.
Gupta, A.R.; Bandyopadhyay, S.; Sultana, F.; Swarup, D. Heavy metal poisoning and its impact on livestock health and produc‐ tion system. Indian J. Anim. Health 2021, 60, 1–23.
Pereira, G.F.; Emerenciano Neto, J.V.; Difante, G.D.S.; Assis, L.C.D.S.L.C.; Lima, P.D.O.; Santos, R.D.S. Production and quality of tropical grasses at different regrowth intervals in the Brazilian semiarid. Acta Sci. 2021, 43, e52842.
Van Soest, P.J. Development of comprehensive system of feed analysis and its application to forages. J. Anim. Sci. 1967, 26, 119– 128.
Harper, K.J.; McNeill, D.M. The Role iNDF in the Regulation of Feed Intake and the Importance of Its Assessment in Subtropical Ruminant Systems (the Role of iNDF in the Regulation of Forage Intake). Agriculture 2015, 5, 778–790.
Cortiana, T.A.A.; Regiani, S.M.; Cardoso, J.G.; Carvalho, F.J.L.; Henz, É.L.; Pedro, J.P. Production and chemical composition of grasses and legumes cultivated in pure form, mixed or in consortium. Acta Sci. Anim. Sci. 2017, 39, 235–241.
Melo, C.D.; Maduro, D.C.S.A.M.; Wallon, S.; Borba, A.E.S.; Madruga, J.; Borges, P.A.V.; Ferreira, M.T.; Elias, R.B. Influence of climate variability and soil fertility on the forage quality and productivity in Azorean pastures. Agriculture 2022, 12, 358.
Patra, A.; Saxena, J. A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry 2010, 71, 1198–1222.
Paciullo, D.S.C.; Pires, M.F.A.; Aroeira, L.J.M.; Morenz, M.J.F.; Maurício, R.M.; Gomide, C.A.M.; Silveira, S.R. Sward characte‐ ristics and performance of dairy cows in organic grass–legume pastures shaded by tropical trees. Animal 2014, 8, 1264–1271
Leng, R.A. Evaluation of tropical feed resources for ruminant livestock. In Tropical Feeds and Feeding Systems; FAO: Rome, Italy, 1995. Available online: https://www.fao.org/ag/aga/agap/frg/econf95/pdf/evalu.pdf (accessed on 20 June 2020).
Mlay, P.S.; Pereka, A.; Phiri, E.; Balthazary, S.; Igusti, J.; Hvelplund, T.; Weisbjerg, M.R.; Madsen, J. Feed value of selected tropical grasses, legumes and concentrates. Vet. Arh. 2006, 76, 53–63
Flores, O.I.; Bolivar, D.M.; Botero, J.A.; Ibrahim, M.A. Parámetros nutricionales de algunas arbóreas leguminosas y no legumi‐ nosas con potencial forrajera para la suplementación de ruminantes en el trópico. Livest. Res. Rural. Dev. 1998, 10, 8–15
Indah, A.S.; Permana, I.G.; Despal, D. Determination dry matter digestibility of tropical forage using nutrient compisition. IOP Conf. Ser. Earth Environ. Sci. 2020, 484, 012113
Phelan, P.; Moloney, A.P.; McGeough, E.J.; Humphreys, J.; Bertilsson, J.; O’Riordan, E.G.; O’Kiely, P. Forage Legumes for Graz‐ ing and Conserving in Ruminant Production Systems. Crit. Rev. Plant Sci. 2014, 34, 281–326
Fentahun, S.; Urge, M.; Mekuriaw, Y. Seasonal variation in Nutritional value of major browse species in North Western, Ethio‐ pia. J. Plant Biotechnol. Microbiol. 2020, 3, 1–7.
Ravhuhali, K.E.; Msiza, N.H.; Mudau, H.S. Seasonal dynamics on nutritive value, chemical estimates and in vitro dry matter degradability of some woody species found in rangelands of South Africa. Agrofor. Syst. 2022, 96, 23–33.
Evitayani, W.L.; Fariani, A.; Ichinohe, T.; Fujihara, T. Study on Nutritive Value of Tropical Forages in North Sumatra, Indonesia. Asian‐Australas. J. Anim. Sci. 2004, 17, 1518–1523.
Vélez‐Terranova, M.; Campos‐Gaona, R.; Sánchez‐Guerrero, H. Uso de metabolitos secundarios de las plantas para reducir la metanogénesis ruminal. Trop. Subtrop. Agroecosystems 2014, 17, 489–499.
Amiri, F.; Mohamed‐Sharif, A.R. Comparison of nutritive values of grasses and legume species using forage quality index. Songklanakarin J. Sci. Technol. 2012, 34, 577–586
Hutton, P.; White, C.L.; Durmic, Z.; Vercoe, P.E. Eremophila glabra is an Australian plant that reduces lactic acid accumulation in an in vitro glucose challenge designed to simulate lactic acidosis in ruminants. Animal 2009, 3, 1254–1263.
dc.rights.license.none.fl_str_mv Atribución – No comercial – Sin Derivar
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Sin Derivar
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 1-18 p.
dc.coverage.temporal.spa.fl_str_mv 12(10)
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina Veterinaría y Zootecnia, Villavicencio
dc.publisher.program.spa.fl_str_mv Medicina veterinaria y zootecnia
dc.publisher.place.spa.fl_str_mv Villavicencio
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/24e8d756-e8cf-4b12-9a6d-f94c72a8f0b8/download
https://repository.ucc.edu.co/bitstreams/119b0639-dc0d-4744-bf69-abd2078917c7/download
https://repository.ucc.edu.co/bitstreams/2284db93-60d8-4987-b0d3-596916e1b721/download
https://repository.ucc.edu.co/bitstreams/9e297a2b-8312-4d04-9c43-8ce742655c06/download
https://repository.ucc.edu.co/bitstreams/d92d98b9-ea13-4f77-a804-6b8f4217cf8c/download
https://repository.ucc.edu.co/bitstreams/4d46c47d-0b81-4f2d-9f9a-ea883d62e952/download
https://repository.ucc.edu.co/bitstreams/5b23e6ac-5f5c-431d-a206-374944c19d2d/download
bitstream.checksum.fl_str_mv 11cff9e7a420c838bdee2abb9d9aee8d
4a2432569ce5f757795b3cc2a0524f20
8a4605be74aa9ea9d79846c1fba20a33
4b01ff7649c109400917518ba378c119
ed9658df990cd9d085ea8bb51dc60cef
0e62f4c23c24fd34c987e6ec1ba315d9
64e5f5ea54527ca0c7c123a9bb9a0630
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814246623742525440
spelling Vélez Terranova, Oscar MauricioSalamanca Carreño, ArcesioBejarano Sánchez, Andrés MauricioGonzález Castro, Daniela AlexandraHiguera Pedraza, Rubén DaríoGiraldo, Luis Alfonso12(10)2022-10-11T16:14:43Z2022-10-11T16:14:43Z2022-10-052077-0472https://doi.org/10.3390/agriculture12101613https://hdl.handle.net/20.500.12494/46681Vélez-Terranova, M., Salamanca Carreño, A., Bejarano‐Sánchez, A. M., González‐Castro, D. A., Higuera‐Pedraza, R. D. y Giraldo, L. A. (2022). Nutritional Characteristics and Digestibility of Woody and Herbaceous Native Plants from Tropical Flooded Savannas Ecosystems. [Articulo, Universidad Cooperativa Colombia]. Repositorio Institucional UCC.Native plants constitute an enormous source of nutrients for grazing animals, although their use has been limited due to the lack of knowledge about its properties. The aim of this research was to evaluate the nutritional characteristics of native plants from flooded savannas ecosystem. Seven transects (290 km) were carried out through the montane forests, gallery forests and open savannah ecosystems. A total of 42 plant species were collected (22 arboreal, 13 shrubs, 5 climbing and 2 herb plants) and their nutritional composition and digestibility were evaluated. Data analysis included univariate and multivariate methods. Nutritional composition and digestibility varied among the groups of arboreal, shrub, climbing and herb species. At an individual level plants such as G. americana, C. cf minor‐grandiflora and M. nobilis, A.Jahnii, P. hispidium, I. carnea, S. reticulate, H. furcellatus, and C. erosa stood out by their protein, ash, and digestibility. At a group level, a mixed of 19 plants presented the highest digestibility, and the lowest fiber fraction constituted a promising forage alternative. Data variability was explained in the 47% by protein, ash, digestibility, and the different fiber fractions variables. Further studies related with the animal acceptability, performance and the presence of secondary metabolites are needed before being fully recommended.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001022903https://orcid.org/0000-0002-5416-5906https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000009387ovelez@unal.edu.coasaca_65@yahoo.esarcesio.salamanca@campusucc.edu.cohttps://scholar.google.com/citations?hl=es&user=EqGLQZUAAAAJ1-18 p.Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina Veterinaría y Zootecnia, VillavicencioMedicina veterinaria y zootecniaVillavicencioVegetación nativaAlternativas nutricionalesSabanas tropicales inundablesSustentabilidad ganaderaNative vegetationNutritional alternativesTropical flooded savannasLivestock sustainabilityNutritional Characteristics and Digestibility of Woody and Herbaceous Native Plants from Tropical Flooded Savannas EcosystemsArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribución – No comercial – Sin Derivarinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2AgricultureRippstein, G. Agroecología y Biodiversidad de las Sabanas en los Llanos Orientales de Colombia; N° 32; Centro Internacional de Agri‐ cultura Tropical: Cali, Columbia, 2001.Ocampo, A.; Peñuela, L. Manejo y Nutrición en Sabana Inundable como eje de la Producción y Reproducción de la Ganadería de cría.; Fortalecimiento Institucional y de Política para Incrementar la Conservación de la Biodiversidad en Predios Privados en Colombia; Red Colombiana de Reservas Naturales de la Sociedad, Fundación Natura, World Wildlife Fund, The Nature Conservancy, Parques Nacionales Naturales de Colombia: Bogotá – Colombia, 2014.Vélez‐Terranova, O.M. Estrategias tecnológicas para la intensificación de la productividad ganadera en condiciones de sabanas inundables en la Orinoquía colombiana. Trop. Subtrop. Agroecosystems 2019, 22, 257–266.FAO. New Zealand Agricultural Greenhouse Gas Research Centre. In Low Emissions Development of the Beef Cattle Sector in Uru‐ guay—Reducing Enteric Methane for Food Security and Livelihoods; FAO: Roma, Italy, 2017.Latawiec, A.E.; Strassburg BB, N.; Valentim, J.F.; Ramos, F.; Alves‐Pinto, H.N. Intensification of cattle ranching production systems: Socioeconomic and environmental synergies and risks in Brazil. Animal 2014, 8, 1255–1263.Broom, D.M.; Galindo, F.A.; Murgueitio, E. Sustainable, efficient livestock production with high biodiversity and good welfare for animals. Proc. Royal Soc. B 2013, 280, 2025.De Moraes, A.; Carvalho, P.C.D.F.; Anghinoni, I.; Lustosa, S.B.C.; Costa, S.E.V.G.D.A.; Kunrath, T.R. Integrated crop–livestock systems in the Brazilian subtropics. Eur. J. Agron. 2014, 57, 4–9.Reiné, R.; Ascaso, J.; Barrantes, O. Nutritional quality of plant species in pyrenean hay Meadows of high diversity. Agronomy 2020, 10, 883.Ramos, L.; Apráez, J.; Cortes, K.; Apráez, J. Nutritional, antinutritional and phenological characterization of promising forage species for animal feeding in a cold tropical zone. Rev. Cienc. Agríc. 2021, 38, 86–96.Arauca. Clima: Arauca, Colombia. Aeropuerto Sntiago Pérez Quiróz. Available online: http://es.allmetsat.com/clima/vene‐ zuela.php?code=80099 (accessed on 20 June 2020).Holdridge, L.R. Ecología Basada en Zonas de Vida; IICA: San Jose, Costa Rica, 1987; p. 216.Schultze‐kraft, R. Colección de Germoplasma en el Campo; Manual para la Colección, Preservación y Caracterización de Recursos Forra‐ jeros Tropicales; Centro Internacional de Agricultura Tropical: Cali, Colombia, 1979.AOAC. Official Methods of Analysis of AOAC International. Agricultural Chemicals. Contaminants and Drugs; Horwitz, W., Ed.; AOAC: Rockville, Maryland, 2000; Volume 1.Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber. Neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597.Linn, J.G.; Martin, N.P. Forage Quality Tests and Interpretation—AG‐F0‐2637. Minnesota Extension Service; University of Minnesota Agriculture: St Paul, MN, USA, 1989; pp. 1–5.InfoStat. InfoStat, Versión 2020. Manual del Usuario; Universidad Nacional de Córdoba: Córdoba, Argentina, 2020.Al‐Arif, M.A.; Suwanti, L.T.; Estoepangestie, A.S.; Lamid, M. The Nutrients Contents, Dry Matter Digestibility, Organic Matter Di‐ gestibility, Total Digestible Nutrient, and NH3 Rumen Production of Three Kinds of Cattle Feeding Models. The Veterinary Medicine International Conference, KnE Life Sciences: Dubai, UAE, 2017; pp. 338–343.Fasae, O.A.; Sowande, O.S.; Popoola, A.A. Evaluation of selected leaves of trees and foliage of shrubs as fodder in ruminant production. J. Agric. Sci. Environ. 2010, 10, 36–44.Zhou, H.; Li, M.; Zi, X.; Xu, T.; Hou, G. Nutritive Value of Several Tropical Legume Shrubs in Hai‐nan Province of China. J. Anim. Vet. Adv. 2011, 10, 1640–1648.Apráez, E.; Gálvez, A.L.; Navia, J.F. Evaluación nutricional de arbóreas y arbustivas de bosque muy seco tropical (bms‐T) en producción bovina. Rev. Cienc. Agríc. 2017, 34, 98–107.Holden, J.M.; Harnly, J.M.; Beecher, C.R. Composición de los Alimentos. Conocimientos Actuales Sobre Nutrición; ILSI: Washington, DC, USA, 2003; pp. 645–657Bakshi, M.P.S.; Singh, M.P.; Wadhwa, M.; Singh, B. Nutritional evaluation of forest tree leaves as livestock feed in sub moun‐ tainous region of India. Indian J. Anim. Sci. 2011, 81, 276–281.Domínguez‐Gómez, T.G.; González‐Rodríguez, H.; Ramírez‐Lozano, R.G.; Cantú‐Silva, I.; Gómez‐Meza, M.V.; Cantú‐Ayala, C.M.; Alvarado, M.D.S. Nutritional Profile of Four Shrub Species, Northeastern Mexico. Int. J. Bio‐Res. Stress Manag. 2013, 4, 001–008.Gulizia, J.P.; Downs, K.M. A Review of Kudzu’s Use and Characteristics as Potential Feedstock. Agriculture 2019, 9, 1–15Salah, N.; Sauvant, D.; Archimède, H. Nutritional requirements of sheep, goats and cattle in warm climates: A meta‐analysis. Animal 2014, 8, 1439–1447.Khan, S.; Anwar, K.; Kalim, K.; Saeed, A.; Shah, S.Z.; Ahmad, Z.; Ikram, H.M.; Khan, S.; Safirullah. Nutritional Evaluation of Some Top Fodder Tree Leaves and Shrubs of District Dir (Lower), Pakistan as a quality livestock feed. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 941–947.Debela, M.; Animut, G.; Eshetu, M. Evaluation of the Nutritional Composition of Selected Indigenous Fodder Trees and Shrubs in Daro Labu District, Eastern Ethiopia. J. Biol. Agric. Healthcare 2017, 7, 58–61Mudau, H.S.; Mokoboki, H.K.; Ravhuhali, K.E.; Mkhize, Z. Nutrients Profile of 52 Browse Species Found in Semi‐Arid Areas of South Africa for Livestock Production: Effect of Harvesting Site. Plants 2021, 10, 1–16.Lee, M.A. A global comparison of the nutritive values of forage plants grown in contrasting environments. J. Plant Res. 2018, 131, 641–654.Peñuela, L.; Fernández, A.P.; Castro, F.; Ocampo, A. Uso y Manejo de Forrajes Nativos en la Sabana Inundable de la Orinoquia; Convenio de Cooperación Interinstitucional; The Nature Conservancy, Fundación Horizonte Verde, Fundación Biodiversidad de España, Corporación Autónoma Regional de la Orinoquia. Universidad de los Llanos: Villavicencio, Colombia, 2011.Gupta, A.R.; Bandyopadhyay, S.; Sultana, F.; Swarup, D. Heavy metal poisoning and its impact on livestock health and produc‐ tion system. Indian J. Anim. Health 2021, 60, 1–23.Pereira, G.F.; Emerenciano Neto, J.V.; Difante, G.D.S.; Assis, L.C.D.S.L.C.; Lima, P.D.O.; Santos, R.D.S. Production and quality of tropical grasses at different regrowth intervals in the Brazilian semiarid. Acta Sci. 2021, 43, e52842.Van Soest, P.J. Development of comprehensive system of feed analysis and its application to forages. J. Anim. Sci. 1967, 26, 119– 128.Harper, K.J.; McNeill, D.M. The Role iNDF in the Regulation of Feed Intake and the Importance of Its Assessment in Subtropical Ruminant Systems (the Role of iNDF in the Regulation of Forage Intake). Agriculture 2015, 5, 778–790.Cortiana, T.A.A.; Regiani, S.M.; Cardoso, J.G.; Carvalho, F.J.L.; Henz, É.L.; Pedro, J.P. Production and chemical composition of grasses and legumes cultivated in pure form, mixed or in consortium. Acta Sci. Anim. Sci. 2017, 39, 235–241.Melo, C.D.; Maduro, D.C.S.A.M.; Wallon, S.; Borba, A.E.S.; Madruga, J.; Borges, P.A.V.; Ferreira, M.T.; Elias, R.B. Influence of climate variability and soil fertility on the forage quality and productivity in Azorean pastures. Agriculture 2022, 12, 358.Patra, A.; Saxena, J. A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry 2010, 71, 1198–1222.Paciullo, D.S.C.; Pires, M.F.A.; Aroeira, L.J.M.; Morenz, M.J.F.; Maurício, R.M.; Gomide, C.A.M.; Silveira, S.R. Sward characte‐ ristics and performance of dairy cows in organic grass–legume pastures shaded by tropical trees. Animal 2014, 8, 1264–1271Leng, R.A. Evaluation of tropical feed resources for ruminant livestock. In Tropical Feeds and Feeding Systems; FAO: Rome, Italy, 1995. Available online: https://www.fao.org/ag/aga/agap/frg/econf95/pdf/evalu.pdf (accessed on 20 June 2020).Mlay, P.S.; Pereka, A.; Phiri, E.; Balthazary, S.; Igusti, J.; Hvelplund, T.; Weisbjerg, M.R.; Madsen, J. Feed value of selected tropical grasses, legumes and concentrates. Vet. Arh. 2006, 76, 53–63Flores, O.I.; Bolivar, D.M.; Botero, J.A.; Ibrahim, M.A. Parámetros nutricionales de algunas arbóreas leguminosas y no legumi‐ nosas con potencial forrajera para la suplementación de ruminantes en el trópico. Livest. Res. Rural. Dev. 1998, 10, 8–15Indah, A.S.; Permana, I.G.; Despal, D. Determination dry matter digestibility of tropical forage using nutrient compisition. IOP Conf. Ser. Earth Environ. Sci. 2020, 484, 012113Phelan, P.; Moloney, A.P.; McGeough, E.J.; Humphreys, J.; Bertilsson, J.; O’Riordan, E.G.; O’Kiely, P. Forage Legumes for Graz‐ ing and Conserving in Ruminant Production Systems. Crit. Rev. Plant Sci. 2014, 34, 281–326Fentahun, S.; Urge, M.; Mekuriaw, Y. Seasonal variation in Nutritional value of major browse species in North Western, Ethio‐ pia. J. Plant Biotechnol. Microbiol. 2020, 3, 1–7.Ravhuhali, K.E.; Msiza, N.H.; Mudau, H.S. Seasonal dynamics on nutritive value, chemical estimates and in vitro dry matter degradability of some woody species found in rangelands of South Africa. Agrofor. Syst. 2022, 96, 23–33.Evitayani, W.L.; Fariani, A.; Ichinohe, T.; Fujihara, T. Study on Nutritive Value of Tropical Forages in North Sumatra, Indonesia. Asian‐Australas. J. Anim. Sci. 2004, 17, 1518–1523.Vélez‐Terranova, M.; Campos‐Gaona, R.; Sánchez‐Guerrero, H. Uso de metabolitos secundarios de las plantas para reducir la metanogénesis ruminal. Trop. Subtrop. Agroecosystems 2014, 17, 489–499.Amiri, F.; Mohamed‐Sharif, A.R. Comparison of nutritive values of grasses and legume species using forage quality index. Songklanakarin J. Sci. Technol. 2012, 34, 577–586Hutton, P.; White, C.L.; Durmic, Z.; Vercoe, P.E. Eremophila glabra is an Australian plant that reduces lactic acid accumulation in an in vitro glucose challenge designed to simulate lactic acidosis in ruminants. Animal 2009, 3, 1254–1263.PublicationORIGINAL2022_nutritional_characteristics_digestibility.pdf2022_nutritional_characteristics_digestibility.pdfapplication/pdf992789https://repository.ucc.edu.co/bitstreams/24e8d756-e8cf-4b12-9a6d-f94c72a8f0b8/download11cff9e7a420c838bdee2abb9d9aee8dMD512022_nutritional_characteristics_digestibility-FormatoLicenciaUso.pdf2022_nutritional_characteristics_digestibility-FormatoLicenciaUso.pdfapplication/pdf263291https://repository.ucc.edu.co/bitstreams/119b0639-dc0d-4744-bf69-abd2078917c7/download4a2432569ce5f757795b3cc2a0524f20MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.ucc.edu.co/bitstreams/2284db93-60d8-4987-b0d3-596916e1b721/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAIL2022_nutritional_characteristics_digestibility.pdf.jpg2022_nutritional_characteristics_digestibility.pdf.jpgGenerated Thumbnailimage/jpeg5676https://repository.ucc.edu.co/bitstreams/9e297a2b-8312-4d04-9c43-8ce742655c06/download4b01ff7649c109400917518ba378c119MD542022_nutritional_characteristics_digestibility-FormatoLicenciaUso.pdf.jpg2022_nutritional_characteristics_digestibility-FormatoLicenciaUso.pdf.jpgGenerated Thumbnailimage/jpeg5455https://repository.ucc.edu.co/bitstreams/d92d98b9-ea13-4f77-a804-6b8f4217cf8c/downloaded9658df990cd9d085ea8bb51dc60cefMD55TEXT2022_nutritional_characteristics_digestibility.pdf.txt2022_nutritional_characteristics_digestibility.pdf.txtExtracted texttext/plain80233https://repository.ucc.edu.co/bitstreams/4d46c47d-0b81-4f2d-9f9a-ea883d62e952/download0e62f4c23c24fd34c987e6ec1ba315d9MD562022_nutritional_characteristics_digestibility-FormatoLicenciaUso.pdf.txt2022_nutritional_characteristics_digestibility-FormatoLicenciaUso.pdf.txtExtracted texttext/plain6088https://repository.ucc.edu.co/bitstreams/5b23e6ac-5f5c-431d-a206-374944c19d2d/download64e5f5ea54527ca0c7c123a9bb9a0630MD5720.500.12494/46681oai:repository.ucc.edu.co:20.500.12494/466812024-08-09 12:15:18.638open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=