Covid-19 y animales bajo el enfoque una sola salud
Los coronavirus son virus RNA que afectan a personas y animales. Están compuestos por cuatro proteínas principales, la Spike (S) facilita la unión de los virus, la glicoproteína de envoltura (E) genera la producción y maduración del virus, la glicoproteína de membrana (M) determina la estructura y f...
- Autores:
-
Forero Vargas, Natalia
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2021
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/32687
- Acceso en línea:
- https://hdl.handle.net/20.500.12494/32687
- Palabra clave:
- Proteína Spike
Reservorio coronavirus
Hospedador coronavirus
Pandemia
TG 2021 MVZ 32687
Protein Spike
Coronavirus reservoir
Coronavirus host
Pandemic
- Rights
- openAccess
- License
- Atribución
id |
COOPER2_4454ec3346ea4f14213d0e347787893c |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/32687 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Covid-19 y animales bajo el enfoque una sola salud |
title |
Covid-19 y animales bajo el enfoque una sola salud |
spellingShingle |
Covid-19 y animales bajo el enfoque una sola salud Proteína Spike Reservorio coronavirus Hospedador coronavirus Pandemia TG 2021 MVZ 32687 Protein Spike Coronavirus reservoir Coronavirus host Pandemic |
title_short |
Covid-19 y animales bajo el enfoque una sola salud |
title_full |
Covid-19 y animales bajo el enfoque una sola salud |
title_fullStr |
Covid-19 y animales bajo el enfoque una sola salud |
title_full_unstemmed |
Covid-19 y animales bajo el enfoque una sola salud |
title_sort |
Covid-19 y animales bajo el enfoque una sola salud |
dc.creator.fl_str_mv |
Forero Vargas, Natalia |
dc.contributor.advisor.none.fl_str_mv |
Sánchez Bonilla, María del Pilar |
dc.contributor.author.none.fl_str_mv |
Forero Vargas, Natalia |
dc.subject.spa.fl_str_mv |
Proteína Spike Reservorio coronavirus Hospedador coronavirus Pandemia |
topic |
Proteína Spike Reservorio coronavirus Hospedador coronavirus Pandemia TG 2021 MVZ 32687 Protein Spike Coronavirus reservoir Coronavirus host Pandemic |
dc.subject.classification.spa.fl_str_mv |
TG 2021 MVZ 32687 |
dc.subject.other.spa.fl_str_mv |
Protein Spike Coronavirus reservoir Coronavirus host Pandemic |
description |
Los coronavirus son virus RNA que afectan a personas y animales. Están compuestos por cuatro proteínas principales, la Spike (S) facilita la unión de los virus, la glicoproteína de envoltura (E) genera la producción y maduración del virus, la glicoproteína de membrana (M) determina la estructura y forma del virus, y la proteína de la nucleocápside (N) contiene el material genético del virus. En la pandemia del Covid-19, el coronavirus SARS-CoV-2, se han descrito como huéspedes naturales los murciélagos por su estrecha relación con los coronavirus. Otros animales involucrados como reservorios naturales son: el pangolín y las serpientes por su sesgo genético de codones y en la mutación proteína Spike. Como hospedadores intermediarios encontramos diversas especies que interactúan como aves, reptiles y anfibios. En la transición de animales se reportaron casos en felinos, hurones y poca incidencia en perros. La mayoría de los animales que han adquirido infecciones humanas y pandémicas por coronavirus (SARS-CoV, MERS y SARS-CoV-2), presentaron manifestaciones clínicas de nivel respiratorio siendo leve, moderado o grave. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-01-20T21:42:27Z |
dc.date.available.none.fl_str_mv |
2021-01-20T21:42:27Z 2021-03-13 |
dc.date.issued.none.fl_str_mv |
2021-01-15 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/32687 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Forero Vargas, N, (2021). Covid-19 y animales bajo el enfoque una sola salud. [tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional UCC. http://hdl.handle.net/20.500.12494/32687 |
url |
https://hdl.handle.net/20.500.12494/32687 |
identifier_str_mv |
Forero Vargas, N, (2021). Covid-19 y animales bajo el enfoque una sola salud. [tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional UCC. http://hdl.handle.net/20.500.12494/32687 |
dc.relation.references.spa.fl_str_mv |
Astuti, I., & Ysrafil. (2020). Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(4), 407–412. https://doi.org/10.1016/j.dsx.2020.04.020 Chan, J. F., Zhang, A. J., Yuan, S., Poon, V. K.-M., Chan, C. C.-S., Lee, A. C.-Y., Chan, W.-M., Fan, Z., Tsoi, H.-W., Wen, L., Liang, R., Cao, J., Chen, Y., Tang, K., Luo, C., Cai, J.-P., Kok, K.-H., Chu, H., Chan, K.-H., … Yuen, K.-Y. (2020). Simulation of the Clinical and Pathological Manifestations of Coronavirus Disease 2019 (COVID-19) in a Golden Syrian Hamster Model: Implications for Disease Pathogenesis and Transmissibility. Clinical Infectious Diseases, 2019, 1–50. https://doi.org/10.1093/cid/ciaa325 Cohen, J. (2020). From mice to monkeys, animals studied for coronavirus answers. Science, 368(6488), 221–222. https://doi.org/10.1126/science.368.6488.221 de Wit, E., Rasmussen, A. L., Falzarano, D., Bushmaker, T., Feldmann, F., Brining, D. L., Fischer, E. R., Martellaro, C., Okumura, A., Chang, J., Scott, D., Benecke, A. G., Katze, M. G., Feldmann, H., & Munster, V. J. (2013). Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques. Proceedings of the National Academy of Sciences, 110(41), 16598–16603. https://doi.org/10.1073/pnas.1310744110 de Wit, Emmie, Feldmann, F., Okumura, A., Horne, E., Haddock, E., Saturday, G., Scott, D., Erlandson, K. J., Stahl, N., Lipsich, L., Kyratsous, C. A., & Feldmann, H. (2018). Prophylactic and therapeutic efficacy of mAb treatment against MERS-CoV in common marmosets. Antiviral Research, 156, 64–71. https://doi.org/10.1016/j.antiviral.2018.06.006 DENIS, M., VANDEWEERD, V., VERBEEKE, R., LAUDISOIT, A., WYNANTS, L., & VLIET, D. VAN DER. (2020). COVIPENDIUM: information available to support the development of medical countermeasures and interventions against COVID-19. https://doi.org/10.5281/ZENODO.3782325 Enkirch, T., & von Messling, V. (2015). Ferret models of viral pathogenesis. Virology, 479–480, 259–270. https://doi.org/10.1016/j.virol.2015.03.017 Giri, R., Bhardwaj, T., Shegane, M., Gehi, B., Kumar, P., Gadhave, K., Oldfield, C., & Uversky, V. (2020). When Darkness Becomes a Ray of Light in the Dark Times: Understanding the COVID-19 via the Comparative Analysis of the Dark Proteomes of SARS-CoV-2, Human SARS and Bat SARS-Like Coronaviruses. 1–63. https://doi.org/10.1101/2020.03.13.990598 Gralinski, L. E., & Menachery, V. D. (2020). Return of the Coronavirus: 2019-nCoV. Viruses, 12(2), 135. https://doi.org/10.3390/v12020135 Guo, Y.-R., Cao, Q.-D., Hong, Z.-S., Tan, Y.-Y., Chen, S.-D., Jin, H.-J., Tan, K.-S., Wang, D.-Y., & Yan, Y. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Military Medical Research, 7(1), 11. https://doi.org/10.1186/s40779-020-00240-0 Guo, Y., Yan, F., Feng, T., Zhang, L., Qin, Q., Han, W., Bai, Z., Zhou, H., & Suo, Y. (2020). Switchable Multi-Wavelength Thulium-Doped Fiber Laser Using Four-Mode Fiber Based Sagnac Loop Filter. IEEE Photonics Journal, 12(2), 1–10. https://doi.org/10.1109/JPHOT.2020.2973671 Halfmann, P. J., Hatta, M., Chiba, S., Maemura, T., Fan, S., Takeda, M., Kinoshita, N., Hattori, S., Sakai-Tagawa, Y., Iwatsuki-Horimoto, K., Imai, M., & Kawaoka, Y. (2020). Transmission of SARS-CoV-2 in Domestic Cats. New England Journal of Medicine, 383(6), 592–594. https://doi.org/10.1056/NEJMc2013400 Hu, B., Zeng, L.-P., Yang, X.-L., Ge, X.-Y., Zhang, W., Li, B., Xie, J.-Z., Shen, X.-R., Zhang, Y.-Z., Wang, N., Luo, D.-S., Zheng, X.-S., Wang, M.-N., Daszak, P., Wang, L.-F., Cui, J., & Shi, Z.-L. (2017). Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLOS Pathogens, 13(11), e1006698. https://doi.org/10.1371/journal.ppat.1006698 Jaimes, J. A., André, N. M., Chappie, J. S., Millet, J. K., & Whittaker, G. R. (2020). Phylogenetic Analysis and Structural Modeling of SARS-CoV-2 Spike Protein Reveals an Evolutionary Distinct and Proteolytically Sensitive Activation Loop. Journal of Molecular Biology, 432(10), 3309–3325. https://doi.org/10.1016/j.jmb.2020.04.009 Jaimes, J. A., Millet, J. K., Stout, A. E., André, N. M., & Whittaker, G. R. (2020). A Tale of Two Viruses: The Distinct Spike Glycoproteins of Feline Coronaviruses. Viruses, 12(1), 83. https://doi.org/10.3390/v12010083 Ji, W., Wang, W., Zhao, X., Zai, J., & Li, X. (2020). Cross‐species transmission of the newly identified coronavirus 2019‐nCoV. Journal of Medical Virology, 92(4), 433–440. https://doi.org/10.1002/jmv.25682 Jiang, S., Hillyer, C., & Du, L. (2020). Neutralizing Antibodies against SARS-CoV-2 and Other Human Coronaviruses. Trends in Immunology, 41(5), 355–359. https://doi.org/10.1016/j.it.2020.03.007 Johansen, M. D., Irving, A., Montagutelli, X., Tate, M. D., Rudloff, I., Nold, M. F., Hansbro, N. G., Kim, R. Y., Donovan, C., Liu, G., Faiz, A., Short, K. R., Lyons, J. G., McCaughan, G. W., Gorrell, M. D., Cole, A., Moreno, C., Couteur, D., Hesselson, D., … Hansbro, P. M. (2020). Animal and translational models of SARS-CoV-2 infection and COVID-19. Mucosal Immunology, 13(6), 877–891. https://doi.org/10.1038/s41385-020-00340-z Kakodkar, P., Kaka, N., & Baig, M. (2020). A Comprehensive Literature Review on the Clinical Presentation, and Management of the Pandemic Coronavirus Disease 2019 (COVID-19). Cureus, 2019(4). https://doi.org/10.7759/cureus.7560 Lam, T. T.-Y., Jia, N., Zhang, Y.-W., Shum, M. H.-H., Jiang, J.-F., Zhu, H.-C., Tong, Y.-G., Shi, Y.-X., Ni, X.-B., Liao, Y.-S., Li, W.-J., Jiang, B.-G., Wei, W., Yuan, T.-T., Zheng, K., Cui, X.-M., Li, J., Pei, G.-Q., Qiang, X., … Cao, W.-C. (2020). Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature, 583(7815), 282–285. https://doi.org/10.1038/s41586-020-2169-0 Lau, S. K. P., Feng, Y., Chen, H., Luk, H. K. H., Yang, W.-H., Li, K. S. M., Zhang, Y.-Z., Huang, Y., Song, Z.-Z., Chow, W.-N., Fan, R. Y. Y., Ahmed, S. S., Yeung, H. C., Lam, C. S. F., Cai, J.-P., Wong, S. S. Y., Chan, J. F. W., Yuen, K.-Y., Zhang, H.-L., & Woo, P. C. Y. (2015). Severe Acute Respiratory Syndrome (SARS) Coronavirus ORF8 Protein Is Acquired from SARS-Related Coronavirus from Greater Horseshoe Bats through Recombination. Journal of Virology, 89(20), 10532–10547. https://doi.org/10.1128/JVI.01048-15 Li, F. (2005). Structure of SARS Coronavirus Spike Receptor-Binding Domain Complexed with Receptor. Science, 309(5742), 1864–1868. https://doi.org/10.1126/science.1116480 Li, W., Greenough, T. C., Moore, M. J., Vasilieva, N., Somasundaran, M., Sullivan, J. L., Farzan, M., & Choe, H. (2004). Efficient Replication of Severe Acute Respiratory Syndrome Coronavirus in Mouse Cells Is Limited by Murine Angiotensin-Converting Enzyme 2. Journal of Virology, 78(20), 11429–11433. https://doi.org/10.1128/JVI.78.20.11429-11433.2004 Liu, Z., Xiao, X., Wei, X., Li, J., Yang, J., Tan, H., Zhu, J., Zhang, Q., Wu, J., & Liu, L. (2020). Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS‐CoV‐2. Journal of Medical Virology, 92(6), 595–601. https://doi.org/10.1002/jmv.25726 LoPresti, M., Beck, D. B., Duggal, P., Cummings, D. A. T., & Solomon, B. D. (2020). The Role of Host Genetic Factors in Coronavirus Susceptibility: Review of Animal and Systematic Review of Human Literature. The American Journal of Human Genetics, 107(3), 381–402. https://doi.org/10.1016/j.ajhg.2020.08.007 Lorusso, A., Calistri, P., Petrini, A., Savini, G., & Decaro, N. (2020). Novel coronavirus (COVID‑19) epidemic: a veterinary perspective. Veterinaria Italiana, 5–10. https://doi.org/10.12834/VetIt.2173.11599.1 Lu, G., Wang, Q., & Gao, G. F. (2015). Bat-to-human: spike features determining ‘host jump’ of coronaviruses SARS-CoV, MERS-CoV, and beyond. Trends in Microbiology, 23(8), 468–478. https://doi.org/10.1016/j.tim.2015.06.003 Luan, J., Lu, Y., Jin, X., & Zhang, L. (2020). Spike protein recognition of mammalian ACE2 predicts the host range and an optimized ACE2 for SARS-CoV-2 infection. Biochemical and Biophysical Research Communications, 526(1), 165–169. https://doi.org/10.1016/j.bbrc.2020.03.047 Luk, H. K. H., Li, X., Fung, J., Lau, S. K. P., & Woo, P. C. Y. (2019). Molecular epidemiology, evolution and phylogeny of SARS coronavirus. Infection, Genetics and Evolution, 71(February), 21–30. https://doi.org/10.1016/j.meegid.2019.03.001 Martina, B. E. E., Haagmans, B. L., Kuiken, T., Fouchier, R. A. M., Rimmelzwaan, G. F., van Amerongen, G., Peiris, J. S. M., Lim, W., & Osterhaus, A. D. M. E. (2003). SARS virus infection of cats and ferrets. Nature, 425(6961), 915–915. https://doi.org/10.1038/425915a McIver, D. J., Silithammavong, S., Theppangna, W., Gillis, A., Douangngeun, B., Khammavong, K., Singhalath, S., Duong, V., Buchy, P., Olson, S. H., Keatts, L., Fine, A. E., Greatorex, Z., Gilbert, M., LeBreton, M., Saylors, K., Joly, D. O., Rubin, E. M., & Lange, C. E. (2020). Coronavirus surveillance of wildlife in the Lao People’s Democratic Republic detects viral RNA in rodents. Archives of Virology, 165(8), 1869–1875. https://doi.org/10.1007/s00705-020-04683-7 Miao, J., Chard, L. S., Wang, Z., & Wang, Y. (2019). Syrian Hamster as an Animal Model for the Study on Infectious Diseases. Frontiers in Immunology, 10(October), 1–12. https://doi.org/10.3389/fimmu.2019.02329 Molenaar, R. J., Vreman, S., Hakze-van der Honing, R. W., Zwart, R., de Rond, J., Weesendorp, E., Smit, L. A. M., Koopmans, M., Bouwstra, R., Stegeman, A., & van der Poel, W. H. M. (2020). Clinical and Pathological Findings in SARS-CoV-2 Disease Outbreaks in Farmed Mink ( Neovison vison ). Veterinary Pathology, 57(5), 653–657. https://doi.org/10.1177/0300985820943535 Newman, A., Smith, D., Ghai, R. R., Wallace, R. M., Torchetti, M. K., Loiacono, C., Murrell, L. S., Carpenter, A., Moroff, S., Rooney, J. A., & Barton Behravesh, C. (2020). First Reported Cases of SARS-CoV-2 Infection in Companion Animals — New York, March–April 2020. MMWR. Morbidity and Mortality Weekly Report, 69(23), 710–713. https://doi.org/10.15585/mmwr.mm6923e3 OIE. (2020). Technical Factsheet Infection With Sars-Cov-2 in Animals. In World Organisation for Animal Health (Vol. 2, Issue June). https://www.oie.int/fileadmin/Home/eng/Our_scientific_expertise/docs/pdf/COV-19/A_Factsheet_SARS-CoV-2.pdf Oreshkova, N., Molenaar, R. J., Vreman, S., Harders, F., Oude Munnink, B. B., Hakze-van der Honing, R. W., Gerhards, N., Tolsma, P., Bouwstra, R., Sikkema, R. S., Tacken, M. G., de Rooij, M. M., Weesendorp, E., Engelsma, M. Y., Bruschke, C. J., Smit, L. A., Koopmans, M., van der Poel, W. H., & Stegeman, A. (2020). SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. Eurosurveillance, 25(23). https://doi.org/10.2807/1560-7917.ES.2020.25.23.2001005 Ortiz-Prado, E., Simbaña-Rivera, K., Gómez- Barreno, L., Rubio-Neira, M., Guaman, L. P., Kyriakidis, N. C., Muslin, C., Jaramillo, A. M. G., Barba-Ostria, C., Cevallos-Robalino, D., Sanches-SanMiguel, H., Unigarro, L., Zalakeviciute, R., Gadian, N., & López-Cortés, A. (2020). Clinical, molecular, and epidemiological characterization of the SARS-CoV-2 virus and the Coronavirus Disease 2019 (COVID-19), a comprehensive literature review. Diagnostic Microbiology and Infectious Disease, 98(1), 115094. https://doi.org/10.1016/j.diagmicrobio.2020.115094 Rockx, B., Feldmann, F., Brining, D., Gardner, D., LaCasse, R., Kercher, L., Long, D., Rosenke, R., Virtaneva, K., Sturdevant, D. E., Porcella, S. F., Mattoon, J., Parnell, M., Baric, R. S., & Feldmann, H. (2011). Comparative Pathogenesis of Three Human and Zoonotic SARS-CoV Strains in Cynomolgus Macaques. PLoS ONE, 6(4), e18558. https://doi.org/10.1371/journal.pone.0018558 Rothan, H. A., & Byrareddy, S. N. (2020). The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. Journal of Autoimmunity, 109(February), 102433. https://doi.org/10.1016/j.jaut.2020.102433 Sailleau, C., Dumarest, M., Vanhomwegen, J., Delaplace, M., Caro, V., Kwasiborski, A., Hourdel, V., Chevaillier, P., Barbarino, A., Comtet, L., Pourquier, P., Klonjkowski, B., Manuguerra, J., Zientara, S., & Le Poder, S. (2020). First detection and genome sequencing of SARS‐CoV‐2 in an infected cat in France. Transboundary and Emerging Diseases, tbed.13659. https://doi.org/10.1111/tbed.13659 Schoeman, D., & Fielding, B. C. (2019). Coronavirus envelope protein: current knowledge. Virology Journal, 16(1), 69. https://doi.org/10.1186/s12985-019-1182-0 Shi, J., Wen, Z., Zhong, G., Yang, H., Wang, C., Huang, B., Liu, R., He, X., Shuai, L., Sun, Z., Zhao, Y., Liu, P., Liang, L., Cui, P., Wang, J., Zhang, X., Guan, Y., Tan, W., Wu, G., … Bu, Z. (2020). Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS–coronavirus 2. Science, 368(6494), 1016–1020. https://doi.org/10.1126/science.abb7015 Song, Z., Xu, Y., Bao, L., Zhang, L., Yu, P., Qu, Y., Zhu, H., Zhao, W., Han, Y., & Qin, C. (2019). From SARS to MERS, Thrusting Coronaviruses into the Spotlight. Viruses, 11(1), 59. https://doi.org/10.3390/v11010059 Stout, A. E., André, N. M., Jaimes, J. A., Millet, J. K., & Whittaker, G. R. (2020). Coronaviruses in cats and other companion animals: Where does SARS-CoV-2/COVID-19 fit? Veterinary Microbiology, 247(June), 108777. https://doi.org/10.1016/j.vetmic.2020.108777 Tai, W., He, L., Zhang, X., Pu, J., Voronin, D., Jiang, S., Zhou, Y., & Du, L. (2020). Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cellular & Molecular Immunology, 17(6), 613–620. https://doi.org/10.1038/s41423-020-0400-4 Tang, X. C., Zhang, J. X., Zhang, S. Y., Wang, P., Fan, X. H., Li, L. F., Li, G., Dong, B. Q., Liu, W., Cheung, C. L., Xu, K. M., Song, W. J., Vijaykrishna, D., Poon, L. L. M., Peiris, J. S. M., Smith, G. J. D., Chen, H., & Guan, Y. (2006). Prevalence and Genetic Diversity of Coronaviruses in Bats from China. Journal of Virology, 80(15), 7481–7490. https://doi.org/10.1128/JVI.00697-06 Tang, X., Wu, C., Li, X., Song, Y., Yao, X., Wu, X., Duan, Y., Zhang, H., Wang, Y., Qian, Z., Cui, J., & Lu, J. (2020). On the origin and continuing evolution of SARS-CoV-2. National Science Review, 7(6), 1012–1023. https://doi.org/10.1093/nsr/nwaa036 Teixeira, P. G. (2016). O HÁBITO ALIMENTAR DOS MORCEGOS ( Mammalia , Chiroptera ) E SUA RELAÇÃO COM A DIVERSIDADE VIRAL O HÁBITO ALIMENTAR DOS MORCEGOS ( Mammalia , Chiroptera ) E SUA. UNIVERSIDADE DE BRASÍLIA INSTITUTO. USDA. (2020). USDA APHIS | USDA Statement on the Confirmation of COVID-19 in a Tiger in New York. United States Department of Agriculture Animal and Plant Health Inspection Service. https://www.aphis.usda.gov/aphis/newsroom/news/sa_by_date/sa-2020/ny-zoo-covid-19 van den Brand, J. M. A., Haagmans, B. L., Leijten, L., van Riel, D., Martina, B. E. E., Osterhaus, A. D. M. E., & Kuiken, T. (2008). Pathology of Experimental SARS Coronavirus Infection in Cats and Ferrets. Veterinary Pathology, 45(4), 551–562. https://doi.org/10.1354/vp.45-4-551 Wang, L., Mitchell, P. K., Calle, P. P., Bartlett, S. L., McAloose, D., Killian, M. L., Yuan, F., Fang, Y., Goodman, L. B., Fredrickson, R., Elvinger, F., Terio, K., Franzen, K., Stuber, T., Diel, D. G., & Torchetti, M. K. (2020). Complete Genome Sequence of SARS-CoV-2 in a Tiger from a U.S. Zoological Collection. Microbiology Resource Announcements, 9(22), 1–3. https://doi.org/10.1128/MRA.00468-20 Wong, M., Javornik Cregeen, S., Ajami, N., & Petrosino, J. (2020). Evidence of recombination in coronaviruses implicating pangolin origins of nCoV-2019. BioRxiv : The Preprint Server for Biology, 2013. https://doi.org/10.1101/2020.02.07.939207 Wu, A., Peng, Y., Huang, B., Ding, X., Wang, X., Niu, P., Meng, J., Zhu, Z., Zhang, Z., Wang, J., Sheng, J., Quan, L., Xia, Z., Tan, W., Cheng, G., & Jiang, T. (2020). Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell Host & Microbe, 27(3), 325–328. https://doi.org/10.1016/j.chom.2020.02.001 Wu, C., Liu, Y., Yang, Y., Zhang, P., Zhong, W., Wang, Y., Wang, Q., Xu, Y., Li, M., Li, X., Zheng, M., Chen, L., & Li, H. (2020). Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica B, 10(5), 766–788. https://doi.org/10.1016/j.apsb.2020.02.008 Xiao, K., Zhai, J., Feng, Y., Zhou, N., Zhang, X., Zou, J.-J., Li, N., Guo, Y., Li, X., Shen, X., Zhang, Z., Shu, F., Huang, W., Li, Y., Zhang, Z., Chen, R.-A., Wu, Y.-J., Peng, S.-M., Huang, M., … Shen, Y. (2020). Isolation and Characterization of 2019-nCoV-like Coronavirus from Malayan Pangolins. https://doi.org/10.1101/2020.02.17.951335 Zhang, Q., Zhang, H., Huang, K., Yang, Y., Hui, X., Gao, J., He, X., Li, C., Gong, W., Zhang, Y., Peng, C., Gao, X., Chen, H., Zou, Z., Shi, Z., & Jin, M. (2020). SARS-CoV-2 neutralizing serum antibodies in cats: a serological investigation. https://doi.org/10.1101/2020.04.01.021196 Zhang, T., Wu, Q., & Zhang, Z. (2020). Probable Pangolin Origin of SARS-CoV-2 Associated with the COVID-19 Outbreak. Current Biology, 30(7), 1346-1351.e2. https://doi.org/10.1016/j.cub.2020.03.022 Zhang, Y.-Z., & Holmes, E. C. (2020). A Genomic Perspective on the Origin and Emergence of SARS-CoV-2. Cell, 181(2), 223–227. https://doi.org/10.1016/j.cell.2020.03.035 Zhou, H., Chen, X., Hu, T., Li, J., Song, H., Liu, Y., Wang, P., Liu, D., Yang, J., Holmes, E. C., Hughes, A. C., Bi, Y., & Shi, W. (2020). A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein. Current Biology, 30(11), 2196-2203.e3. https://doi.org/10.1016/j.cub.2020.05.023 |
dc.rights.license.none.fl_str_mv |
Atribución |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
32 p. |
dc.publisher.spa.fl_str_mv |
Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina Veterinaría y Zootecnia, Ibagué |
dc.publisher.program.spa.fl_str_mv |
Medicina veterinaria y zootecnia |
dc.publisher.place.spa.fl_str_mv |
Ibagué |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/d0e975c6-44f4-45ba-af08-b4f9063f14b1/download https://repository.ucc.edu.co/bitstreams/e73a601f-8d17-4926-bcf4-c0f5ae22b08f/download https://repository.ucc.edu.co/bitstreams/7444ad6e-bbb8-4992-8f94-379452b0e9b7/download https://repository.ucc.edu.co/bitstreams/ccf47633-a7b6-4d6f-9edc-9a53fcd1fe6a/download https://repository.ucc.edu.co/bitstreams/f4a26d86-fd20-46b1-b947-124f16af0842/download https://repository.ucc.edu.co/bitstreams/d337f969-d52a-4f07-bee4-89ac5ffd18ca/download https://repository.ucc.edu.co/bitstreams/4eb98ea1-12f1-4bcc-880b-e56b7e6b0030/download |
bitstream.checksum.fl_str_mv |
3bce4f7ab09dfc588f126e1e36e98a45 8c53b27d3fb9cb0791e154d1c0aa007c c48fee72fea102adecef56dc4d4578a9 2409557d5788f104dff7c4d4dad21a8f c9be49073d635393c221916f681ba749 17e9d4b0eba05ecd89bce5b77cae3b9b f1383deb69030b3b2f7134e195762e80 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814247201414578176 |
spelling |
Sánchez Bonilla, María del PilarForero Vargas, Natalia2021-01-20T21:42:27Z2021-01-20T21:42:27Z2021-03-132021-01-15https://hdl.handle.net/20.500.12494/32687Forero Vargas, N, (2021). Covid-19 y animales bajo el enfoque una sola salud. [tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional UCC. http://hdl.handle.net/20.500.12494/32687Los coronavirus son virus RNA que afectan a personas y animales. Están compuestos por cuatro proteínas principales, la Spike (S) facilita la unión de los virus, la glicoproteína de envoltura (E) genera la producción y maduración del virus, la glicoproteína de membrana (M) determina la estructura y forma del virus, y la proteína de la nucleocápside (N) contiene el material genético del virus. En la pandemia del Covid-19, el coronavirus SARS-CoV-2, se han descrito como huéspedes naturales los murciélagos por su estrecha relación con los coronavirus. Otros animales involucrados como reservorios naturales son: el pangolín y las serpientes por su sesgo genético de codones y en la mutación proteína Spike. Como hospedadores intermediarios encontramos diversas especies que interactúan como aves, reptiles y anfibios. En la transición de animales se reportaron casos en felinos, hurones y poca incidencia en perros. La mayoría de los animales que han adquirido infecciones humanas y pandémicas por coronavirus (SARS-CoV, MERS y SARS-CoV-2), presentaron manifestaciones clínicas de nivel respiratorio siendo leve, moderado o grave.Coronaviruses are RNA viruses that affect people and animals. It is composed of four main proteins, Spike (S) facilitates the binding of viruses, wrapping glycoprotein (E) generates the production and y maturation of the virus, glycoprotein membrane (M) determines the structure and shape of the virus, and the nucleocapsid protein (N)contains the genetic material of the virus. In the Covid-19 pandemic, SARS-CoV-2 coronavirus, bats have been described as natural guests because of their close relationship with coronaviruses. Other animals involved as natural reservoirs are pangolin and snakes for their genetic elbow bias and Spike protein mutation. As intermediary hosts we find various species that interact as birds, reptiles and amphibians. In the transition of animals’ cases were reported in felines, ferrets and low incidence in dogs. Most animals that have acquired human and pandemic coronavirus infections (SARS-CoV, MERS and SARS-CoV-2) had clinical manifestations of respiratory level being mild, moderate or severe.Cuadro 1 intervención de reservorio y huésped. -- Cuadro 2 especies de murciélagos según locación perteneciente y tipo alimentación. -- Cuadro 3 porcentaje de identidad de especie en comparación con homo sapiens. -- Cuadro 4 especies según su interacción y presentación clínica. -- Figura 1 estructura viral y proteinas del coronavirus. -- Figura 2 ciclo de vida del coronavirus en el huésped. -- Figura 3 árbol de distancia de eca ii silvestres. -- Figura 4 árbol de distancia de eca ii. -- Figura 5 comparación del uso de codones entre el covid-19 y sus reservorios.natalia.forerov@campusucc.edu.co32 p.Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina Veterinaría y Zootecnia, IbaguéMedicina veterinaria y zootecniaIbaguéProteína SpikeReservorio coronavirusHospedador coronavirusPandemiaTG 2021 MVZ 32687Protein SpikeCoronavirus reservoirCoronavirus hostPandemicCovid-19 y animales bajo el enfoque una sola saludTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Astuti, I., & Ysrafil. (2020). Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(4), 407–412. https://doi.org/10.1016/j.dsx.2020.04.020Chan, J. F., Zhang, A. J., Yuan, S., Poon, V. K.-M., Chan, C. C.-S., Lee, A. C.-Y., Chan, W.-M., Fan, Z., Tsoi, H.-W., Wen, L., Liang, R., Cao, J., Chen, Y., Tang, K., Luo, C., Cai, J.-P., Kok, K.-H., Chu, H., Chan, K.-H., … Yuen, K.-Y. (2020). Simulation of the Clinical and Pathological Manifestations of Coronavirus Disease 2019 (COVID-19) in a Golden Syrian Hamster Model: Implications for Disease Pathogenesis and Transmissibility. Clinical Infectious Diseases, 2019, 1–50. https://doi.org/10.1093/cid/ciaa325Cohen, J. (2020). From mice to monkeys, animals studied for coronavirus answers. Science, 368(6488), 221–222. https://doi.org/10.1126/science.368.6488.221de Wit, E., Rasmussen, A. L., Falzarano, D., Bushmaker, T., Feldmann, F., Brining, D. L., Fischer, E. R., Martellaro, C., Okumura, A., Chang, J., Scott, D., Benecke, A. G., Katze, M. G., Feldmann, H., & Munster, V. J. (2013). Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques. Proceedings of the National Academy of Sciences, 110(41), 16598–16603. https://doi.org/10.1073/pnas.1310744110de Wit, Emmie, Feldmann, F., Okumura, A., Horne, E., Haddock, E., Saturday, G., Scott, D., Erlandson, K. J., Stahl, N., Lipsich, L., Kyratsous, C. A., & Feldmann, H. (2018). Prophylactic and therapeutic efficacy of mAb treatment against MERS-CoV in common marmosets. Antiviral Research, 156, 64–71. https://doi.org/10.1016/j.antiviral.2018.06.006DENIS, M., VANDEWEERD, V., VERBEEKE, R., LAUDISOIT, A., WYNANTS, L., & VLIET, D. VAN DER. (2020). COVIPENDIUM: information available to support the development of medical countermeasures and interventions against COVID-19. https://doi.org/10.5281/ZENODO.3782325Enkirch, T., & von Messling, V. (2015). Ferret models of viral pathogenesis. Virology, 479–480, 259–270. https://doi.org/10.1016/j.virol.2015.03.017Giri, R., Bhardwaj, T., Shegane, M., Gehi, B., Kumar, P., Gadhave, K., Oldfield, C., & Uversky, V. (2020). When Darkness Becomes a Ray of Light in the Dark Times: Understanding the COVID-19 via the Comparative Analysis of the Dark Proteomes of SARS-CoV-2, Human SARS and Bat SARS-Like Coronaviruses. 1–63. https://doi.org/10.1101/2020.03.13.990598Gralinski, L. E., & Menachery, V. D. (2020). Return of the Coronavirus: 2019-nCoV. Viruses, 12(2), 135. https://doi.org/10.3390/v12020135Guo, Y.-R., Cao, Q.-D., Hong, Z.-S., Tan, Y.-Y., Chen, S.-D., Jin, H.-J., Tan, K.-S., Wang, D.-Y., & Yan, Y. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Military Medical Research, 7(1), 11. https://doi.org/10.1186/s40779-020-00240-0Guo, Y., Yan, F., Feng, T., Zhang, L., Qin, Q., Han, W., Bai, Z., Zhou, H., & Suo, Y. (2020). Switchable Multi-Wavelength Thulium-Doped Fiber Laser Using Four-Mode Fiber Based Sagnac Loop Filter. IEEE Photonics Journal, 12(2), 1–10. https://doi.org/10.1109/JPHOT.2020.2973671Halfmann, P. J., Hatta, M., Chiba, S., Maemura, T., Fan, S., Takeda, M., Kinoshita, N., Hattori, S., Sakai-Tagawa, Y., Iwatsuki-Horimoto, K., Imai, M., & Kawaoka, Y. (2020). Transmission of SARS-CoV-2 in Domestic Cats. New England Journal of Medicine, 383(6), 592–594. https://doi.org/10.1056/NEJMc2013400Hu, B., Zeng, L.-P., Yang, X.-L., Ge, X.-Y., Zhang, W., Li, B., Xie, J.-Z., Shen, X.-R., Zhang, Y.-Z., Wang, N., Luo, D.-S., Zheng, X.-S., Wang, M.-N., Daszak, P., Wang, L.-F., Cui, J., & Shi, Z.-L. (2017). Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLOS Pathogens, 13(11), e1006698. https://doi.org/10.1371/journal.ppat.1006698Jaimes, J. A., André, N. M., Chappie, J. S., Millet, J. K., & Whittaker, G. R. (2020). Phylogenetic Analysis and Structural Modeling of SARS-CoV-2 Spike Protein Reveals an Evolutionary Distinct and Proteolytically Sensitive Activation Loop. Journal of Molecular Biology, 432(10), 3309–3325. https://doi.org/10.1016/j.jmb.2020.04.009Jaimes, J. A., Millet, J. K., Stout, A. E., André, N. M., & Whittaker, G. R. (2020). A Tale of Two Viruses: The Distinct Spike Glycoproteins of Feline Coronaviruses. Viruses, 12(1), 83. https://doi.org/10.3390/v12010083Ji, W., Wang, W., Zhao, X., Zai, J., & Li, X. (2020). Cross‐species transmission of the newly identified coronavirus 2019‐nCoV. Journal of Medical Virology, 92(4), 433–440. https://doi.org/10.1002/jmv.25682Jiang, S., Hillyer, C., & Du, L. (2020). Neutralizing Antibodies against SARS-CoV-2 and Other Human Coronaviruses. Trends in Immunology, 41(5), 355–359. https://doi.org/10.1016/j.it.2020.03.007Johansen, M. D., Irving, A., Montagutelli, X., Tate, M. D., Rudloff, I., Nold, M. F., Hansbro, N. G., Kim, R. Y., Donovan, C., Liu, G., Faiz, A., Short, K. R., Lyons, J. G., McCaughan, G. W., Gorrell, M. D., Cole, A., Moreno, C., Couteur, D., Hesselson, D., … Hansbro, P. M. (2020). Animal and translational models of SARS-CoV-2 infection and COVID-19. Mucosal Immunology, 13(6), 877–891. https://doi.org/10.1038/s41385-020-00340-zKakodkar, P., Kaka, N., & Baig, M. (2020). A Comprehensive Literature Review on the Clinical Presentation, and Management of the Pandemic Coronavirus Disease 2019 (COVID-19). Cureus, 2019(4). https://doi.org/10.7759/cureus.7560Lam, T. T.-Y., Jia, N., Zhang, Y.-W., Shum, M. H.-H., Jiang, J.-F., Zhu, H.-C., Tong, Y.-G., Shi, Y.-X., Ni, X.-B., Liao, Y.-S., Li, W.-J., Jiang, B.-G., Wei, W., Yuan, T.-T., Zheng, K., Cui, X.-M., Li, J., Pei, G.-Q., Qiang, X., … Cao, W.-C. (2020). Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature, 583(7815), 282–285. https://doi.org/10.1038/s41586-020-2169-0Lau, S. K. P., Feng, Y., Chen, H., Luk, H. K. H., Yang, W.-H., Li, K. S. M., Zhang, Y.-Z., Huang, Y., Song, Z.-Z., Chow, W.-N., Fan, R. Y. Y., Ahmed, S. S., Yeung, H. C., Lam, C. S. F., Cai, J.-P., Wong, S. S. Y., Chan, J. F. W., Yuen, K.-Y., Zhang, H.-L., & Woo, P. C. Y. (2015). Severe Acute Respiratory Syndrome (SARS) Coronavirus ORF8 Protein Is Acquired from SARS-Related Coronavirus from Greater Horseshoe Bats through Recombination. Journal of Virology, 89(20), 10532–10547. https://doi.org/10.1128/JVI.01048-15Li, F. (2005). Structure of SARS Coronavirus Spike Receptor-Binding Domain Complexed with Receptor. Science, 309(5742), 1864–1868. https://doi.org/10.1126/science.1116480Li, W., Greenough, T. C., Moore, M. J., Vasilieva, N., Somasundaran, M., Sullivan, J. L., Farzan, M., & Choe, H. (2004). Efficient Replication of Severe Acute Respiratory Syndrome Coronavirus in Mouse Cells Is Limited by Murine Angiotensin-Converting Enzyme 2. Journal of Virology, 78(20), 11429–11433. https://doi.org/10.1128/JVI.78.20.11429-11433.2004Liu, Z., Xiao, X., Wei, X., Li, J., Yang, J., Tan, H., Zhu, J., Zhang, Q., Wu, J., & Liu, L. (2020). Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS‐CoV‐2. Journal of Medical Virology, 92(6), 595–601. https://doi.org/10.1002/jmv.25726LoPresti, M., Beck, D. B., Duggal, P., Cummings, D. A. T., & Solomon, B. D. (2020). The Role of Host Genetic Factors in Coronavirus Susceptibility: Review of Animal and Systematic Review of Human Literature. The American Journal of Human Genetics, 107(3), 381–402. https://doi.org/10.1016/j.ajhg.2020.08.007Lorusso, A., Calistri, P., Petrini, A., Savini, G., & Decaro, N. (2020). Novel coronavirus (COVID‑19) epidemic: a veterinary perspective. Veterinaria Italiana, 5–10. https://doi.org/10.12834/VetIt.2173.11599.1Lu, G., Wang, Q., & Gao, G. F. (2015). Bat-to-human: spike features determining ‘host jump’ of coronaviruses SARS-CoV, MERS-CoV, and beyond. Trends in Microbiology, 23(8), 468–478. https://doi.org/10.1016/j.tim.2015.06.003Luan, J., Lu, Y., Jin, X., & Zhang, L. (2020). Spike protein recognition of mammalian ACE2 predicts the host range and an optimized ACE2 for SARS-CoV-2 infection. Biochemical and Biophysical Research Communications, 526(1), 165–169. https://doi.org/10.1016/j.bbrc.2020.03.047Luk, H. K. H., Li, X., Fung, J., Lau, S. K. P., & Woo, P. C. Y. (2019). Molecular epidemiology, evolution and phylogeny of SARS coronavirus. Infection, Genetics and Evolution, 71(February), 21–30. https://doi.org/10.1016/j.meegid.2019.03.001Martina, B. E. E., Haagmans, B. L., Kuiken, T., Fouchier, R. A. M., Rimmelzwaan, G. F., van Amerongen, G., Peiris, J. S. M., Lim, W., & Osterhaus, A. D. M. E. (2003). SARS virus infection of cats and ferrets. Nature, 425(6961), 915–915. https://doi.org/10.1038/425915aMcIver, D. J., Silithammavong, S., Theppangna, W., Gillis, A., Douangngeun, B., Khammavong, K., Singhalath, S., Duong, V., Buchy, P., Olson, S. H., Keatts, L., Fine, A. E., Greatorex, Z., Gilbert, M., LeBreton, M., Saylors, K., Joly, D. O., Rubin, E. M., & Lange, C. E. (2020). Coronavirus surveillance of wildlife in the Lao People’s Democratic Republic detects viral RNA in rodents. Archives of Virology, 165(8), 1869–1875. https://doi.org/10.1007/s00705-020-04683-7Miao, J., Chard, L. S., Wang, Z., & Wang, Y. (2019). Syrian Hamster as an Animal Model for the Study on Infectious Diseases. Frontiers in Immunology, 10(October), 1–12. https://doi.org/10.3389/fimmu.2019.02329Molenaar, R. J., Vreman, S., Hakze-van der Honing, R. W., Zwart, R., de Rond, J., Weesendorp, E., Smit, L. A. M., Koopmans, M., Bouwstra, R., Stegeman, A., & van der Poel, W. H. M. (2020). Clinical and Pathological Findings in SARS-CoV-2 Disease Outbreaks in Farmed Mink ( Neovison vison ). Veterinary Pathology, 57(5), 653–657. https://doi.org/10.1177/0300985820943535Newman, A., Smith, D., Ghai, R. R., Wallace, R. M., Torchetti, M. K., Loiacono, C., Murrell, L. S., Carpenter, A., Moroff, S., Rooney, J. A., & Barton Behravesh, C. (2020). First Reported Cases of SARS-CoV-2 Infection in Companion Animals — New York, March–April 2020. MMWR. Morbidity and Mortality Weekly Report, 69(23), 710–713. https://doi.org/10.15585/mmwr.mm6923e3OIE. (2020). Technical Factsheet Infection With Sars-Cov-2 in Animals. In World Organisation for Animal Health (Vol. 2, Issue June). https://www.oie.int/fileadmin/Home/eng/Our_scientific_expertise/docs/pdf/COV-19/A_Factsheet_SARS-CoV-2.pdfOreshkova, N., Molenaar, R. J., Vreman, S., Harders, F., Oude Munnink, B. B., Hakze-van der Honing, R. W., Gerhards, N., Tolsma, P., Bouwstra, R., Sikkema, R. S., Tacken, M. G., de Rooij, M. M., Weesendorp, E., Engelsma, M. Y., Bruschke, C. J., Smit, L. A., Koopmans, M., van der Poel, W. H., & Stegeman, A. (2020). SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. Eurosurveillance, 25(23). https://doi.org/10.2807/1560-7917.ES.2020.25.23.2001005Ortiz-Prado, E., Simbaña-Rivera, K., Gómez- Barreno, L., Rubio-Neira, M., Guaman, L. P., Kyriakidis, N. C., Muslin, C., Jaramillo, A. M. G., Barba-Ostria, C., Cevallos-Robalino, D., Sanches-SanMiguel, H., Unigarro, L., Zalakeviciute, R., Gadian, N., & López-Cortés, A. (2020). Clinical, molecular, and epidemiological characterization of the SARS-CoV-2 virus and the Coronavirus Disease 2019 (COVID-19), a comprehensive literature review. Diagnostic Microbiology and Infectious Disease, 98(1), 115094. https://doi.org/10.1016/j.diagmicrobio.2020.115094Rockx, B., Feldmann, F., Brining, D., Gardner, D., LaCasse, R., Kercher, L., Long, D., Rosenke, R., Virtaneva, K., Sturdevant, D. E., Porcella, S. F., Mattoon, J., Parnell, M., Baric, R. S., & Feldmann, H. (2011). Comparative Pathogenesis of Three Human and Zoonotic SARS-CoV Strains in Cynomolgus Macaques. PLoS ONE, 6(4), e18558. https://doi.org/10.1371/journal.pone.0018558Rothan, H. A., & Byrareddy, S. N. (2020). The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. Journal of Autoimmunity, 109(February), 102433. https://doi.org/10.1016/j.jaut.2020.102433Sailleau, C., Dumarest, M., Vanhomwegen, J., Delaplace, M., Caro, V., Kwasiborski, A., Hourdel, V., Chevaillier, P., Barbarino, A., Comtet, L., Pourquier, P., Klonjkowski, B., Manuguerra, J., Zientara, S., & Le Poder, S. (2020). First detection and genome sequencing of SARS‐CoV‐2 in an infected cat in France. Transboundary and Emerging Diseases, tbed.13659. https://doi.org/10.1111/tbed.13659Schoeman, D., & Fielding, B. C. (2019). Coronavirus envelope protein: current knowledge. Virology Journal, 16(1), 69. https://doi.org/10.1186/s12985-019-1182-0Shi, J., Wen, Z., Zhong, G., Yang, H., Wang, C., Huang, B., Liu, R., He, X., Shuai, L., Sun, Z., Zhao, Y., Liu, P., Liang, L., Cui, P., Wang, J., Zhang, X., Guan, Y., Tan, W., Wu, G., … Bu, Z. (2020). Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS–coronavirus 2. Science, 368(6494), 1016–1020. https://doi.org/10.1126/science.abb7015Song, Z., Xu, Y., Bao, L., Zhang, L., Yu, P., Qu, Y., Zhu, H., Zhao, W., Han, Y., & Qin, C. (2019). From SARS to MERS, Thrusting Coronaviruses into the Spotlight. Viruses, 11(1), 59. https://doi.org/10.3390/v11010059Stout, A. E., André, N. M., Jaimes, J. A., Millet, J. K., & Whittaker, G. R. (2020). Coronaviruses in cats and other companion animals: Where does SARS-CoV-2/COVID-19 fit? Veterinary Microbiology, 247(June), 108777. https://doi.org/10.1016/j.vetmic.2020.108777Tai, W., He, L., Zhang, X., Pu, J., Voronin, D., Jiang, S., Zhou, Y., & Du, L. (2020). Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cellular & Molecular Immunology, 17(6), 613–620. https://doi.org/10.1038/s41423-020-0400-4Tang, X. C., Zhang, J. X., Zhang, S. Y., Wang, P., Fan, X. H., Li, L. F., Li, G., Dong, B. Q., Liu, W., Cheung, C. L., Xu, K. M., Song, W. J., Vijaykrishna, D., Poon, L. L. M., Peiris, J. S. M., Smith, G. J. D., Chen, H., & Guan, Y. (2006). Prevalence and Genetic Diversity of Coronaviruses in Bats from China. Journal of Virology, 80(15), 7481–7490. https://doi.org/10.1128/JVI.00697-06Tang, X., Wu, C., Li, X., Song, Y., Yao, X., Wu, X., Duan, Y., Zhang, H., Wang, Y., Qian, Z., Cui, J., & Lu, J. (2020). On the origin and continuing evolution of SARS-CoV-2. National Science Review, 7(6), 1012–1023. https://doi.org/10.1093/nsr/nwaa036Teixeira, P. G. (2016). O HÁBITO ALIMENTAR DOS MORCEGOS ( Mammalia , Chiroptera ) E SUA RELAÇÃO COM A DIVERSIDADE VIRAL O HÁBITO ALIMENTAR DOS MORCEGOS ( Mammalia , Chiroptera ) E SUA. UNIVERSIDADE DE BRASÍLIA INSTITUTO.USDA. (2020). USDA APHIS | USDA Statement on the Confirmation of COVID-19 in a Tiger in New York. United States Department of Agriculture Animal and Plant Health Inspection Service. https://www.aphis.usda.gov/aphis/newsroom/news/sa_by_date/sa-2020/ny-zoo-covid-19van den Brand, J. M. A., Haagmans, B. L., Leijten, L., van Riel, D., Martina, B. E. E., Osterhaus, A. D. M. E., & Kuiken, T. (2008). Pathology of Experimental SARS Coronavirus Infection in Cats and Ferrets. Veterinary Pathology, 45(4), 551–562. https://doi.org/10.1354/vp.45-4-551Wang, L., Mitchell, P. K., Calle, P. P., Bartlett, S. L., McAloose, D., Killian, M. L., Yuan, F., Fang, Y., Goodman, L. B., Fredrickson, R., Elvinger, F., Terio, K., Franzen, K., Stuber, T., Diel, D. G., & Torchetti, M. K. (2020). Complete Genome Sequence of SARS-CoV-2 in a Tiger from a U.S. Zoological Collection. Microbiology Resource Announcements, 9(22), 1–3. https://doi.org/10.1128/MRA.00468-20Wong, M., Javornik Cregeen, S., Ajami, N., & Petrosino, J. (2020). Evidence of recombination in coronaviruses implicating pangolin origins of nCoV-2019. BioRxiv : The Preprint Server for Biology, 2013. https://doi.org/10.1101/2020.02.07.939207Wu, A., Peng, Y., Huang, B., Ding, X., Wang, X., Niu, P., Meng, J., Zhu, Z., Zhang, Z., Wang, J., Sheng, J., Quan, L., Xia, Z., Tan, W., Cheng, G., & Jiang, T. (2020). Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell Host & Microbe, 27(3), 325–328. https://doi.org/10.1016/j.chom.2020.02.001Wu, C., Liu, Y., Yang, Y., Zhang, P., Zhong, W., Wang, Y., Wang, Q., Xu, Y., Li, M., Li, X., Zheng, M., Chen, L., & Li, H. (2020). Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica B, 10(5), 766–788. https://doi.org/10.1016/j.apsb.2020.02.008Xiao, K., Zhai, J., Feng, Y., Zhou, N., Zhang, X., Zou, J.-J., Li, N., Guo, Y., Li, X., Shen, X., Zhang, Z., Shu, F., Huang, W., Li, Y., Zhang, Z., Chen, R.-A., Wu, Y.-J., Peng, S.-M., Huang, M., … Shen, Y. (2020). Isolation and Characterization of 2019-nCoV-like Coronavirus from Malayan Pangolins. https://doi.org/10.1101/2020.02.17.951335Zhang, Q., Zhang, H., Huang, K., Yang, Y., Hui, X., Gao, J., He, X., Li, C., Gong, W., Zhang, Y., Peng, C., Gao, X., Chen, H., Zou, Z., Shi, Z., & Jin, M. (2020). SARS-CoV-2 neutralizing serum antibodies in cats: a serological investigation. https://doi.org/10.1101/2020.04.01.021196Zhang, T., Wu, Q., & Zhang, Z. (2020). Probable Pangolin Origin of SARS-CoV-2 Associated with the COVID-19 Outbreak. Current Biology, 30(7), 1346-1351.e2. https://doi.org/10.1016/j.cub.2020.03.022Zhang, Y.-Z., & Holmes, E. C. (2020). A Genomic Perspective on the Origin and Emergence of SARS-CoV-2. Cell, 181(2), 223–227. https://doi.org/10.1016/j.cell.2020.03.035Zhou, H., Chen, X., Hu, T., Li, J., Song, H., Liu, Y., Wang, P., Liu, D., Yang, J., Holmes, E. C., Hughes, A. C., Bi, Y., & Shi, W. (2020). A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein. Current Biology, 30(11), 2196-2203.e3. https://doi.org/10.1016/j.cub.2020.05.023PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/d0e975c6-44f4-45ba-af08-b4f9063f14b1/download3bce4f7ab09dfc588f126e1e36e98a45MD55ORIGINAL2020_covid-19_animales_bajo_enfoque.pdf2020_covid-19_animales_bajo_enfoque.pdfapplication/pdf1151064https://repository.ucc.edu.co/bitstreams/e73a601f-8d17-4926-bcf4-c0f5ae22b08f/download8c53b27d3fb9cb0791e154d1c0aa007cMD532020_covid-19_animales_bajo_enfoque-FormatoLicenciaUso.pdf2020_covid-19_animales_bajo_enfoque-FormatoLicenciaUso.pdfapplication/pdf715246https://repository.ucc.edu.co/bitstreams/7444ad6e-bbb8-4992-8f94-379452b0e9b7/downloadc48fee72fea102adecef56dc4d4578a9MD54THUMBNAIL2020_covid-19_animales_bajo_enfoque.pdf.jpg2020_covid-19_animales_bajo_enfoque.pdf.jpgGenerated Thumbnailimage/jpeg3410https://repository.ucc.edu.co/bitstreams/ccf47633-a7b6-4d6f-9edc-9a53fcd1fe6a/download2409557d5788f104dff7c4d4dad21a8fMD562020_covid-19_animales_bajo_enfoque-FormatoLicenciaUso.pdf.jpg2020_covid-19_animales_bajo_enfoque-FormatoLicenciaUso.pdf.jpgGenerated Thumbnailimage/jpeg5219https://repository.ucc.edu.co/bitstreams/f4a26d86-fd20-46b1-b947-124f16af0842/downloadc9be49073d635393c221916f681ba749MD57TEXT2020_covid-19_animales_bajo_enfoque.pdf.txt2020_covid-19_animales_bajo_enfoque.pdf.txtExtracted texttext/plain53269https://repository.ucc.edu.co/bitstreams/d337f969-d52a-4f07-bee4-89ac5ffd18ca/download17e9d4b0eba05ecd89bce5b77cae3b9bMD582020_covid-19_animales_bajo_enfoque-FormatoLicenciaUso.pdf.txt2020_covid-19_animales_bajo_enfoque-FormatoLicenciaUso.pdf.txtExtracted texttext/plain5824https://repository.ucc.edu.co/bitstreams/4eb98ea1-12f1-4bcc-880b-e56b7e6b0030/downloadf1383deb69030b3b2f7134e195762e80MD5920.500.12494/32687oai:repository.ucc.edu.co:20.500.12494/326872024-08-09 12:50:48.361open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo= |