An evaluation of final disposal alternatives for Municipal Solid Waste through Life Cycle Assessment: a case of study in Colombia
El relleno sanitario sigue siendo la tecnología más utilizada en los países en vías de desarrollo para la disposición final de los residuos sólidos urbanos (RSU), a pesar de los impactos negativos sobre el medio ambiente como los causados por la liberación de gases de efecto invernadero (GEI) que co...
- Autores:
-
Caicedo Concha, Diana Milena
Sandoval-Cobo, John J
Stringfellow, Anne
Colmenares Quintero, Ramón Fernando
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2021
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/46449
- Acceso en línea:
- https://doi.org/10.1080/23311916.2021.1956860
https://hdl.handle.net/20.500.12494/46449
- Palabra clave:
- Vertedero
Gas de vertedero
Biogás
Análisis del ciclo de vida
Países en desarrollo
Objetivos de Desarrollo Sostenible
Landfill
Landfill gas
Biogas
Life cycle analysis
Developing countries
Sustainable Development Goals
- Rights
- openAccess
- License
- Atribución
id |
COOPER2_3fabdba0983c16f778a29408adb60be4 |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/46449 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
An evaluation of final disposal alternatives for Municipal Solid Waste through Life Cycle Assessment: a case of study in Colombia |
title |
An evaluation of final disposal alternatives for Municipal Solid Waste through Life Cycle Assessment: a case of study in Colombia |
spellingShingle |
An evaluation of final disposal alternatives for Municipal Solid Waste through Life Cycle Assessment: a case of study in Colombia Vertedero Gas de vertedero Biogás Análisis del ciclo de vida Países en desarrollo Objetivos de Desarrollo Sostenible Landfill Landfill gas Biogas Life cycle analysis Developing countries Sustainable Development Goals |
title_short |
An evaluation of final disposal alternatives for Municipal Solid Waste through Life Cycle Assessment: a case of study in Colombia |
title_full |
An evaluation of final disposal alternatives for Municipal Solid Waste through Life Cycle Assessment: a case of study in Colombia |
title_fullStr |
An evaluation of final disposal alternatives for Municipal Solid Waste through Life Cycle Assessment: a case of study in Colombia |
title_full_unstemmed |
An evaluation of final disposal alternatives for Municipal Solid Waste through Life Cycle Assessment: a case of study in Colombia |
title_sort |
An evaluation of final disposal alternatives for Municipal Solid Waste through Life Cycle Assessment: a case of study in Colombia |
dc.creator.fl_str_mv |
Caicedo Concha, Diana Milena Sandoval-Cobo, John J Stringfellow, Anne Colmenares Quintero, Ramón Fernando |
dc.contributor.author.none.fl_str_mv |
Caicedo Concha, Diana Milena Sandoval-Cobo, John J Stringfellow, Anne Colmenares Quintero, Ramón Fernando |
dc.subject.spa.fl_str_mv |
Vertedero Gas de vertedero Biogás Análisis del ciclo de vida Países en desarrollo Objetivos de Desarrollo Sostenible |
topic |
Vertedero Gas de vertedero Biogás Análisis del ciclo de vida Países en desarrollo Objetivos de Desarrollo Sostenible Landfill Landfill gas Biogas Life cycle analysis Developing countries Sustainable Development Goals |
dc.subject.other.spa.fl_str_mv |
Landfill Landfill gas Biogas Life cycle analysis Developing countries Sustainable Development Goals |
description |
El relleno sanitario sigue siendo la tecnología más utilizada en los países en vías de desarrollo para la disposición final de los residuos sólidos urbanos (RSU), a pesar de los impactos negativos sobre el medio ambiente como los causados por la liberación de gases de efecto invernadero (GEI) que contribuyen al calentamiento global (GW). El gobierno colombiano estableció una meta de reducción del 20% de las emisiones de GEI para el año 2030, para lo cual el sector de la gestión de residuos sólidos tiene un papel importante. Además, el logro de las metas de los Objetivos de Desarrollo Sostenible (ODS) está jugando un papel clave para la agenda del gobierno y lo hará en los próximos años. En este contexto, existe un importante margen de mejora de las alternativas de gestión en los vertederos actualmente operativos en el país, especialmente en lo que se refiere a las medidas para reducir las emisiones fugitivas a la atmósfera y los lixiviados. Este trabajo evalúa, mediante métodos de evaluación del ciclo de vida (ACV), los impactos ambientales asociados a un vertedero en Colombia bajo cuatro escenarios diferentes: vertedero abierto (cero) y vertedero convencional bajo tres alternativas de gestión de gases de vertedero (GV): venteo (a), quema en antorcha (b) y valorización energética (c). Las categorías de impacto, así como los métodos de evaluación del impacto del ciclo de vida (EICV) utilizados, se determinaron a través de la revisión de estudios de ACV para sistemas de gestión de RSU en países en desarrollo. Los principales resultados muestran que el potencial de calentamiento global (PCG) fue el principal impacto ambiental causado por el funcionamiento del vertedero en las condiciones consideradas; sin embargo, el PCG se redujo significativamente al pasar de escenarios de gestión sin tratamiento de los Gases de Efecto Invernadero (o y a: comunes a la mayoría de los vertederos de los países en desarrollo) a escenarios en los que los Gases de Efecto Invernadero se queman (b) o se utilizan para la producción de energía (c). Estos resultados sugieren que se debe considerar la adopción de tecnologías para la captura, quema y recuperación de energía del LFG si se esperan reducciones importantes de GEI en el sector de la gestión de residuos, así como proporcionar incentivos económicos para mejorar la sostenibilidad operativa de los vertederos en los países en desarrollo. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-07-11 |
dc.date.accessioned.none.fl_str_mv |
2022-09-20T13:52:40Z |
dc.date.available.none.fl_str_mv |
2022-09-20T13:52:40Z |
dc.type.none.fl_str_mv |
Artículos Científicos |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
23311916 |
dc.identifier.uri.spa.fl_str_mv |
https://doi.org/10.1080/23311916.2021.1956860 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/46449 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Diana M Caicedo-Concha, John J Sandoval-Cobo, Anne Stringfellow & Ramon Fernando Colmenares-Quintero | (2021) An evaluation of final disposal alternatives for municipal solid waste through life cycle assessment: A case of study in Colombia, Cogent Engineering, 8:1, 1956860, DOI: 10.1080/23311916.2021.1956860 |
identifier_str_mv |
23311916 Diana M Caicedo-Concha, John J Sandoval-Cobo, Anne Stringfellow & Ramon Fernando Colmenares-Quintero | (2021) An evaluation of final disposal alternatives for municipal solid waste through life cycle assessment: A case of study in Colombia, Cogent Engineering, 8:1, 1956860, DOI: 10.1080/23311916.2021.1956860 |
url |
https://doi.org/10.1080/23311916.2021.1956860 https://hdl.handle.net/20.500.12494/46449 |
dc.relation.isversionof.spa.fl_str_mv |
https://www.tandfonline.com/doi/ref/10.1080/23311916.2021.1956860?scroll=top |
dc.relation.ispartofjournal.spa.fl_str_mv |
Cogent Engineering |
dc.relation.references.spa.fl_str_mv |
Abduli, A. N., & Mansoor Yonesi, A. (2011). Life cycle assessment (LCA) of solid waste management strategies in Tehran: Landfill and composting plus landfill. Environmental Monitoring and Assessment, 178(1), 487–498. https://doi.org/10.1007/s10661- 010-1707-x Abeliotis, K., Kalogeropoulos, A., & Lasaridi, K. (2012). Life cycle assessment of the MBT plant in Ano Liossia, Athens, Greece. Waste Manag, 32(1), 213–219. https://doi.org/10.1016/j.wasman.2011.09.002 Arafat, H. A., Jijakli, K., & Ahsan, A. (Oct 2015). Environmental performance and energy recovery potential of five processes for municipal solid waste treatment. Journal of Cleaner Production, 105, 233–240. https://doi.org/10.1016/j.jclepro.2013.11.071 Assamoi, B., & Lawryshyn, Y. (2012). The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion. Waste Manag, 32(5), 1019–1030. https://doi.org/10.1016/j.wasman.2011. 10.023 Aye, L., & Widjaya, E. R. (2006). Environmental and economic analyses of waste disposal options for Caicedo-Concha et al., Cogent Engineering (2021), 8: 1956860 https://doi.org/10.1080/23311916.2021.1956860 Page 14 of 17 traditional markets in Indonesia. Waste Manag, 26 (10), 1180–1191. https://doi.org/10.1016/j.wasman. 2005.09.010 2005.09.010Banar, M., Cokaygil, Z., & Ozkan, A. (2009). Life cycle assessment of solid waste management options for Eskisehir, Turkey. Waste Manag, 29(1), 54–62. https:// doi.org/10.1016/j.wasman.2007.12.006 2007.12.006Bernstad Saraiva Schott, A., Wenzel, H., & la Cour Jansen, J. (Feb 2016). Identification of decisive fac tors for greenhouse gas emissions in comparative lifecycle assessments of food waste management – an analytical review. J. Clean. Prod, 13-24. https://doi. org/10.1016/j.jclepro.2016.01.079 2016.01.079BID. (2015). Estudio tecnologías alternativas de disposición final o aprovechamiento de residuos sólidos. Propuesta de ajuste al Decreto 838 de 2005. https://colaboracion.dnp.gov.co/CDT/Conpes/Econ% C3%B3micos/3874.pdf pdfBoldrin, A., Neidel, T. L., Damgaard, A., Bhander, G. S., Møller, J., & Christensen, T. H. (2011). Modelling of environmental impacts from biological treatment of organic municipal waste in EASEWASTE. Waste Manag, 31(4), 619–630. https://doi.org/10.1016/j.was man.2010.10.025 Caicedo-Concha, D. M., Sandoval-Cobo, J. J., Fernando, C.- Q. R., Marmolejo-Rebellón, L. F., Torres-Lozada, P., & Sonia, H. (2019). The potential of methane produc tion using aged landfill waste in developing tries: A case of study in Colombia. Cogent Eng, 6(1), 1-15. https://doi.org/10.1080/23311916.2019. 1664862 Cárdenas Cleves, L. M., Parra Orobio, B. A., Torres Lozada, P., & Vásquez Franco, C. H. (2016). Perspectivas del ensayo de potencial bioquímico de metano - PBM para el control del proceso de digestión anaerobia de residuos. Rev. Investig. Optim. y Nuevos procesos en Ing, 29(1), 95–108. http://www. scielo.org.co/scielo.php?pid=S0120- 100X2016000100009&script=sci_abstract&tlng=es Carolina, A. (2017). “Life Cycle Assessment and Multi- criteria Decision Analysis: Selection of a strategy for domestic food waste management in Rio de Janeiro. Journal of Cleaner Production, 143, 744 - 7561. Cherubini, F., Bargigli, S., & Ulgiati, S. (2009). Life cycle assessment (LCA) of waste management strategies: landfilling, sorting plant and incineration. Energy, 34 (12), 2116–2123. https://doi.org/10.1016/j.energy. 2008.08.023 Chi, Y., Dong, J., Tang, Y., Huang, Q., & Ni, M. (2015). Life cycle assessment of municipal solid waste source-separated collection and integrated waste management systems in Hangzhou, China. J. Mater. Cycles Waste Manag, 17(4), 695–706. https://doi.org/ 10.1007/s10163-014-0300-8 Christensen, T. H. (2020). Application of LCA modelling in integrated waste management. Waste Manag, 118, 313–322. https://doi.org/10.1016/j.wasman.2020.08. 034 Clavreul, J., Baumeister, H., Christensen, T. H., & Damgaard, A. (Oct 2014). An environmental assess ment system for environmental technologies. Environmental Modelling and Software, 60, 18–30. https://doi.org/10.1016/j.envsoft.2014.06.007 de Planeación, D. N. (2016). Política nacional para la gestión de residuos sólidos. CONPES 3874, I, 73. https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%C3%B3micos/3874.pdf [Google Scholar] Damgaard, A., Manfredi, S., Merrild, H., Stensøe, S., & Christensen, T. H. (2011). LCA and economic evaluation of landfill leachate and gas technologies. Waste Manag, 31(7), 1532–1541. https://doi.org/10.1016/j.wasman.2011.02.027 [Crossref], [PubMed], [Web of Science ®], [Google Scholar] Edwards, J., Othman, M., Crossin, E., & Burn, S. (2017). Anaerobic co-digestion of municipal food waste and sewage sludge: A comparative life cycle assessment in the context of a waste service provision. Bioresource Technology, 223, 237–249. https://doi.org/10.1016/j.biortech.2016.10.044 [Crossref], [PubMed], [Web of Science ®], [Google Scholar] European Commission. (2010). International Reference Life Cycle Data System (ILCD) Handbook and General Guide for Life Cycle Assessment. DOI: https://doi.org/10.2788/94987 [Google Scholar] Ferronato, N., Moresco, L., Guisbert Lizarazu, G. E., Gorritty Portillo, M. A., Conti, F., & Torretta, V. (2021). Sensitivity analysis and improvements of the recycling rate in municipal solid waste life cycle assessment: focus on a Latin American developing context. Waste Manag, 128, 1–15. https://doi.org/10.1016/j.wasman.2021.04.043 [Crossref], [PubMed], [Web of Science ®], [Google Scholar] Gunamantha, M., & Sarto. (2012). Life cycle assessment of municipal solid waste treatment to energy options: case study of KARTAMANTUL region, Yogyakarta. Renew. Energy, 41, 277–284. https://doi.org/10.1016/j.renene.2011.11.008 [Crossref], [Web of Science ®], [Google Scholar] Hong, J., Li, X., & Zhaojie, C. (Nov 2010). Life cycle assessment of four municipal solid waste management scenarios in China. Waste Manag, 30(11), 2362–2369. https://doi.org/10.1016/j.wasman.2010.03.038 [Crossref], [PubMed], [Web of Science ®], [Google Scholar] Hong, R. J. (2006). Life cycle assessment of BMT-based integrated municipal solid waste management: case study in Pudong, China. Resour. Conserv. Recycl, 49(2), 129–146. https://doi.org/10.1016/j.resconrec.2006.03.007 [Crossref], [Web of Science ®], [Google Scholar] Icontec. (2006). “Gestión ambiental. Análisis de Ciclo de Vida. Principios y marco de referencia. UNE-EN ISO 14040:2006”. [Google Scholar] ISO. (2006). ISO 14040:2006(es), Gestión ambiental — Análisis del ciclo de vida — Principios y marco de referencia. [Google Scholar] ISO – ICONTEC. (2007). Norma técnica Colombiana TTC-ISO 14040. Icontec, (571), 1–24. https://tienda.icontec.org/gp-gestion-ambiental-analisis-del-ciclo-de-vida-principios-y-marco-de-referencia-ntc-iso14040-2007.html [Google Scholar] Laner, D. (2009). The consideration of long-term emissions from landfills within life-cycle assessment. Waste Manag. Res, 27(5), 463–470. https://doi.org/10.1177/0734242X09102335 [Crossref], [PubMed], [Web of Science ®], [Google Scholar] Laurent, A. (Mar 2014). Review of LCA studies of solid waste management systems–part II: Methodological guidance for a better practice. Waste Manag, 34(3), 589–606. https://doi.org/10.1016/j.wasman.2013.12.004 [Crossref], [PubMed], [Web of Science ®], [Google Scholar] Liamsanguan, C., & Gheewala, S. H. (2008). LCA: A decision support tool for environmental assessment of MSW management systems. Journal of Environmental Management, 87(1), 132–138. https://doi.org/10.1016/j.jenvman.2007.01.003 [Crossref], [PubMed], [Web of Science ®], [Google Scholar] Lima, P. D. M., Colvero, D. A., Gomes, A. P., Wenzel, H., Schalch, V., & Cimpan, C. (2018). Environmental assessment of existing and alternative options for management of municipal solid waste in Brazil. Waste Manag, 78, 857–870. https://doi.org/10.1016/j.wasman.2018.07.007 [Crossref], [PubMed], [Web of Science ®], [Google Scholar] Majumdar, D. (2014). Emission, speciation, and evaluation of impacts of non-methane volatile organic compounds from open dump site. Journal of the Air & Waste Management Association, 67(7), 834-845. https://www.tandfonline.com/doi/full/ https://doi.org/10.1080/10962247.2013.873747 [Taylor & Francis Online], [Google Scholar] Manaf, L. A., Samah, M. A. A., & Zukki, N. I. M. (2009). Municipal solid waste management in Malaysia: practices and challenges. Waste Manag, 29(11), 2902–2906. https://doi.org/10.1016/j.wasman.2008.07.015 [Crossref], [PubMed], [Web of Science ®], [Google Scholar] Max, L., Coelho, G., & Celina, L. (2018). Resources, conservation and recycling applying life cycle assessment to support environmentally sustainable waste management strategies in Brazil. “Resources, Conserv. Recycl, 128, 438–450. https://doi.org/10.1016/j.resconrec.2016.09.026 [Crossref], [Web of Science ®], [Google Scholar] Mendes, M. R., Aramaki, T., & Hanaki, K. (2003). Assessment of the environmental impact of management measures for the biodegradable fraction of municipal solid waste in Sao Paulo City. Waste Manag, 23(5), 403–409. https://doi.org/10.1016/S0956-053X(03)00058-8 [Crossref], [PubMed], [Web of Science ®], [Google Scholar] Mendes, M. R., Aramaki, T., & Hanaki, K. (2004). Comparison of the environmental impact of incineration and landfilling in Sao Paulo City as determined by LCA. Resour. Conserv. Recycl, 41(1), 47–63. https://doi.org/10.1016/j.resconrec.2003.08.003 [Crossref], [Web of Science ®], [Google Scholar] Menikpura, S. N. M., Gheewala, S. H., & Bonnet, S. (2012). Sustainability assessment of municipal solid waste management in Sri Lanka: problems and prospects. J. Mater. Cycles Waste Manag, 14(3), 181–192. https://doi.org/10.1007/s10163-012-0055-z [Crossref], [Web of Science ®], [Google Scholar] Milutinovi, B., Stefanovi, G., Ðeki, P. S., Mijailovi, I., & Tomi, M. (2017). Environmental assessment of waste management scenarios with energy recovery using life cycle assessment and multi-criteria analysis. Energy, 137, 917–926. https://doi.org/10.1016/j.energy.2017.02.167 [Crossref], [Web of Science ®], [Google Scholar] Ministerio de Ambiente y Desarrollo Sostenible. (2019). Estrategia Nacional de Economía Circular. [Google Scholar] Özeler, D., Yetiş, Ü., & Demirer, G. N. (2006). Life cycle assesment of municipal solid waste management methods: ankara case study. Environ. Int, 32(3), 405–411. https://doi.org/10.1016/j.envint.2005.10.002 [Crossref], [PubMed], [Web of Science ®], [Google Scholar] Saheri, S. (2012). Life cycle assessment for solid waste disposal options in Malaysia. Polish J. Environ. Stud, 21(5), 1377–1382. [Web of Science ®], [Google Scholar] Sandoval-Cobo, J. J. (2020). Methane potential and degradation kinetics of fresh and excavated municipal solid waste from a tropical landfill in Colombia. Sustain. Environ. Res, 30(1). https://doi.org/10.1186/s42834-020-00048-6 [Crossref], [Web of Science ®], [Google Scholar] Superintendencia de Servicios Públicos Domiciliarios. (2018). Informe de Disposición Final de Residuos Sólidos – 2017. [Google Scholar] Traivivatana, S., Wangjiraniran, W., Junlakarn, S., & Wansophark, N. (Oct 2017). Thailand energy outlook for the Thailand integrated energy blueprint (TIEB). Energy Procedia, 138, 399–404. https://doi.org/10.1016/j.egypro.2017.10.179 [Crossref], [Google Scholar] United Nations Department of Economic and Social Affairs (UN DESA). (2018). “Sustainable Development Goals Report 2018,” p. 64. [Crossref], [Google Scholar] Urup Anders, A. D. O. (2014). “Landfilling in EASETECH.” p. 46. [Google Scholar] USEPA/ISWA. (2012). International Best Practices Guide for Landfill Gas Energy Project. U.S. Environmental Protection Agency and ISWA (International Waste Management Association). [Google Scholar] Xing, W., Lu, W., Zhao, Y., Zhang, X., Deng, W., & Christensen, T. H. (2013). Environmental impact assessment of leachate recirculation in landfill of municipal solid waste by comparing with evaporation and discharge (EASEWASTE). Waste Manag, 33(2), 382–389. https://www.sciencedirect.com/science/article/abs/pii/S0956053X12004795 [Crossref], [PubMed], [Web of Science ®], [Google Scholar] Yang, N., Damgaard, A., Lü, F., Shao, L. M., Brogaard, L. K. S., & He, P. J. (2014). Environmental impact assessment on the construction and operation of municipal solid waste sanitary landfills in developing countries: China case study. Waste Manag, 34(5), 929–937. https://doi.org/10.1016/j.wasman.2014.02.017 [Crossref], [PubMed], [Web of Science ®], [Google Scholar] Yang, N., Zhang, H., Shao, L.-M., Lü, F., & He, P.-J. (Nov 2013). Greenhouse gas emissions during MSW landfilling in China: influence of waste characteristics and LFG treatment measures. Journal of Environmental Management, 129(5), 510–521. https://doi.org/10.1016/j.jenvman.2013.08.039 [Crossref], [PubMed], [Web of Science ®], [Google Scholar] Zhao, W., van der Voet, E., Zhang, Y., & Huppes, G. (2009). Life cycle assessment of municipal solid waste management with regard to greenhouse gas emissions: case study of Tianjin, China. The Science of the Total Environment, 407(5), 1517–1526. https://doi.org/10.1016/j.scitotenv.2008.11.007 [Crossref], [PubMed], [Web of Science ®], [Google Scholar] Zhao, Y., Christensen, T. H., Lu, W., Wu, H., & Wang, H. (2011). Environmental impact assessment of solid waste management in Beijing City, China. Waste Manag, 31(4), 793–799. https://doi.org/10.1016/j.wasman.2010.11.007 [Crossref], [PubMed], [Web of Science ®], [Google Scholar] Zhao, Y., Wang, H. T., Lu, W. J., Damgaard, A., & Christensen, T. H. (2009). Life-cycle assessment of the municipal solid waste management system in Hangzhou, China (EASEWASTE). Waste Manag. Res, 27(4), 399–406. https://doi.org/10.1177/0734242X09103823 [Crossref], [PubMed], [Web of Science ®], [Google Scholar] Ziegler-Rodriguez, K., Margallo, M., Aldaco, R., Vázquez-Rowe, I., & Kahhat, R. (2019). Transitioning from open dumpsters to landfilling in Peru: environmental benefits and challenges from a life-cycle perspective. Journal of Cleaner Production, 229, 989–1003. https://doi.org/10.1016/j.jclepro.2019.05.015 [Crossref], [Web of Science ®], [Google Scholar] |
dc.rights.license.none.fl_str_mv |
Atribución |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
1 - 18 |
dc.coverage.temporal.spa.fl_str_mv |
Vol. 8, No. 1 |
dc.publisher.spa.fl_str_mv |
Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Mecánica, Medellín y Envigado |
dc.publisher.program.spa.fl_str_mv |
Ingeniería mecanica |
dc.publisher.place.spa.fl_str_mv |
Medellín |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/6d6bb3af-3d2d-4269-aac5-a65ea93a655b/download https://repository.ucc.edu.co/bitstreams/88dac977-cf1f-464e-8bea-77e43e1d0350/download https://repository.ucc.edu.co/bitstreams/fa65ef23-fda7-417e-9d81-5e2850d3c197/download https://repository.ucc.edu.co/bitstreams/28524711-71a4-4a67-9dc4-954c6247b936/download https://repository.ucc.edu.co/bitstreams/9c1d03f9-9217-45af-a3f7-197e8adf9d4c/download https://repository.ucc.edu.co/bitstreams/3d6222e1-97fa-45e3-88d7-917790e8eed7/download https://repository.ucc.edu.co/bitstreams/574a8dce-aa41-486d-ac2c-0be02bee0b15/download |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 80de8b8a43bc0264669d5b3026b8f6ab f854ae65b938f4e3ef3f01249fb1a84c e1dc66e849fdbd4a07e34fec97d86ecd 7ac7bdba18914c4e2cb32a8aa48ebcc5 0944b40b1987b46bf3370fd55d345c98 f03197da301a07d3fb8eae5dd904c3f1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1811565478096666624 |
spelling |
Caicedo Concha, Diana MilenaSandoval-Cobo, John JStringfellow, AnneColmenares Quintero, Ramón FernandoVol. 8, No. 12022-09-20T13:52:40Z2022-09-20T13:52:40Z2021-07-1123311916https://doi.org/10.1080/23311916.2021.1956860https://hdl.handle.net/20.500.12494/46449Diana M Caicedo-Concha, John J Sandoval-Cobo, Anne Stringfellow & Ramon Fernando Colmenares-Quintero | (2021) An evaluation of final disposal alternatives for municipal solid waste through life cycle assessment: A case of study in Colombia, Cogent Engineering, 8:1, 1956860, DOI: 10.1080/23311916.2021.1956860El relleno sanitario sigue siendo la tecnología más utilizada en los países en vías de desarrollo para la disposición final de los residuos sólidos urbanos (RSU), a pesar de los impactos negativos sobre el medio ambiente como los causados por la liberación de gases de efecto invernadero (GEI) que contribuyen al calentamiento global (GW). El gobierno colombiano estableció una meta de reducción del 20% de las emisiones de GEI para el año 2030, para lo cual el sector de la gestión de residuos sólidos tiene un papel importante. Además, el logro de las metas de los Objetivos de Desarrollo Sostenible (ODS) está jugando un papel clave para la agenda del gobierno y lo hará en los próximos años. En este contexto, existe un importante margen de mejora de las alternativas de gestión en los vertederos actualmente operativos en el país, especialmente en lo que se refiere a las medidas para reducir las emisiones fugitivas a la atmósfera y los lixiviados. Este trabajo evalúa, mediante métodos de evaluación del ciclo de vida (ACV), los impactos ambientales asociados a un vertedero en Colombia bajo cuatro escenarios diferentes: vertedero abierto (cero) y vertedero convencional bajo tres alternativas de gestión de gases de vertedero (GV): venteo (a), quema en antorcha (b) y valorización energética (c). Las categorías de impacto, así como los métodos de evaluación del impacto del ciclo de vida (EICV) utilizados, se determinaron a través de la revisión de estudios de ACV para sistemas de gestión de RSU en países en desarrollo. Los principales resultados muestran que el potencial de calentamiento global (PCG) fue el principal impacto ambiental causado por el funcionamiento del vertedero en las condiciones consideradas; sin embargo, el PCG se redujo significativamente al pasar de escenarios de gestión sin tratamiento de los Gases de Efecto Invernadero (o y a: comunes a la mayoría de los vertederos de los países en desarrollo) a escenarios en los que los Gases de Efecto Invernadero se queman (b) o se utilizan para la producción de energía (c). Estos resultados sugieren que se debe considerar la adopción de tecnologías para la captura, quema y recuperación de energía del LFG si se esperan reducciones importantes de GEI en el sector de la gestión de residuos, así como proporcionar incentivos económicos para mejorar la sostenibilidad operativa de los vertederos en los países en desarrollo.Landfilling is still the most common technology used in developing countries for the final disposal of municipal solid waste (MSW), albeit the negative impacts on the environment such as those caused by the release of greenhouse gases (GHG) that contribute to global warming (GW). The Colombian government set a target of 20% reduction in GHG emissions by year 2030, for which the solid waste management sector has an important role to play. Also, the achievement of the targets of sustainable development goals (SDG) is playing a key role for the government agenda and will do so for the next years. In this context, there is an important room for improvement of the management alternatives in currently operative landfills in the country, especially in terms of measures to reduce fugitive air emissions and leachates. This paper evaluates, using life cycle assessment (LCA) methods, the environmental impacts associated with a landfill in Colombia under four different scenarios: open dumps (zero) and conventional landfill under three landfill gas (LFG) management alternatives: venting (a), flaring (b), and energy recovery (c). The impact categories as well as the life cycle impact assessment (LCIA) methods used were determined through the review of LCA studies for MSW management systems in developing countries. Main results show that global warming potential (GWP) was the main environmental impact caused by the landfill operation under the conditions considered; however, GWP was significantly reduced with the shifting from management scenarios with no LFG treatment (o and a: common to most landfills in developing countries) to scenarios where LFG is either flare (b) or utilized for energy production (c). These results suggest that adoption of technologies for LFG capture, burn, and energy recovery must be considered if important reductions of GHGs are expected from the waste management sector, as well as to provide economic incentives to improve the operational sustainability of landfills in developing countries.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001434849https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000192503https://orcid.org/0000-0003-4031-4568https://orcid.org/0000-0003-1166-1982https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000005961https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000002878diana.caicedoc@campusucc.edu.coramon.colmenaresq@campusucc.edu.co1 - 18Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Mecánica, Medellín y EnvigadoIngeniería mecanicaMedellínhttps://www.tandfonline.com/doi/ref/10.1080/23311916.2021.1956860?scroll=topCogent EngineeringAbduli, A. N., & Mansoor Yonesi, A. (2011). Life cycle assessment (LCA) of solid waste management strategies in Tehran: Landfill and composting plus landfill. Environmental Monitoring and Assessment, 178(1), 487–498. https://doi.org/10.1007/s10661- 010-1707-xAbeliotis, K., Kalogeropoulos, A., & Lasaridi, K. (2012). Life cycle assessment of the MBT plant in Ano Liossia, Athens, Greece. Waste Manag, 32(1), 213–219. https://doi.org/10.1016/j.wasman.2011.09.002Arafat, H. A., Jijakli, K., & Ahsan, A. (Oct 2015). Environmental performance and energy recovery potential of five processes for municipal solid waste treatment. Journal of Cleaner Production, 105, 233–240. https://doi.org/10.1016/j.jclepro.2013.11.071Assamoi, B., & Lawryshyn, Y. (2012). The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion. Waste Manag, 32(5), 1019–1030. https://doi.org/10.1016/j.wasman.2011. 10.023Aye, L., & Widjaya, E. R. (2006). Environmental and economic analyses of waste disposal options for Caicedo-Concha et al., Cogent Engineering (2021), 8: 1956860 https://doi.org/10.1080/23311916.2021.1956860 Page 14 of 17 traditional markets in Indonesia. Waste Manag, 26 (10), 1180–1191. https://doi.org/10.1016/j.wasman. 2005.09.0102005.09.010Banar, M., Cokaygil, Z., & Ozkan, A. (2009). Life cycle assessment of solid waste management options for Eskisehir, Turkey. Waste Manag, 29(1), 54–62. https:// doi.org/10.1016/j.wasman.2007.12.0062007.12.006Bernstad Saraiva Schott, A., Wenzel, H., & la Cour Jansen, J. (Feb 2016). Identification of decisive fac tors for greenhouse gas emissions in comparative lifecycle assessments of food waste management – an analytical review. J. Clean. Prod, 13-24. https://doi. org/10.1016/j.jclepro.2016.01.0792016.01.079BID. (2015). Estudio tecnologías alternativas de disposición final o aprovechamiento de residuos sólidos. Propuesta de ajuste al Decreto 838 de 2005. https://colaboracion.dnp.gov.co/CDT/Conpes/Econ% C3%B3micos/3874.pdfpdfBoldrin, A., Neidel, T. L., Damgaard, A., Bhander, G. S., Møller, J., & Christensen, T. H. (2011). Modelling of environmental impacts from biological treatment of organic municipal waste in EASEWASTE. Waste Manag, 31(4), 619–630. https://doi.org/10.1016/j.was man.2010.10.025Caicedo-Concha, D. M., Sandoval-Cobo, J. J., Fernando, C.- Q. R., Marmolejo-Rebellón, L. F., Torres-Lozada, P., & Sonia, H. (2019). The potential of methane produc tion using aged landfill waste in developing tries: A case of study in Colombia. Cogent Eng, 6(1), 1-15. https://doi.org/10.1080/23311916.2019. 1664862Cárdenas Cleves, L. M., Parra Orobio, B. A., Torres Lozada, P., & Vásquez Franco, C. H. (2016). Perspectivas del ensayo de potencial bioquímico de metano - PBM para el control del proceso de digestión anaerobia de residuos. Rev. Investig. Optim. y Nuevos procesos en Ing, 29(1), 95–108. http://www. scielo.org.co/scielo.php?pid=S0120- 100X2016000100009&script=sci_abstract&tlng=esCarolina, A. (2017). “Life Cycle Assessment and Multi- criteria Decision Analysis: Selection of a strategy for domestic food waste management in Rio de Janeiro. Journal of Cleaner Production, 143, 744 - 7561.Cherubini, F., Bargigli, S., & Ulgiati, S. (2009). Life cycle assessment (LCA) of waste management strategies: landfilling, sorting plant and incineration. Energy, 34 (12), 2116–2123. https://doi.org/10.1016/j.energy. 2008.08.023Chi, Y., Dong, J., Tang, Y., Huang, Q., & Ni, M. (2015). Life cycle assessment of municipal solid waste source-separated collection and integrated waste management systems in Hangzhou, China. J. Mater. Cycles Waste Manag, 17(4), 695–706. https://doi.org/ 10.1007/s10163-014-0300-8Christensen, T. H. (2020). Application of LCA modelling in integrated waste management. Waste Manag, 118, 313–322. https://doi.org/10.1016/j.wasman.2020.08. 034Clavreul, J., Baumeister, H., Christensen, T. H., & Damgaard, A. (Oct 2014). An environmental assess ment system for environmental technologies. Environmental Modelling and Software, 60, 18–30. https://doi.org/10.1016/j.envsoft.2014.06.007de Planeación, D. N. (2016). Política nacional para la gestión de residuos sólidos. CONPES 3874, I, 73. https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%C3%B3micos/3874.pdf [Google Scholar]Damgaard, A., Manfredi, S., Merrild, H., Stensøe, S., & Christensen, T. H. (2011). LCA and economic evaluation of landfill leachate and gas technologies. Waste Manag, 31(7), 1532–1541. https://doi.org/10.1016/j.wasman.2011.02.027 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]Edwards, J., Othman, M., Crossin, E., & Burn, S. (2017). Anaerobic co-digestion of municipal food waste and sewage sludge: A comparative life cycle assessment in the context of a waste service provision. Bioresource Technology, 223, 237–249. https://doi.org/10.1016/j.biortech.2016.10.044 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]European Commission. (2010). International Reference Life Cycle Data System (ILCD) Handbook and General Guide for Life Cycle Assessment. DOI: https://doi.org/10.2788/94987 [Google Scholar]Ferronato, N., Moresco, L., Guisbert Lizarazu, G. E., Gorritty Portillo, M. A., Conti, F., & Torretta, V. (2021). Sensitivity analysis and improvements of the recycling rate in municipal solid waste life cycle assessment: focus on a Latin American developing context. Waste Manag, 128, 1–15. https://doi.org/10.1016/j.wasman.2021.04.043 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]Gunamantha, M., & Sarto. (2012). Life cycle assessment of municipal solid waste treatment to energy options: case study of KARTAMANTUL region, Yogyakarta. Renew. Energy, 41, 277–284. https://doi.org/10.1016/j.renene.2011.11.008 [Crossref], [Web of Science ®], [Google Scholar]Hong, J., Li, X., & Zhaojie, C. (Nov 2010). Life cycle assessment of four municipal solid waste management scenarios in China. Waste Manag, 30(11), 2362–2369. https://doi.org/10.1016/j.wasman.2010.03.038 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]Hong, R. J. (2006). Life cycle assessment of BMT-based integrated municipal solid waste management: case study in Pudong, China. Resour. Conserv. Recycl, 49(2), 129–146. https://doi.org/10.1016/j.resconrec.2006.03.007 [Crossref], [Web of Science ®], [Google Scholar]Icontec. (2006). “Gestión ambiental. Análisis de Ciclo de Vida. Principios y marco de referencia. UNE-EN ISO 14040:2006”. [Google Scholar]ISO. (2006). ISO 14040:2006(es), Gestión ambiental — Análisis del ciclo de vida — Principios y marco de referencia. [Google Scholar]ISO – ICONTEC. (2007). Norma técnica Colombiana TTC-ISO 14040. Icontec, (571), 1–24. https://tienda.icontec.org/gp-gestion-ambiental-analisis-del-ciclo-de-vida-principios-y-marco-de-referencia-ntc-iso14040-2007.html [Google Scholar]Laner, D. (2009). The consideration of long-term emissions from landfills within life-cycle assessment. Waste Manag. Res, 27(5), 463–470. https://doi.org/10.1177/0734242X09102335 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]Laurent, A. (Mar 2014). Review of LCA studies of solid waste management systems–part II: Methodological guidance for a better practice. Waste Manag, 34(3), 589–606. https://doi.org/10.1016/j.wasman.2013.12.004 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]Liamsanguan, C., & Gheewala, S. H. (2008). LCA: A decision support tool for environmental assessment of MSW management systems. Journal of Environmental Management, 87(1), 132–138. https://doi.org/10.1016/j.jenvman.2007.01.003 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]Lima, P. D. M., Colvero, D. A., Gomes, A. P., Wenzel, H., Schalch, V., & Cimpan, C. (2018). Environmental assessment of existing and alternative options for management of municipal solid waste in Brazil. Waste Manag, 78, 857–870. https://doi.org/10.1016/j.wasman.2018.07.007 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]Majumdar, D. (2014). Emission, speciation, and evaluation of impacts of non-methane volatile organic compounds from open dump site. Journal of the Air & Waste Management Association, 67(7), 834-845. https://www.tandfonline.com/doi/full/ https://doi.org/10.1080/10962247.2013.873747 [Taylor & Francis Online], [Google Scholar]Manaf, L. A., Samah, M. A. A., & Zukki, N. I. M. (2009). Municipal solid waste management in Malaysia: practices and challenges. Waste Manag, 29(11), 2902–2906. https://doi.org/10.1016/j.wasman.2008.07.015 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]Max, L., Coelho, G., & Celina, L. (2018). Resources, conservation and recycling applying life cycle assessment to support environmentally sustainable waste management strategies in Brazil. “Resources, Conserv. Recycl, 128, 438–450. https://doi.org/10.1016/j.resconrec.2016.09.026 [Crossref], [Web of Science ®], [Google Scholar]Mendes, M. R., Aramaki, T., & Hanaki, K. (2003). Assessment of the environmental impact of management measures for the biodegradable fraction of municipal solid waste in Sao Paulo City. Waste Manag, 23(5), 403–409. https://doi.org/10.1016/S0956-053X(03)00058-8 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]Mendes, M. R., Aramaki, T., & Hanaki, K. (2004). Comparison of the environmental impact of incineration and landfilling in Sao Paulo City as determined by LCA. Resour. Conserv. Recycl, 41(1), 47–63. https://doi.org/10.1016/j.resconrec.2003.08.003 [Crossref], [Web of Science ®], [Google Scholar]Menikpura, S. N. M., Gheewala, S. H., & Bonnet, S. (2012). Sustainability assessment of municipal solid waste management in Sri Lanka: problems and prospects. J. Mater. Cycles Waste Manag, 14(3), 181–192. https://doi.org/10.1007/s10163-012-0055-z [Crossref], [Web of Science ®], [Google Scholar]Milutinovi, B., Stefanovi, G., Ðeki, P. S., Mijailovi, I., & Tomi, M. (2017). Environmental assessment of waste management scenarios with energy recovery using life cycle assessment and multi-criteria analysis. Energy, 137, 917–926. https://doi.org/10.1016/j.energy.2017.02.167 [Crossref], [Web of Science ®], [Google Scholar]Ministerio de Ambiente y Desarrollo Sostenible. (2019). Estrategia Nacional de Economía Circular. [Google Scholar]Özeler, D., Yetiş, Ü., & Demirer, G. N. (2006). Life cycle assesment of municipal solid waste management methods: ankara case study. Environ. Int, 32(3), 405–411. https://doi.org/10.1016/j.envint.2005.10.002 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]Saheri, S. (2012). Life cycle assessment for solid waste disposal options in Malaysia. Polish J. Environ. Stud, 21(5), 1377–1382. [Web of Science ®], [Google Scholar]Sandoval-Cobo, J. J. (2020). Methane potential and degradation kinetics of fresh and excavated municipal solid waste from a tropical landfill in Colombia. Sustain. Environ. Res, 30(1). https://doi.org/10.1186/s42834-020-00048-6 [Crossref], [Web of Science ®], [Google Scholar]Superintendencia de Servicios Públicos Domiciliarios. (2018). Informe de Disposición Final de Residuos Sólidos – 2017. [Google Scholar]Traivivatana, S., Wangjiraniran, W., Junlakarn, S., & Wansophark, N. (Oct 2017). Thailand energy outlook for the Thailand integrated energy blueprint (TIEB). Energy Procedia, 138, 399–404. https://doi.org/10.1016/j.egypro.2017.10.179 [Crossref], [Google Scholar]United Nations Department of Economic and Social Affairs (UN DESA). (2018). “Sustainable Development Goals Report 2018,” p. 64. [Crossref], [Google Scholar]Urup Anders, A. D. O. (2014). “Landfilling in EASETECH.” p. 46. [Google Scholar]USEPA/ISWA. (2012). International Best Practices Guide for Landfill Gas Energy Project. U.S. Environmental Protection Agency and ISWA (International Waste Management Association). [Google Scholar]Xing, W., Lu, W., Zhao, Y., Zhang, X., Deng, W., & Christensen, T. H. (2013). Environmental impact assessment of leachate recirculation in landfill of municipal solid waste by comparing with evaporation and discharge (EASEWASTE). Waste Manag, 33(2), 382–389. https://www.sciencedirect.com/science/article/abs/pii/S0956053X12004795 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]Yang, N., Damgaard, A., Lü, F., Shao, L. M., Brogaard, L. K. S., & He, P. J. (2014). Environmental impact assessment on the construction and operation of municipal solid waste sanitary landfills in developing countries: China case study. Waste Manag, 34(5), 929–937. https://doi.org/10.1016/j.wasman.2014.02.017 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]Yang, N., Zhang, H., Shao, L.-M., Lü, F., & He, P.-J. (Nov 2013). Greenhouse gas emissions during MSW landfilling in China: influence of waste characteristics and LFG treatment measures. Journal of Environmental Management, 129(5), 510–521. https://doi.org/10.1016/j.jenvman.2013.08.039 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]Zhao, W., van der Voet, E., Zhang, Y., & Huppes, G. (2009). Life cycle assessment of municipal solid waste management with regard to greenhouse gas emissions: case study of Tianjin, China. The Science of the Total Environment, 407(5), 1517–1526. https://doi.org/10.1016/j.scitotenv.2008.11.007 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]Zhao, Y., Christensen, T. H., Lu, W., Wu, H., & Wang, H. (2011). Environmental impact assessment of solid waste management in Beijing City, China. Waste Manag, 31(4), 793–799. https://doi.org/10.1016/j.wasman.2010.11.007 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]Zhao, Y., Wang, H. T., Lu, W. J., Damgaard, A., & Christensen, T. H. (2009). Life-cycle assessment of the municipal solid waste management system in Hangzhou, China (EASEWASTE). Waste Manag. Res, 27(4), 399–406. https://doi.org/10.1177/0734242X09103823 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]Ziegler-Rodriguez, K., Margallo, M., Aldaco, R., Vázquez-Rowe, I., & Kahhat, R. (2019). Transitioning from open dumpsters to landfilling in Peru: environmental benefits and challenges from a life-cycle perspective. Journal of Cleaner Production, 229, 989–1003. https://doi.org/10.1016/j.jclepro.2019.05.015 [Crossref], [Web of Science ®], [Google Scholar]VertederoGas de vertederoBiogásAnálisis del ciclo de vidaPaíses en desarrolloObjetivos de Desarrollo SostenibleLandfillLandfill gasBiogasLife cycle analysisDeveloping countriesSustainable Development GoalsAn evaluation of final disposal alternatives for Municipal Solid Waste through Life Cycle Assessment: a case of study in ColombiaArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.ucc.edu.co/bitstreams/6d6bb3af-3d2d-4269-aac5-a65ea93a655b/download8a4605be74aa9ea9d79846c1fba20a33MD53ORIGINAL2021-CaicedoyColmenares-Disposal_Alternatives_Solid_Waste2021-CaicedoyColmenares-Disposal_Alternatives_Solid_WasteArtículoapplication/pdf6118730https://repository.ucc.edu.co/bitstreams/88dac977-cf1f-464e-8bea-77e43e1d0350/download80de8b8a43bc0264669d5b3026b8f6abMD512021-CaicedoyColmenares-Disposal_Alternatives_Solid_Waste-LicenciadeUso2021-CaicedoyColmenares-Disposal_Alternatives_Solid_Waste-LicenciadeUsoLicencia de Usoapplication/pdf133065https://repository.ucc.edu.co/bitstreams/fa65ef23-fda7-417e-9d81-5e2850d3c197/downloadf854ae65b938f4e3ef3f01249fb1a84cMD52THUMBNAIL2021-CaicedoyColmenares-Disposal_Alternatives_Solid_Waste.jpg2021-CaicedoyColmenares-Disposal_Alternatives_Solid_Waste.jpgGenerated Thumbnailimage/jpeg4366https://repository.ucc.edu.co/bitstreams/28524711-71a4-4a67-9dc4-954c6247b936/downloade1dc66e849fdbd4a07e34fec97d86ecdMD542021-CaicedoyColmenares-Disposal_Alternatives_Solid_Waste-LicenciadeUso.jpg2021-CaicedoyColmenares-Disposal_Alternatives_Solid_Waste-LicenciadeUso.jpgGenerated Thumbnailimage/jpeg5381https://repository.ucc.edu.co/bitstreams/9c1d03f9-9217-45af-a3f7-197e8adf9d4c/download7ac7bdba18914c4e2cb32a8aa48ebcc5MD55TEXT2021-CaicedoyColmenares-Disposal_Alternatives_Solid_Waste.txt2021-CaicedoyColmenares-Disposal_Alternatives_Solid_Waste.txtExtracted texttext/plain66353https://repository.ucc.edu.co/bitstreams/3d6222e1-97fa-45e3-88d7-917790e8eed7/download0944b40b1987b46bf3370fd55d345c98MD562021-CaicedoyColmenares-Disposal_Alternatives_Solid_Waste-LicenciadeUso.txt2021-CaicedoyColmenares-Disposal_Alternatives_Solid_Waste-LicenciadeUso.txtExtracted texttext/plain5556https://repository.ucc.edu.co/bitstreams/574a8dce-aa41-486d-ac2c-0be02bee0b15/downloadf03197da301a07d3fb8eae5dd904c3f1MD5720.500.12494/46449oai:repository.ucc.edu.co:20.500.12494/464492024-08-10 21:03:15.798open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |