Application of a compact trickle-bed bioreactor for the removal of odor and volatile organic compounds emitted from a wastewater treatment plant

Se probó un biorreactor compacto de lecho de goteo (CTBB) para la eliminación de los compuestos orgánicos volátiles (COV) y el sulfuro de hidrógeno (H2S) presentes en el aire de escape de una planta de tratamiento de aguas residuales. A velocidades de flujo de gas que variaban entre 2,0 y 30,0m3/h y...

Full description

Autores:
Kasperczyk, Damian
Urbaniecb, Krzysztof
Barbusinskic, Krzysztof
Rened, Eldon R.
Colmenares Quintero, Ramón Fernando
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/17450
Acceso en línea:
https://hdl.handle.net/20.500.12494/17450
Palabra clave:
Biorreactor compacto de lecho de goteo
Biodegradación
Compuesto orgánico volátil
Sulfuro de hidrógeno
Planta de tratamiento de aguas residuales
Compact trickle-bed bioreactor
Biodegradation
Volatile organic compound
Hydrogen sulphide
Wastewater treatment plant
Rights
closedAccess
License
Atribución
id COOPER2_444a906fb00617ab86eea807b4c35f2e
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/17450
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Application of a compact trickle-bed bioreactor for the removal of odor and volatile organic compounds emitted from a wastewater treatment plant
title Application of a compact trickle-bed bioreactor for the removal of odor and volatile organic compounds emitted from a wastewater treatment plant
spellingShingle Application of a compact trickle-bed bioreactor for the removal of odor and volatile organic compounds emitted from a wastewater treatment plant
Biorreactor compacto de lecho de goteo
Biodegradación
Compuesto orgánico volátil
Sulfuro de hidrógeno
Planta de tratamiento de aguas residuales
Compact trickle-bed bioreactor
Biodegradation
Volatile organic compound
Hydrogen sulphide
Wastewater treatment plant
title_short Application of a compact trickle-bed bioreactor for the removal of odor and volatile organic compounds emitted from a wastewater treatment plant
title_full Application of a compact trickle-bed bioreactor for the removal of odor and volatile organic compounds emitted from a wastewater treatment plant
title_fullStr Application of a compact trickle-bed bioreactor for the removal of odor and volatile organic compounds emitted from a wastewater treatment plant
title_full_unstemmed Application of a compact trickle-bed bioreactor for the removal of odor and volatile organic compounds emitted from a wastewater treatment plant
title_sort Application of a compact trickle-bed bioreactor for the removal of odor and volatile organic compounds emitted from a wastewater treatment plant
dc.creator.fl_str_mv Kasperczyk, Damian
Urbaniecb, Krzysztof
Barbusinskic, Krzysztof
Rened, Eldon R.
Colmenares Quintero, Ramón Fernando
dc.contributor.author.none.fl_str_mv Kasperczyk, Damian
Urbaniecb, Krzysztof
Barbusinskic, Krzysztof
Rened, Eldon R.
Colmenares Quintero, Ramón Fernando
dc.subject.spa.fl_str_mv Biorreactor compacto de lecho de goteo
Biodegradación
Compuesto orgánico volátil
Sulfuro de hidrógeno
Planta de tratamiento de aguas residuales
topic Biorreactor compacto de lecho de goteo
Biodegradación
Compuesto orgánico volátil
Sulfuro de hidrógeno
Planta de tratamiento de aguas residuales
Compact trickle-bed bioreactor
Biodegradation
Volatile organic compound
Hydrogen sulphide
Wastewater treatment plant
dc.subject.other.spa.fl_str_mv Compact trickle-bed bioreactor
Biodegradation
Volatile organic compound
Hydrogen sulphide
Wastewater treatment plant
description Se probó un biorreactor compacto de lecho de goteo (CTBB) para la eliminación de los compuestos orgánicos volátiles (COV) y el sulfuro de hidrógeno (H2S) presentes en el aire de escape de una planta de tratamiento de aguas residuales. A velocidades de flujo de gas que variaban entre 2,0 y 30,0m3/h y para cargas de contaminantes específicos de hasta 20 g/(m3-h), las eficiencias de eliminación de H2S y COV eran >95%. El CTBB fue diseñado para una concentración máxima de H2S de ∼200 ppm y se notaron eficiencias de remoción> 97%. Las concentraciones de COV estaban en el rango de 25-240 ppmv y la eficiencia de remoción estaba en el rango de 85-99%. También se investigaron las posibles consecuencias de una sobrecarga excesiva de contaminantes y el tiempo necesario para regenerar la actividad microbiana y reanimar las condiciones de proceso estables en el CTBB. El aumento de la concentración de H2S de 400 a 600 ppmv durante unas pocas horas causó la intoxicación del biorreactor; sin embargo, cuando se restablecieron las concentraciones originales de H2S, se comprobó la estabilidad del funcionamiento del CTBB en un plazo de 3 h.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019-04-15
dc.date.accessioned.none.fl_str_mv 2020-04-22T15:14:38Z
dc.date.available.none.fl_str_mv 2020-04-22T15:14:38Z
dc.type.none.fl_str_mv Artículo
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 03014797
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/17450
dc.identifier.bibliographicCitation.spa.fl_str_mv Kasperczyk, Damian & Urbaniec, Krzysztof & Barbusinski, Krzysztof & Rene, Eldon & Colmenares Quintero, Ramon. (2019). Application of a compact trickle-bed bioreactor for the removal of odor and volatile organic compounds emitted from a wastewater treatment plant. Journal of Environmental Management. 236. 413-419. Doi.10.1016/j.jenvman.2019.01.106.
identifier_str_mv 03014797
Kasperczyk, Damian & Urbaniec, Krzysztof & Barbusinski, Krzysztof & Rene, Eldon & Colmenares Quintero, Ramon. (2019). Application of a compact trickle-bed bioreactor for the removal of odor and volatile organic compounds emitted from a wastewater treatment plant. Journal of Environmental Management. 236. 413-419. Doi.10.1016/j.jenvman.2019.01.106.
url https://hdl.handle.net/20.500.12494/17450
dc.relation.isversionof.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0301479719301215
dc.relation.ispartofjournal.spa.fl_str_mv Journal of Environmental Management
dc.relation.references.spa.fl_str_mv Alfonsín, C., Lebrero, R., Estrada, J.M., Muñoz, R., Kraakman, N.J.R., Feijoo, G., Moreira, M.T., 2015. Selection of odour removal technologies in wastewater treatment plants: a guideline based on life cycle assessment. J. Environ. Manag. 149, 77–84.
Arellano-García, L., Dorado, A.D., Morales-Guadarrama, A., Sacristan, E., Gamisans, X., Revah, S., 2015. Modeling the effects of biomass accumulation on the performance of a biotrickling filter packed with PUF support for the alkaline biotreatment of dimethyl disulfide vapors in air. Appl. Microbiol. Biotechnol. 99, 97–107
Bajpai, P., 2014. Biological Odour Treatment. Springer, Heidelberg-New York-DordrechtLondon.
Barbusinski, K., Kalemba, K., Kasperczyk, D., Urbaniec, K., Kozik, V., 2017. Biological methods for odor treatment - a review. J. Clean. Prod. 152, 223–241.
Bindra, N., Dubey, B., Dutta, A., 2015. Technological and life cycle assessment of organics processing odour control technologies. Sci. Total Environ. 527–528, 401–412.
Chang, S., Lu, C., Huang, H., Hsu, S., 2015. Removal of VOCs emitted from p-xylene liquid storage tanks by a full-scale compost biofilter. Process Saf. Environ. Protect. 93, 218–226.
Chen, Y., Wang, X., He, S., Zhu, S., Shen, S., 2016. The performance of a two-layer biotrickling filter filled with new mixed packing materials for the removal of H2S from air. J. Environ. Manag. 165, 11–16.
Cheng, Z., Sun, Z., Zhu, S., Lou, Z., Zhu, N., Feng, L., 2019. The identification and health risk assessment of odor emissions from waste landfilling and composting. Sci. Total Environ. 649, 1038–1044.
Das, D., Rene, E.R., Dupont, C., Dufourny, A., Blin, J., Hullebusch, E.V.D., 2019. Performance of a compost and biochar packed biofilter for gas-phase hydrogen sulfide removal. Bioresour. Technol. 273, 581–591.
Delhomenie, M.C., Heitz, M., 2005. Biofiltration of air: a review. Crit. Rev. Biotechnol. 25, 53–72.
De Vela, R.J.L., Gostomski, P.A., 2018. Minimising biomass accumulation in biotrickling filters. Rev. Environ. Sci. Biotechnol. 17, 417–430.
Dorado, A.D., Gabriel, D., Gamisans, X., 2015. Biofiltration of WWTP sludge composting emissions at contact times of 2-10 s by structured/unstructured packing materials. Process Biochem. 50, 1405–1412.
González-Sánchez, A., Posten, C., 2017. Fate of H2S during the cultivation of Chlorella sp. deployed for biogas upgrading. J. Environ. Manag. 191, 252–257.
JRC, 2014. Best Available Techniques (BAT) Reference Document for Common Waste Water and Waste Gas Treatment/Management Systems in the Chemical Sector. available at: http://eippcb.jrc.ec.europa.eu/reference/BREF/CWW_Final_Draft_07_ 2014.pdf.
Kasperczyk, D., Urbaniec, K., 2015. Application of a compact trickle-bed bioreactor to the biodegradation of pollutants from the ventillation air in a copper-ore mine. J. Clean. Prod. 87, 971–976.
Kennes, K., Montes, M., López, M.E., Veiga, M.C., 2009. Waste gas treatment in bioreactors: environmental engineering aspects. Can. J. Civ. Eng. 36, 1887–1894.
Kennes, C., Veiga, M.C., 2001. Conventional biofilters. In: Kennes, C., Veiga, M.C. (Eds.), Bioreactors for Waste Gas Treatment. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 47–98.
Lim, J.-H., Cha, J.-S., Kong, B.-J., Baek, S.-H., 2018. Characterization of odorous gases at landfill site and in surrounding areas. J. Environ. Manag. 206, 291–303.
López, M.E., Rene, E.R., Veiga, M.C., Kennes, C., 2012. Biogas technologies and cleaning techniques. In: Lichtfouse, E., Schwarzbauer, J., Robert, D. (Eds.), Environmental Chemistry for a Sustainable World. Springer, Dordrecht, The Netherlands, pp. 347–377.
Matlock, B.C., Beringer, R.W., Ash, D.L., Allen, M.W., Page, A.F., 2011. Analysing differences in bacterial optical density measurements between spectrophotometers. Thermo Scientific Technical Note 52236. https://assets.thermofisher.com/TFSAssets/CAD/posters/nanodroptryPOSTER.pdf.
Mudliar, S., Giri, B., Padoley, K., Satpute, D., Dixit, R., Bhatt, P., Pandey, R., Juwarkar, A., Vaidya, A., 2010. Bioreactors for treatment of VOCs and odours - a review. J. Environ. Manag. 91, 1039–1054.
Nicell, J.A., 2009. Assessment and regulation of odour impacts. Atmos. Environ. 43, 196–206.
Oyarzun, P., Alarcón, L., Calabriano, G., Bejarano, J., Nuñez, D., Ruiz-Taglec, N., Urrutia, H., 2019. Trickling filter technology for biotreatment of nitrogenous compounds emitted in exhaust gases from fishmeal plants. J. Environ. Manag. 232, 165–170.
Raj, I., Vaidya, A.N., Pandey, R.A., Bansiwal, A., Deshmukh, S., Purohit, H.J., 2018. Recent advancements in the mitigation of obnoxious nitrogenous gases. J. Environ. Manag. 205, 319–336.
Rybarczyk, P., Szulczyński, B., Gębicki, J., Hupka, J., 2019. Treatment of malodorous air in biotrickling filters: a review. Biochem. Eng. J. 141, 146–162.
Rene, E.R., Maliyekkal, S.M., Philip, L., Swaminathan, T., 2006. Back-propagation neural network for performance prediction in trickling bed air biofilter. Int. J. Environ. Pollut. 28, 382–401.
Rene, E.R., Veiga, M.C., Kennes, C., 2012. Combined biological and physicochemical waste-gas cleaning techniques. J. Environ. Sci. Health Part A 47, 920–939.
Schnelle Jr., K.B., Dunn, R.F., Ternes, M.E., 2015. Air Pollution Control Technology Handbook, second ed. CRC Press, pp. 239–258.
Sempere, F., Winter, P., Waalkens, A., Hühnert, N., Cranshaw, I., Beigi, B., Thorpe, R.B., 2018. Treatment of discontinuous emission of sewage sludge odours by a full scale biotrickling filter with an activated carbon polishing unit. Water Sci. Technol. 77, 2482–2490.
Trabue, S., Scoggina, K., Tyndall, J., Sauer, T., Hernandez-Ramirez, G., Pfeiffer, R., Hatfield, J., 2019. Odorous compounds sources and transport from a swine deep-pit finishing operation: a case study. J. Environ. Manag. 233, 12–23.
Wu, H., Yan, H., Quan, Y., Zhao, H., Jiang, N., Yin, C., 2018. Recent progress and perspectives in biotrickling filters for VOCs and odorous gases treatment. J. Environ. Manag. 222, 409–419.
dc.rights.license.none.fl_str_mv Atribución
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_14cb
rights_invalid_str_mv Atribución
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.extent.spa.fl_str_mv 413-419 p.
dc.coverage.temporal.spa.fl_str_mv Vol. 236
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Medellín y Envigado
dc.publisher.program.spa.fl_str_mv Ingeniería Civil
dc.publisher.place.spa.fl_str_mv Medellín
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/275ba7a7-306e-499c-bb01-d9589e350275/download
https://repository.ucc.edu.co/bitstreams/fff5a972-44cc-4437-9022-773bfece12d2/download
https://repository.ucc.edu.co/bitstreams/7a898da1-1f22-4d2f-bf42-87795183a8dd/download
https://repository.ucc.edu.co/bitstreams/26df118a-d214-4a18-8cde-9a543b6f43b1/download
bitstream.checksum.fl_str_mv b44d26b5f9ea5ada836bba3dd52b2e0c
3bce4f7ab09dfc588f126e1e36e98a45
6d76512f3dea3e3311c92cd8a489cd8c
11884ae15e9d8a5f60dac4a0d7b9b5be
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814246561188675584
spelling Kasperczyk, DamianUrbaniecb, KrzysztofBarbusinskic, KrzysztofRened, Eldon R.Colmenares Quintero, Ramón FernandoVol. 2362020-04-22T15:14:38Z2020-04-22T15:14:38Z2019-04-1503014797https://hdl.handle.net/20.500.12494/17450Kasperczyk, Damian & Urbaniec, Krzysztof & Barbusinski, Krzysztof & Rene, Eldon & Colmenares Quintero, Ramon. (2019). Application of a compact trickle-bed bioreactor for the removal of odor and volatile organic compounds emitted from a wastewater treatment plant. Journal of Environmental Management. 236. 413-419. Doi.10.1016/j.jenvman.2019.01.106.Se probó un biorreactor compacto de lecho de goteo (CTBB) para la eliminación de los compuestos orgánicos volátiles (COV) y el sulfuro de hidrógeno (H2S) presentes en el aire de escape de una planta de tratamiento de aguas residuales. A velocidades de flujo de gas que variaban entre 2,0 y 30,0m3/h y para cargas de contaminantes específicos de hasta 20 g/(m3-h), las eficiencias de eliminación de H2S y COV eran >95%. El CTBB fue diseñado para una concentración máxima de H2S de ∼200 ppm y se notaron eficiencias de remoción> 97%. Las concentraciones de COV estaban en el rango de 25-240 ppmv y la eficiencia de remoción estaba en el rango de 85-99%. También se investigaron las posibles consecuencias de una sobrecarga excesiva de contaminantes y el tiempo necesario para regenerar la actividad microbiana y reanimar las condiciones de proceso estables en el CTBB. El aumento de la concentración de H2S de 400 a 600 ppmv durante unas pocas horas causó la intoxicación del biorreactor; sin embargo, cuando se restablecieron las concentraciones originales de H2S, se comprobó la estabilidad del funcionamiento del CTBB en un plazo de 3 h.A compact trickle-bed bioreactor (CTBB) was tested for the removal of volatile organic compounds (VOCs) and hydrogen sulphide (H2S) present in the exhaust air of a wastewater treatment plant. At gas-flow rates varying between 2.0 and 30.0m3/h and for specific pollutant loads up to 20 g/(m3·h), removal efficiencies for H2S and VOC were>95%. The CTBB was designed for a maximum H2S concentration of ∼200 ppm and removal efficiencies> 97% were noticed. VOC concentrations were in the range of 25–240 ppmv and the removal efficiency was in the range of 85–99%. Possible consequences of an excessive pollutant overload and the time required for regenerating the microbial activity and reviving stable process conditions in the CTBB were also investigated. An increase in the H2S concentration from 400 to 600 ppmv for a few hours caused bioreactor poisoning; however, when original H2S concentrations were restored, stable CTBB operation was ascertained within 3 h.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000192503https://orcid.org/0000-0003-1166-1982https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000005961biuro@ekoinwentyka.plramon.colmenaresq@campusucc.edu.cohttps://scholar.google.com/citations?user=9HLAZYUAAAAJ&hl=es413-419 p.Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Civil, Medellín y EnvigadoIngeniería CivilMedellínhttps://www.sciencedirect.com/science/article/pii/S0301479719301215Journal of Environmental ManagementAlfonsín, C., Lebrero, R., Estrada, J.M., Muñoz, R., Kraakman, N.J.R., Feijoo, G., Moreira, M.T., 2015. Selection of odour removal technologies in wastewater treatment plants: a guideline based on life cycle assessment. J. Environ. Manag. 149, 77–84.Arellano-García, L., Dorado, A.D., Morales-Guadarrama, A., Sacristan, E., Gamisans, X., Revah, S., 2015. Modeling the effects of biomass accumulation on the performance of a biotrickling filter packed with PUF support for the alkaline biotreatment of dimethyl disulfide vapors in air. Appl. Microbiol. Biotechnol. 99, 97–107Bajpai, P., 2014. Biological Odour Treatment. Springer, Heidelberg-New York-DordrechtLondon.Barbusinski, K., Kalemba, K., Kasperczyk, D., Urbaniec, K., Kozik, V., 2017. Biological methods for odor treatment - a review. J. Clean. Prod. 152, 223–241.Bindra, N., Dubey, B., Dutta, A., 2015. Technological and life cycle assessment of organics processing odour control technologies. Sci. Total Environ. 527–528, 401–412.Chang, S., Lu, C., Huang, H., Hsu, S., 2015. Removal of VOCs emitted from p-xylene liquid storage tanks by a full-scale compost biofilter. Process Saf. Environ. Protect. 93, 218–226.Chen, Y., Wang, X., He, S., Zhu, S., Shen, S., 2016. The performance of a two-layer biotrickling filter filled with new mixed packing materials for the removal of H2S from air. J. Environ. Manag. 165, 11–16.Cheng, Z., Sun, Z., Zhu, S., Lou, Z., Zhu, N., Feng, L., 2019. The identification and health risk assessment of odor emissions from waste landfilling and composting. Sci. Total Environ. 649, 1038–1044.Das, D., Rene, E.R., Dupont, C., Dufourny, A., Blin, J., Hullebusch, E.V.D., 2019. Performance of a compost and biochar packed biofilter for gas-phase hydrogen sulfide removal. Bioresour. Technol. 273, 581–591.Delhomenie, M.C., Heitz, M., 2005. Biofiltration of air: a review. Crit. Rev. Biotechnol. 25, 53–72.De Vela, R.J.L., Gostomski, P.A., 2018. Minimising biomass accumulation in biotrickling filters. Rev. Environ. Sci. Biotechnol. 17, 417–430.Dorado, A.D., Gabriel, D., Gamisans, X., 2015. Biofiltration of WWTP sludge composting emissions at contact times of 2-10 s by structured/unstructured packing materials. Process Biochem. 50, 1405–1412.González-Sánchez, A., Posten, C., 2017. Fate of H2S during the cultivation of Chlorella sp. deployed for biogas upgrading. J. Environ. Manag. 191, 252–257.JRC, 2014. Best Available Techniques (BAT) Reference Document for Common Waste Water and Waste Gas Treatment/Management Systems in the Chemical Sector. available at: http://eippcb.jrc.ec.europa.eu/reference/BREF/CWW_Final_Draft_07_ 2014.pdf.Kasperczyk, D., Urbaniec, K., 2015. Application of a compact trickle-bed bioreactor to the biodegradation of pollutants from the ventillation air in a copper-ore mine. J. Clean. Prod. 87, 971–976.Kennes, K., Montes, M., López, M.E., Veiga, M.C., 2009. Waste gas treatment in bioreactors: environmental engineering aspects. Can. J. Civ. Eng. 36, 1887–1894.Kennes, C., Veiga, M.C., 2001. Conventional biofilters. In: Kennes, C., Veiga, M.C. (Eds.), Bioreactors for Waste Gas Treatment. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 47–98.Lim, J.-H., Cha, J.-S., Kong, B.-J., Baek, S.-H., 2018. Characterization of odorous gases at landfill site and in surrounding areas. J. Environ. Manag. 206, 291–303.López, M.E., Rene, E.R., Veiga, M.C., Kennes, C., 2012. Biogas technologies and cleaning techniques. In: Lichtfouse, E., Schwarzbauer, J., Robert, D. (Eds.), Environmental Chemistry for a Sustainable World. Springer, Dordrecht, The Netherlands, pp. 347–377.Matlock, B.C., Beringer, R.W., Ash, D.L., Allen, M.W., Page, A.F., 2011. Analysing differences in bacterial optical density measurements between spectrophotometers. Thermo Scientific Technical Note 52236. https://assets.thermofisher.com/TFSAssets/CAD/posters/nanodroptryPOSTER.pdf.Mudliar, S., Giri, B., Padoley, K., Satpute, D., Dixit, R., Bhatt, P., Pandey, R., Juwarkar, A., Vaidya, A., 2010. Bioreactors for treatment of VOCs and odours - a review. J. Environ. Manag. 91, 1039–1054.Nicell, J.A., 2009. Assessment and regulation of odour impacts. Atmos. Environ. 43, 196–206.Oyarzun, P., Alarcón, L., Calabriano, G., Bejarano, J., Nuñez, D., Ruiz-Taglec, N., Urrutia, H., 2019. Trickling filter technology for biotreatment of nitrogenous compounds emitted in exhaust gases from fishmeal plants. J. Environ. Manag. 232, 165–170.Raj, I., Vaidya, A.N., Pandey, R.A., Bansiwal, A., Deshmukh, S., Purohit, H.J., 2018. Recent advancements in the mitigation of obnoxious nitrogenous gases. J. Environ. Manag. 205, 319–336.Rybarczyk, P., Szulczyński, B., Gębicki, J., Hupka, J., 2019. Treatment of malodorous air in biotrickling filters: a review. Biochem. Eng. J. 141, 146–162.Rene, E.R., Maliyekkal, S.M., Philip, L., Swaminathan, T., 2006. Back-propagation neural network for performance prediction in trickling bed air biofilter. Int. J. Environ. Pollut. 28, 382–401.Rene, E.R., Veiga, M.C., Kennes, C., 2012. Combined biological and physicochemical waste-gas cleaning techniques. J. Environ. Sci. Health Part A 47, 920–939.Schnelle Jr., K.B., Dunn, R.F., Ternes, M.E., 2015. Air Pollution Control Technology Handbook, second ed. CRC Press, pp. 239–258.Sempere, F., Winter, P., Waalkens, A., Hühnert, N., Cranshaw, I., Beigi, B., Thorpe, R.B., 2018. Treatment of discontinuous emission of sewage sludge odours by a full scale biotrickling filter with an activated carbon polishing unit. Water Sci. Technol. 77, 2482–2490.Trabue, S., Scoggina, K., Tyndall, J., Sauer, T., Hernandez-Ramirez, G., Pfeiffer, R., Hatfield, J., 2019. Odorous compounds sources and transport from a swine deep-pit finishing operation: a case study. J. Environ. Manag. 233, 12–23.Wu, H., Yan, H., Quan, Y., Zhao, H., Jiang, N., Yin, C., 2018. Recent progress and perspectives in biotrickling filters for VOCs and odorous gases treatment. J. Environ. Manag. 222, 409–419.Biorreactor compacto de lecho de goteoBiodegradaciónCompuesto orgánico volátilSulfuro de hidrógenoPlanta de tratamiento de aguas residualesCompact trickle-bed bioreactorBiodegradationVolatile organic compoundHydrogen sulphideWastewater treatment plantApplication of a compact trickle-bed bioreactor for the removal of odor and volatile organic compounds emitted from a wastewater treatment plantArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbPublicationORIGINALApplication_compact trickle-bed_licenciadeuso.pdfApplication_compact trickle-bed_licenciadeuso.pdfLicencia de Usoapplication/pdf184931https://repository.ucc.edu.co/bitstreams/275ba7a7-306e-499c-bb01-d9589e350275/downloadb44d26b5f9ea5ada836bba3dd52b2e0cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/fff5a972-44cc-4437-9022-773bfece12d2/download3bce4f7ab09dfc588f126e1e36e98a45MD53THUMBNAILApplication_compact trickle-bed_licenciadeuso.pdf.jpgApplication_compact trickle-bed_licenciadeuso.pdf.jpgGenerated Thumbnailimage/jpeg5118https://repository.ucc.edu.co/bitstreams/7a898da1-1f22-4d2f-bf42-87795183a8dd/download6d76512f3dea3e3311c92cd8a489cd8cMD54TEXTApplication_compact trickle-bed_licenciadeuso.pdf.txtApplication_compact trickle-bed_licenciadeuso.pdf.txtExtracted texttext/plain5672https://repository.ucc.edu.co/bitstreams/26df118a-d214-4a18-8cde-9a543b6f43b1/download11884ae15e9d8a5f60dac4a0d7b9b5beMD5520.500.12494/17450oai:repository.ucc.edu.co:20.500.12494/174502024-08-10 20:59:08.25restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=