Nutritional Characteristics and Digestibility of Woody and Herbaceous Native Plants from Tropical Flooded Savannas Ecosystems
Native plants constitute an enormous source of nutrients for grazing animals, although their use has been limited due to the lack of knowledge about its properties. The aim of this research was to evaluate the nutritional characteristics of native plants from flooded savannas ecosystem. Seven transe...
- Autores:
-
Vélez Terranova, Oscar Mauricio
Salamanca Carreño, Arcesio
Bejarano Sánchez, Andrés Mauricio
González Castro, Daniela Alexandra
Higuera Pedraza, Rubén Darío
Giraldo, Luis Alfonso
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/46681
- Acceso en línea:
- https://doi.org/10.3390/agriculture12101613
https://hdl.handle.net/20.500.12494/46681
- Palabra clave:
- Vegetación nativa
Alternativas nutricionales
Sabanas tropicales inundables
Sustentabilidad ganadera
Native vegetation
Nutritional alternatives
Tropical flooded savannas
Livestock sustainability
- Rights
- openAccess
- License
- Atribución – No comercial – Sin Derivar
id |
COOPER2_451e7aea6a689b6c96b243668aa583bd |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/46681 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Nutritional Characteristics and Digestibility of Woody and Herbaceous Native Plants from Tropical Flooded Savannas Ecosystems |
title |
Nutritional Characteristics and Digestibility of Woody and Herbaceous Native Plants from Tropical Flooded Savannas Ecosystems |
spellingShingle |
Nutritional Characteristics and Digestibility of Woody and Herbaceous Native Plants from Tropical Flooded Savannas Ecosystems Vegetación nativa Alternativas nutricionales Sabanas tropicales inundables Sustentabilidad ganadera Native vegetation Nutritional alternatives Tropical flooded savannas Livestock sustainability |
title_short |
Nutritional Characteristics and Digestibility of Woody and Herbaceous Native Plants from Tropical Flooded Savannas Ecosystems |
title_full |
Nutritional Characteristics and Digestibility of Woody and Herbaceous Native Plants from Tropical Flooded Savannas Ecosystems |
title_fullStr |
Nutritional Characteristics and Digestibility of Woody and Herbaceous Native Plants from Tropical Flooded Savannas Ecosystems |
title_full_unstemmed |
Nutritional Characteristics and Digestibility of Woody and Herbaceous Native Plants from Tropical Flooded Savannas Ecosystems |
title_sort |
Nutritional Characteristics and Digestibility of Woody and Herbaceous Native Plants from Tropical Flooded Savannas Ecosystems |
dc.creator.fl_str_mv |
Vélez Terranova, Oscar Mauricio Salamanca Carreño, Arcesio Bejarano Sánchez, Andrés Mauricio González Castro, Daniela Alexandra Higuera Pedraza, Rubén Darío Giraldo, Luis Alfonso |
dc.contributor.author.none.fl_str_mv |
Vélez Terranova, Oscar Mauricio Salamanca Carreño, Arcesio Bejarano Sánchez, Andrés Mauricio González Castro, Daniela Alexandra Higuera Pedraza, Rubén Darío Giraldo, Luis Alfonso |
dc.subject.spa.fl_str_mv |
Vegetación nativa Alternativas nutricionales Sabanas tropicales inundables Sustentabilidad ganadera |
topic |
Vegetación nativa Alternativas nutricionales Sabanas tropicales inundables Sustentabilidad ganadera Native vegetation Nutritional alternatives Tropical flooded savannas Livestock sustainability |
dc.subject.other.spa.fl_str_mv |
Native vegetation Nutritional alternatives Tropical flooded savannas Livestock sustainability |
description |
Native plants constitute an enormous source of nutrients for grazing animals, although their use has been limited due to the lack of knowledge about its properties. The aim of this research was to evaluate the nutritional characteristics of native plants from flooded savannas ecosystem. Seven transects (290 km) were carried out through the montane forests, gallery forests and open savannah ecosystems. A total of 42 plant species were collected (22 arboreal, 13 shrubs, 5 climbing and 2 herb plants) and their nutritional composition and digestibility were evaluated. Data analysis included univariate and multivariate methods. Nutritional composition and digestibility varied among the groups of arboreal, shrub, climbing and herb species. At an individual level plants such as G. americana, C. cf minor‐grandiflora and M. nobilis, A.Jahnii, P. hispidium, I. carnea, S. reticulate, H. furcellatus, and C. erosa stood out by their protein, ash, and digestibility. At a group level, a mixed of 19 plants presented the highest digestibility, and the lowest fiber fraction constituted a promising forage alternative. Data variability was explained in the 47% by protein, ash, digestibility, and the different fiber fractions variables. Further studies related with the animal acceptability, performance and the presence of secondary metabolites are needed before being fully recommended. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-10-11T16:14:43Z |
dc.date.available.none.fl_str_mv |
2022-10-11T16:14:43Z |
dc.date.issued.none.fl_str_mv |
2022-10-05 |
dc.type.none.fl_str_mv |
Artículo |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
2077-0472 |
dc.identifier.uri.spa.fl_str_mv |
https://doi.org/10.3390/agriculture12101613 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/46681 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Vélez-Terranova, M., Salamanca Carreño, A., Bejarano‐Sánchez, A. M., González‐Castro, D. A., Higuera‐Pedraza, R. D. y Giraldo, L. A. (2022). Nutritional Characteristics and Digestibility of Woody and Herbaceous Native Plants from Tropical Flooded Savannas Ecosystems. [Articulo, Universidad Cooperativa Colombia]. Repositorio Institucional UCC. |
identifier_str_mv |
2077-0472 Vélez-Terranova, M., Salamanca Carreño, A., Bejarano‐Sánchez, A. M., González‐Castro, D. A., Higuera‐Pedraza, R. D. y Giraldo, L. A. (2022). Nutritional Characteristics and Digestibility of Woody and Herbaceous Native Plants from Tropical Flooded Savannas Ecosystems. [Articulo, Universidad Cooperativa Colombia]. Repositorio Institucional UCC. |
url |
https://doi.org/10.3390/agriculture12101613 https://hdl.handle.net/20.500.12494/46681 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Agriculture |
dc.relation.references.spa.fl_str_mv |
Rippstein, G. Agroecología y Biodiversidad de las Sabanas en los Llanos Orientales de Colombia; N° 32; Centro Internacional de Agri‐ cultura Tropical: Cali, Columbia, 2001. Ocampo, A.; Peñuela, L. Manejo y Nutrición en Sabana Inundable como eje de la Producción y Reproducción de la Ganadería de cría.; Fortalecimiento Institucional y de Política para Incrementar la Conservación de la Biodiversidad en Predios Privados en Colombia; Red Colombiana de Reservas Naturales de la Sociedad, Fundación Natura, World Wildlife Fund, The Nature Conservancy, Parques Nacionales Naturales de Colombia: Bogotá – Colombia, 2014. Vélez‐Terranova, O.M. Estrategias tecnológicas para la intensificación de la productividad ganadera en condiciones de sabanas inundables en la Orinoquía colombiana. Trop. Subtrop. Agroecosystems 2019, 22, 257–266. FAO. New Zealand Agricultural Greenhouse Gas Research Centre. In Low Emissions Development of the Beef Cattle Sector in Uru‐ guay—Reducing Enteric Methane for Food Security and Livelihoods; FAO: Roma, Italy, 2017. Latawiec, A.E.; Strassburg BB, N.; Valentim, J.F.; Ramos, F.; Alves‐Pinto, H.N. Intensification of cattle ranching production systems: Socioeconomic and environmental synergies and risks in Brazil. Animal 2014, 8, 1255–1263. Broom, D.M.; Galindo, F.A.; Murgueitio, E. Sustainable, efficient livestock production with high biodiversity and good welfare for animals. Proc. Royal Soc. B 2013, 280, 2025. De Moraes, A.; Carvalho, P.C.D.F.; Anghinoni, I.; Lustosa, S.B.C.; Costa, S.E.V.G.D.A.; Kunrath, T.R. Integrated crop–livestock systems in the Brazilian subtropics. Eur. J. Agron. 2014, 57, 4–9. Reiné, R.; Ascaso, J.; Barrantes, O. Nutritional quality of plant species in pyrenean hay Meadows of high diversity. Agronomy 2020, 10, 883. Ramos, L.; Apráez, J.; Cortes, K.; Apráez, J. Nutritional, antinutritional and phenological characterization of promising forage species for animal feeding in a cold tropical zone. Rev. Cienc. Agríc. 2021, 38, 86–96. Arauca. Clima: Arauca, Colombia. Aeropuerto Sntiago Pérez Quiróz. Available online: http://es.allmetsat.com/clima/vene‐ zuela.php?code=80099 (accessed on 20 June 2020). Holdridge, L.R. Ecología Basada en Zonas de Vida; IICA: San Jose, Costa Rica, 1987; p. 216. Schultze‐kraft, R. Colección de Germoplasma en el Campo; Manual para la Colección, Preservación y Caracterización de Recursos Forra‐ jeros Tropicales; Centro Internacional de Agricultura Tropical: Cali, Colombia, 1979. AOAC. Official Methods of Analysis of AOAC International. Agricultural Chemicals. Contaminants and Drugs; Horwitz, W., Ed.; AOAC: Rockville, Maryland, 2000; Volume 1. Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber. Neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. Linn, J.G.; Martin, N.P. Forage Quality Tests and Interpretation—AG‐F0‐2637. Minnesota Extension Service; University of Minnesota Agriculture: St Paul, MN, USA, 1989; pp. 1–5. InfoStat. InfoStat, Versión 2020. Manual del Usuario; Universidad Nacional de Córdoba: Córdoba, Argentina, 2020. Al‐Arif, M.A.; Suwanti, L.T.; Estoepangestie, A.S.; Lamid, M. The Nutrients Contents, Dry Matter Digestibility, Organic Matter Di‐ gestibility, Total Digestible Nutrient, and NH3 Rumen Production of Three Kinds of Cattle Feeding Models. The Veterinary Medicine International Conference, KnE Life Sciences: Dubai, UAE, 2017; pp. 338–343. Fasae, O.A.; Sowande, O.S.; Popoola, A.A. Evaluation of selected leaves of trees and foliage of shrubs as fodder in ruminant production. J. Agric. Sci. Environ. 2010, 10, 36–44. Zhou, H.; Li, M.; Zi, X.; Xu, T.; Hou, G. Nutritive Value of Several Tropical Legume Shrubs in Hai‐nan Province of China. J. Anim. Vet. Adv. 2011, 10, 1640–1648. Apráez, E.; Gálvez, A.L.; Navia, J.F. Evaluación nutricional de arbóreas y arbustivas de bosque muy seco tropical (bms‐T) en producción bovina. Rev. Cienc. Agríc. 2017, 34, 98–107. Holden, J.M.; Harnly, J.M.; Beecher, C.R. Composición de los Alimentos. Conocimientos Actuales Sobre Nutrición; ILSI: Washington, DC, USA, 2003; pp. 645–657 Bakshi, M.P.S.; Singh, M.P.; Wadhwa, M.; Singh, B. Nutritional evaluation of forest tree leaves as livestock feed in sub moun‐ tainous region of India. Indian J. Anim. Sci. 2011, 81, 276–281. Domínguez‐Gómez, T.G.; González‐Rodríguez, H.; Ramírez‐Lozano, R.G.; Cantú‐Silva, I.; Gómez‐Meza, M.V.; Cantú‐Ayala, C.M.; Alvarado, M.D.S. Nutritional Profile of Four Shrub Species, Northeastern Mexico. Int. J. Bio‐Res. Stress Manag. 2013, 4, 001–008. Gulizia, J.P.; Downs, K.M. A Review of Kudzu’s Use and Characteristics as Potential Feedstock. Agriculture 2019, 9, 1–15 Salah, N.; Sauvant, D.; Archimède, H. Nutritional requirements of sheep, goats and cattle in warm climates: A meta‐analysis. Animal 2014, 8, 1439–1447. Khan, S.; Anwar, K.; Kalim, K.; Saeed, A.; Shah, S.Z.; Ahmad, Z.; Ikram, H.M.; Khan, S.; Safirullah. Nutritional Evaluation of Some Top Fodder Tree Leaves and Shrubs of District Dir (Lower), Pakistan as a quality livestock feed. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 941–947. Debela, M.; Animut, G.; Eshetu, M. Evaluation of the Nutritional Composition of Selected Indigenous Fodder Trees and Shrubs in Daro Labu District, Eastern Ethiopia. J. Biol. Agric. Healthcare 2017, 7, 58–61 Mudau, H.S.; Mokoboki, H.K.; Ravhuhali, K.E.; Mkhize, Z. Nutrients Profile of 52 Browse Species Found in Semi‐Arid Areas of South Africa for Livestock Production: Effect of Harvesting Site. Plants 2021, 10, 1–16. Lee, M.A. A global comparison of the nutritive values of forage plants grown in contrasting environments. J. Plant Res. 2018, 131, 641–654. Peñuela, L.; Fernández, A.P.; Castro, F.; Ocampo, A. Uso y Manejo de Forrajes Nativos en la Sabana Inundable de la Orinoquia; Convenio de Cooperación Interinstitucional; The Nature Conservancy, Fundación Horizonte Verde, Fundación Biodiversidad de España, Corporación Autónoma Regional de la Orinoquia. Universidad de los Llanos: Villavicencio, Colombia, 2011. Gupta, A.R.; Bandyopadhyay, S.; Sultana, F.; Swarup, D. Heavy metal poisoning and its impact on livestock health and produc‐ tion system. Indian J. Anim. Health 2021, 60, 1–23. Pereira, G.F.; Emerenciano Neto, J.V.; Difante, G.D.S.; Assis, L.C.D.S.L.C.; Lima, P.D.O.; Santos, R.D.S. Production and quality of tropical grasses at different regrowth intervals in the Brazilian semiarid. Acta Sci. 2021, 43, e52842. Van Soest, P.J. Development of comprehensive system of feed analysis and its application to forages. J. Anim. Sci. 1967, 26, 119– 128. Harper, K.J.; McNeill, D.M. The Role iNDF in the Regulation of Feed Intake and the Importance of Its Assessment in Subtropical Ruminant Systems (the Role of iNDF in the Regulation of Forage Intake). Agriculture 2015, 5, 778–790. Cortiana, T.A.A.; Regiani, S.M.; Cardoso, J.G.; Carvalho, F.J.L.; Henz, É.L.; Pedro, J.P. Production and chemical composition of grasses and legumes cultivated in pure form, mixed or in consortium. Acta Sci. Anim. Sci. 2017, 39, 235–241. Melo, C.D.; Maduro, D.C.S.A.M.; Wallon, S.; Borba, A.E.S.; Madruga, J.; Borges, P.A.V.; Ferreira, M.T.; Elias, R.B. Influence of climate variability and soil fertility on the forage quality and productivity in Azorean pastures. Agriculture 2022, 12, 358. Patra, A.; Saxena, J. A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry 2010, 71, 1198–1222. Paciullo, D.S.C.; Pires, M.F.A.; Aroeira, L.J.M.; Morenz, M.J.F.; Maurício, R.M.; Gomide, C.A.M.; Silveira, S.R. Sward characte‐ ristics and performance of dairy cows in organic grass–legume pastures shaded by tropical trees. Animal 2014, 8, 1264–1271 Leng, R.A. Evaluation of tropical feed resources for ruminant livestock. In Tropical Feeds and Feeding Systems; FAO: Rome, Italy, 1995. Available online: https://www.fao.org/ag/aga/agap/frg/econf95/pdf/evalu.pdf (accessed on 20 June 2020). Mlay, P.S.; Pereka, A.; Phiri, E.; Balthazary, S.; Igusti, J.; Hvelplund, T.; Weisbjerg, M.R.; Madsen, J. Feed value of selected tropical grasses, legumes and concentrates. Vet. Arh. 2006, 76, 53–63 Flores, O.I.; Bolivar, D.M.; Botero, J.A.; Ibrahim, M.A. Parámetros nutricionales de algunas arbóreas leguminosas y no legumi‐ nosas con potencial forrajera para la suplementación de ruminantes en el trópico. Livest. Res. Rural. Dev. 1998, 10, 8–15 Indah, A.S.; Permana, I.G.; Despal, D. Determination dry matter digestibility of tropical forage using nutrient compisition. IOP Conf. Ser. Earth Environ. Sci. 2020, 484, 012113 Phelan, P.; Moloney, A.P.; McGeough, E.J.; Humphreys, J.; Bertilsson, J.; O’Riordan, E.G.; O’Kiely, P. Forage Legumes for Graz‐ ing and Conserving in Ruminant Production Systems. Crit. Rev. Plant Sci. 2014, 34, 281–326 Fentahun, S.; Urge, M.; Mekuriaw, Y. Seasonal variation in Nutritional value of major browse species in North Western, Ethio‐ pia. J. Plant Biotechnol. Microbiol. 2020, 3, 1–7. Ravhuhali, K.E.; Msiza, N.H.; Mudau, H.S. Seasonal dynamics on nutritive value, chemical estimates and in vitro dry matter degradability of some woody species found in rangelands of South Africa. Agrofor. Syst. 2022, 96, 23–33. Evitayani, W.L.; Fariani, A.; Ichinohe, T.; Fujihara, T. Study on Nutritive Value of Tropical Forages in North Sumatra, Indonesia. Asian‐Australas. J. Anim. Sci. 2004, 17, 1518–1523. Vélez‐Terranova, M.; Campos‐Gaona, R.; Sánchez‐Guerrero, H. Uso de metabolitos secundarios de las plantas para reducir la metanogénesis ruminal. Trop. Subtrop. Agroecosystems 2014, 17, 489–499. Amiri, F.; Mohamed‐Sharif, A.R. Comparison of nutritive values of grasses and legume species using forage quality index. Songklanakarin J. Sci. Technol. 2012, 34, 577–586 Hutton, P.; White, C.L.; Durmic, Z.; Vercoe, P.E. Eremophila glabra is an Australian plant that reduces lactic acid accumulation in an in vitro glucose challenge designed to simulate lactic acidosis in ruminants. Animal 2009, 3, 1254–1263. |
dc.rights.license.none.fl_str_mv |
Atribución – No comercial – Sin Derivar |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución – No comercial – Sin Derivar http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
1-18 p. |
dc.coverage.temporal.spa.fl_str_mv |
12(10) |
dc.publisher.spa.fl_str_mv |
Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina Veterinaría y Zootecnia, Villavicencio |
dc.publisher.program.spa.fl_str_mv |
Medicina veterinaria y zootecnia |
dc.publisher.place.spa.fl_str_mv |
Villavicencio |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/24e8d756-e8cf-4b12-9a6d-f94c72a8f0b8/download https://repository.ucc.edu.co/bitstreams/119b0639-dc0d-4744-bf69-abd2078917c7/download https://repository.ucc.edu.co/bitstreams/2284db93-60d8-4987-b0d3-596916e1b721/download https://repository.ucc.edu.co/bitstreams/9e297a2b-8312-4d04-9c43-8ce742655c06/download https://repository.ucc.edu.co/bitstreams/d92d98b9-ea13-4f77-a804-6b8f4217cf8c/download https://repository.ucc.edu.co/bitstreams/4d46c47d-0b81-4f2d-9f9a-ea883d62e952/download https://repository.ucc.edu.co/bitstreams/5b23e6ac-5f5c-431d-a206-374944c19d2d/download |
bitstream.checksum.fl_str_mv |
11cff9e7a420c838bdee2abb9d9aee8d 4a2432569ce5f757795b3cc2a0524f20 8a4605be74aa9ea9d79846c1fba20a33 4b01ff7649c109400917518ba378c119 ed9658df990cd9d085ea8bb51dc60cef 0e62f4c23c24fd34c987e6ec1ba315d9 64e5f5ea54527ca0c7c123a9bb9a0630 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814246623742525440 |
spelling |
Vélez Terranova, Oscar MauricioSalamanca Carreño, ArcesioBejarano Sánchez, Andrés MauricioGonzález Castro, Daniela AlexandraHiguera Pedraza, Rubén DaríoGiraldo, Luis Alfonso12(10)2022-10-11T16:14:43Z2022-10-11T16:14:43Z2022-10-052077-0472https://doi.org/10.3390/agriculture12101613https://hdl.handle.net/20.500.12494/46681Vélez-Terranova, M., Salamanca Carreño, A., Bejarano‐Sánchez, A. M., González‐Castro, D. A., Higuera‐Pedraza, R. D. y Giraldo, L. A. (2022). Nutritional Characteristics and Digestibility of Woody and Herbaceous Native Plants from Tropical Flooded Savannas Ecosystems. [Articulo, Universidad Cooperativa Colombia]. Repositorio Institucional UCC.Native plants constitute an enormous source of nutrients for grazing animals, although their use has been limited due to the lack of knowledge about its properties. The aim of this research was to evaluate the nutritional characteristics of native plants from flooded savannas ecosystem. Seven transects (290 km) were carried out through the montane forests, gallery forests and open savannah ecosystems. A total of 42 plant species were collected (22 arboreal, 13 shrubs, 5 climbing and 2 herb plants) and their nutritional composition and digestibility were evaluated. Data analysis included univariate and multivariate methods. Nutritional composition and digestibility varied among the groups of arboreal, shrub, climbing and herb species. At an individual level plants such as G. americana, C. cf minor‐grandiflora and M. nobilis, A.Jahnii, P. hispidium, I. carnea, S. reticulate, H. furcellatus, and C. erosa stood out by their protein, ash, and digestibility. At a group level, a mixed of 19 plants presented the highest digestibility, and the lowest fiber fraction constituted a promising forage alternative. Data variability was explained in the 47% by protein, ash, digestibility, and the different fiber fractions variables. Further studies related with the animal acceptability, performance and the presence of secondary metabolites are needed before being fully recommended.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001022903https://orcid.org/0000-0002-5416-5906https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000009387ovelez@unal.edu.coasaca_65@yahoo.esarcesio.salamanca@campusucc.edu.cohttps://scholar.google.com/citations?hl=es&user=EqGLQZUAAAAJ1-18 p.Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina Veterinaría y Zootecnia, VillavicencioMedicina veterinaria y zootecniaVillavicencioVegetación nativaAlternativas nutricionalesSabanas tropicales inundablesSustentabilidad ganaderaNative vegetationNutritional alternativesTropical flooded savannasLivestock sustainabilityNutritional Characteristics and Digestibility of Woody and Herbaceous Native Plants from Tropical Flooded Savannas EcosystemsArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribución – No comercial – Sin Derivarinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2AgricultureRippstein, G. Agroecología y Biodiversidad de las Sabanas en los Llanos Orientales de Colombia; N° 32; Centro Internacional de Agri‐ cultura Tropical: Cali, Columbia, 2001.Ocampo, A.; Peñuela, L. Manejo y Nutrición en Sabana Inundable como eje de la Producción y Reproducción de la Ganadería de cría.; Fortalecimiento Institucional y de Política para Incrementar la Conservación de la Biodiversidad en Predios Privados en Colombia; Red Colombiana de Reservas Naturales de la Sociedad, Fundación Natura, World Wildlife Fund, The Nature Conservancy, Parques Nacionales Naturales de Colombia: Bogotá – Colombia, 2014.Vélez‐Terranova, O.M. Estrategias tecnológicas para la intensificación de la productividad ganadera en condiciones de sabanas inundables en la Orinoquía colombiana. Trop. Subtrop. Agroecosystems 2019, 22, 257–266.FAO. New Zealand Agricultural Greenhouse Gas Research Centre. In Low Emissions Development of the Beef Cattle Sector in Uru‐ guay—Reducing Enteric Methane for Food Security and Livelihoods; FAO: Roma, Italy, 2017.Latawiec, A.E.; Strassburg BB, N.; Valentim, J.F.; Ramos, F.; Alves‐Pinto, H.N. Intensification of cattle ranching production systems: Socioeconomic and environmental synergies and risks in Brazil. Animal 2014, 8, 1255–1263.Broom, D.M.; Galindo, F.A.; Murgueitio, E. Sustainable, efficient livestock production with high biodiversity and good welfare for animals. Proc. Royal Soc. B 2013, 280, 2025.De Moraes, A.; Carvalho, P.C.D.F.; Anghinoni, I.; Lustosa, S.B.C.; Costa, S.E.V.G.D.A.; Kunrath, T.R. Integrated crop–livestock systems in the Brazilian subtropics. Eur. J. Agron. 2014, 57, 4–9.Reiné, R.; Ascaso, J.; Barrantes, O. Nutritional quality of plant species in pyrenean hay Meadows of high diversity. Agronomy 2020, 10, 883.Ramos, L.; Apráez, J.; Cortes, K.; Apráez, J. Nutritional, antinutritional and phenological characterization of promising forage species for animal feeding in a cold tropical zone. Rev. Cienc. Agríc. 2021, 38, 86–96.Arauca. Clima: Arauca, Colombia. Aeropuerto Sntiago Pérez Quiróz. Available online: http://es.allmetsat.com/clima/vene‐ zuela.php?code=80099 (accessed on 20 June 2020).Holdridge, L.R. Ecología Basada en Zonas de Vida; IICA: San Jose, Costa Rica, 1987; p. 216.Schultze‐kraft, R. Colección de Germoplasma en el Campo; Manual para la Colección, Preservación y Caracterización de Recursos Forra‐ jeros Tropicales; Centro Internacional de Agricultura Tropical: Cali, Colombia, 1979.AOAC. Official Methods of Analysis of AOAC International. Agricultural Chemicals. Contaminants and Drugs; Horwitz, W., Ed.; AOAC: Rockville, Maryland, 2000; Volume 1.Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber. Neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597.Linn, J.G.; Martin, N.P. Forage Quality Tests and Interpretation—AG‐F0‐2637. Minnesota Extension Service; University of Minnesota Agriculture: St Paul, MN, USA, 1989; pp. 1–5.InfoStat. InfoStat, Versión 2020. Manual del Usuario; Universidad Nacional de Córdoba: Córdoba, Argentina, 2020.Al‐Arif, M.A.; Suwanti, L.T.; Estoepangestie, A.S.; Lamid, M. The Nutrients Contents, Dry Matter Digestibility, Organic Matter Di‐ gestibility, Total Digestible Nutrient, and NH3 Rumen Production of Three Kinds of Cattle Feeding Models. The Veterinary Medicine International Conference, KnE Life Sciences: Dubai, UAE, 2017; pp. 338–343.Fasae, O.A.; Sowande, O.S.; Popoola, A.A. Evaluation of selected leaves of trees and foliage of shrubs as fodder in ruminant production. J. Agric. Sci. Environ. 2010, 10, 36–44.Zhou, H.; Li, M.; Zi, X.; Xu, T.; Hou, G. Nutritive Value of Several Tropical Legume Shrubs in Hai‐nan Province of China. J. Anim. Vet. Adv. 2011, 10, 1640–1648.Apráez, E.; Gálvez, A.L.; Navia, J.F. Evaluación nutricional de arbóreas y arbustivas de bosque muy seco tropical (bms‐T) en producción bovina. Rev. Cienc. Agríc. 2017, 34, 98–107.Holden, J.M.; Harnly, J.M.; Beecher, C.R. Composición de los Alimentos. Conocimientos Actuales Sobre Nutrición; ILSI: Washington, DC, USA, 2003; pp. 645–657Bakshi, M.P.S.; Singh, M.P.; Wadhwa, M.; Singh, B. Nutritional evaluation of forest tree leaves as livestock feed in sub moun‐ tainous region of India. Indian J. Anim. Sci. 2011, 81, 276–281.Domínguez‐Gómez, T.G.; González‐Rodríguez, H.; Ramírez‐Lozano, R.G.; Cantú‐Silva, I.; Gómez‐Meza, M.V.; Cantú‐Ayala, C.M.; Alvarado, M.D.S. Nutritional Profile of Four Shrub Species, Northeastern Mexico. Int. J. Bio‐Res. Stress Manag. 2013, 4, 001–008.Gulizia, J.P.; Downs, K.M. A Review of Kudzu’s Use and Characteristics as Potential Feedstock. Agriculture 2019, 9, 1–15Salah, N.; Sauvant, D.; Archimède, H. Nutritional requirements of sheep, goats and cattle in warm climates: A meta‐analysis. Animal 2014, 8, 1439–1447.Khan, S.; Anwar, K.; Kalim, K.; Saeed, A.; Shah, S.Z.; Ahmad, Z.; Ikram, H.M.; Khan, S.; Safirullah. Nutritional Evaluation of Some Top Fodder Tree Leaves and Shrubs of District Dir (Lower), Pakistan as a quality livestock feed. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 941–947.Debela, M.; Animut, G.; Eshetu, M. Evaluation of the Nutritional Composition of Selected Indigenous Fodder Trees and Shrubs in Daro Labu District, Eastern Ethiopia. J. Biol. Agric. Healthcare 2017, 7, 58–61Mudau, H.S.; Mokoboki, H.K.; Ravhuhali, K.E.; Mkhize, Z. Nutrients Profile of 52 Browse Species Found in Semi‐Arid Areas of South Africa for Livestock Production: Effect of Harvesting Site. Plants 2021, 10, 1–16.Lee, M.A. A global comparison of the nutritive values of forage plants grown in contrasting environments. J. Plant Res. 2018, 131, 641–654.Peñuela, L.; Fernández, A.P.; Castro, F.; Ocampo, A. Uso y Manejo de Forrajes Nativos en la Sabana Inundable de la Orinoquia; Convenio de Cooperación Interinstitucional; The Nature Conservancy, Fundación Horizonte Verde, Fundación Biodiversidad de España, Corporación Autónoma Regional de la Orinoquia. Universidad de los Llanos: Villavicencio, Colombia, 2011.Gupta, A.R.; Bandyopadhyay, S.; Sultana, F.; Swarup, D. Heavy metal poisoning and its impact on livestock health and produc‐ tion system. Indian J. Anim. Health 2021, 60, 1–23.Pereira, G.F.; Emerenciano Neto, J.V.; Difante, G.D.S.; Assis, L.C.D.S.L.C.; Lima, P.D.O.; Santos, R.D.S. Production and quality of tropical grasses at different regrowth intervals in the Brazilian semiarid. Acta Sci. 2021, 43, e52842.Van Soest, P.J. Development of comprehensive system of feed analysis and its application to forages. J. Anim. Sci. 1967, 26, 119– 128.Harper, K.J.; McNeill, D.M. The Role iNDF in the Regulation of Feed Intake and the Importance of Its Assessment in Subtropical Ruminant Systems (the Role of iNDF in the Regulation of Forage Intake). Agriculture 2015, 5, 778–790.Cortiana, T.A.A.; Regiani, S.M.; Cardoso, J.G.; Carvalho, F.J.L.; Henz, É.L.; Pedro, J.P. Production and chemical composition of grasses and legumes cultivated in pure form, mixed or in consortium. Acta Sci. Anim. Sci. 2017, 39, 235–241.Melo, C.D.; Maduro, D.C.S.A.M.; Wallon, S.; Borba, A.E.S.; Madruga, J.; Borges, P.A.V.; Ferreira, M.T.; Elias, R.B. Influence of climate variability and soil fertility on the forage quality and productivity in Azorean pastures. Agriculture 2022, 12, 358.Patra, A.; Saxena, J. A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry 2010, 71, 1198–1222.Paciullo, D.S.C.; Pires, M.F.A.; Aroeira, L.J.M.; Morenz, M.J.F.; Maurício, R.M.; Gomide, C.A.M.; Silveira, S.R. Sward characte‐ ristics and performance of dairy cows in organic grass–legume pastures shaded by tropical trees. Animal 2014, 8, 1264–1271Leng, R.A. Evaluation of tropical feed resources for ruminant livestock. In Tropical Feeds and Feeding Systems; FAO: Rome, Italy, 1995. Available online: https://www.fao.org/ag/aga/agap/frg/econf95/pdf/evalu.pdf (accessed on 20 June 2020).Mlay, P.S.; Pereka, A.; Phiri, E.; Balthazary, S.; Igusti, J.; Hvelplund, T.; Weisbjerg, M.R.; Madsen, J. Feed value of selected tropical grasses, legumes and concentrates. Vet. Arh. 2006, 76, 53–63Flores, O.I.; Bolivar, D.M.; Botero, J.A.; Ibrahim, M.A. Parámetros nutricionales de algunas arbóreas leguminosas y no legumi‐ nosas con potencial forrajera para la suplementación de ruminantes en el trópico. Livest. Res. Rural. Dev. 1998, 10, 8–15Indah, A.S.; Permana, I.G.; Despal, D. Determination dry matter digestibility of tropical forage using nutrient compisition. IOP Conf. Ser. Earth Environ. Sci. 2020, 484, 012113Phelan, P.; Moloney, A.P.; McGeough, E.J.; Humphreys, J.; Bertilsson, J.; O’Riordan, E.G.; O’Kiely, P. Forage Legumes for Graz‐ ing and Conserving in Ruminant Production Systems. Crit. Rev. Plant Sci. 2014, 34, 281–326Fentahun, S.; Urge, M.; Mekuriaw, Y. Seasonal variation in Nutritional value of major browse species in North Western, Ethio‐ pia. J. Plant Biotechnol. Microbiol. 2020, 3, 1–7.Ravhuhali, K.E.; Msiza, N.H.; Mudau, H.S. Seasonal dynamics on nutritive value, chemical estimates and in vitro dry matter degradability of some woody species found in rangelands of South Africa. Agrofor. Syst. 2022, 96, 23–33.Evitayani, W.L.; Fariani, A.; Ichinohe, T.; Fujihara, T. Study on Nutritive Value of Tropical Forages in North Sumatra, Indonesia. Asian‐Australas. J. Anim. Sci. 2004, 17, 1518–1523.Vélez‐Terranova, M.; Campos‐Gaona, R.; Sánchez‐Guerrero, H. Uso de metabolitos secundarios de las plantas para reducir la metanogénesis ruminal. Trop. Subtrop. Agroecosystems 2014, 17, 489–499.Amiri, F.; Mohamed‐Sharif, A.R. Comparison of nutritive values of grasses and legume species using forage quality index. Songklanakarin J. Sci. Technol. 2012, 34, 577–586Hutton, P.; White, C.L.; Durmic, Z.; Vercoe, P.E. Eremophila glabra is an Australian plant that reduces lactic acid accumulation in an in vitro glucose challenge designed to simulate lactic acidosis in ruminants. Animal 2009, 3, 1254–1263.PublicationORIGINAL2022_nutritional_characteristics_digestibility.pdf2022_nutritional_characteristics_digestibility.pdfapplication/pdf992789https://repository.ucc.edu.co/bitstreams/24e8d756-e8cf-4b12-9a6d-f94c72a8f0b8/download11cff9e7a420c838bdee2abb9d9aee8dMD512022_nutritional_characteristics_digestibility-FormatoLicenciaUso.pdf2022_nutritional_characteristics_digestibility-FormatoLicenciaUso.pdfapplication/pdf263291https://repository.ucc.edu.co/bitstreams/119b0639-dc0d-4744-bf69-abd2078917c7/download4a2432569ce5f757795b3cc2a0524f20MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.ucc.edu.co/bitstreams/2284db93-60d8-4987-b0d3-596916e1b721/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAIL2022_nutritional_characteristics_digestibility.pdf.jpg2022_nutritional_characteristics_digestibility.pdf.jpgGenerated Thumbnailimage/jpeg5676https://repository.ucc.edu.co/bitstreams/9e297a2b-8312-4d04-9c43-8ce742655c06/download4b01ff7649c109400917518ba378c119MD542022_nutritional_characteristics_digestibility-FormatoLicenciaUso.pdf.jpg2022_nutritional_characteristics_digestibility-FormatoLicenciaUso.pdf.jpgGenerated Thumbnailimage/jpeg5455https://repository.ucc.edu.co/bitstreams/d92d98b9-ea13-4f77-a804-6b8f4217cf8c/downloaded9658df990cd9d085ea8bb51dc60cefMD55TEXT2022_nutritional_characteristics_digestibility.pdf.txt2022_nutritional_characteristics_digestibility.pdf.txtExtracted texttext/plain80233https://repository.ucc.edu.co/bitstreams/4d46c47d-0b81-4f2d-9f9a-ea883d62e952/download0e62f4c23c24fd34c987e6ec1ba315d9MD562022_nutritional_characteristics_digestibility-FormatoLicenciaUso.pdf.txt2022_nutritional_characteristics_digestibility-FormatoLicenciaUso.pdf.txtExtracted texttext/plain6088https://repository.ucc.edu.co/bitstreams/5b23e6ac-5f5c-431d-a206-374944c19d2d/download64e5f5ea54527ca0c7c123a9bb9a0630MD5720.500.12494/46681oai:repository.ucc.edu.co:20.500.12494/466812024-08-09 12:15:18.638open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |