An evaluation of final disposal alternatives for Municipal Solid Waste through Life Cycle Assessment: a case of study in Colombia

El relleno sanitario sigue siendo la tecnología más utilizada en los países en vías de desarrollo para la disposición final de los residuos sólidos urbanos (RSU), a pesar de los impactos negativos sobre el medio ambiente como los causados por la liberación de gases de efecto invernadero (GEI) que co...

Full description

Autores:
Caicedo Concha, Diana Milena
Sandoval-Cobo, John J
Stringfellow, Anne
Colmenares Quintero, Ramón Fernando
Tipo de recurso:
Article of investigation
Fecha de publicación:
2021
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/46449
Acceso en línea:
https://doi.org/10.1080/23311916.2021.1956860
https://hdl.handle.net/20.500.12494/46449
Palabra clave:
Vertedero
Gas de vertedero
Biogás
Análisis del ciclo de vida
Países en desarrollo
Objetivos de Desarrollo Sostenible
Landfill
Landfill gas
Biogas
Life cycle analysis
Developing countries
Sustainable Development Goals
Rights
openAccess
License
Atribución
id COOPER2_3fabdba0983c16f778a29408adb60be4
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/46449
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv An evaluation of final disposal alternatives for Municipal Solid Waste through Life Cycle Assessment: a case of study in Colombia
title An evaluation of final disposal alternatives for Municipal Solid Waste through Life Cycle Assessment: a case of study in Colombia
spellingShingle An evaluation of final disposal alternatives for Municipal Solid Waste through Life Cycle Assessment: a case of study in Colombia
Vertedero
Gas de vertedero
Biogás
Análisis del ciclo de vida
Países en desarrollo
Objetivos de Desarrollo Sostenible
Landfill
Landfill gas
Biogas
Life cycle analysis
Developing countries
Sustainable Development Goals
title_short An evaluation of final disposal alternatives for Municipal Solid Waste through Life Cycle Assessment: a case of study in Colombia
title_full An evaluation of final disposal alternatives for Municipal Solid Waste through Life Cycle Assessment: a case of study in Colombia
title_fullStr An evaluation of final disposal alternatives for Municipal Solid Waste through Life Cycle Assessment: a case of study in Colombia
title_full_unstemmed An evaluation of final disposal alternatives for Municipal Solid Waste through Life Cycle Assessment: a case of study in Colombia
title_sort An evaluation of final disposal alternatives for Municipal Solid Waste through Life Cycle Assessment: a case of study in Colombia
dc.creator.fl_str_mv Caicedo Concha, Diana Milena
Sandoval-Cobo, John J
Stringfellow, Anne
Colmenares Quintero, Ramón Fernando
dc.contributor.author.none.fl_str_mv Caicedo Concha, Diana Milena
Sandoval-Cobo, John J
Stringfellow, Anne
Colmenares Quintero, Ramón Fernando
dc.subject.spa.fl_str_mv Vertedero
Gas de vertedero
Biogás
Análisis del ciclo de vida
Países en desarrollo
Objetivos de Desarrollo Sostenible
topic Vertedero
Gas de vertedero
Biogás
Análisis del ciclo de vida
Países en desarrollo
Objetivos de Desarrollo Sostenible
Landfill
Landfill gas
Biogas
Life cycle analysis
Developing countries
Sustainable Development Goals
dc.subject.other.spa.fl_str_mv Landfill
Landfill gas
Biogas
Life cycle analysis
Developing countries
Sustainable Development Goals
description El relleno sanitario sigue siendo la tecnología más utilizada en los países en vías de desarrollo para la disposición final de los residuos sólidos urbanos (RSU), a pesar de los impactos negativos sobre el medio ambiente como los causados por la liberación de gases de efecto invernadero (GEI) que contribuyen al calentamiento global (GW). El gobierno colombiano estableció una meta de reducción del 20% de las emisiones de GEI para el año 2030, para lo cual el sector de la gestión de residuos sólidos tiene un papel importante. Además, el logro de las metas de los Objetivos de Desarrollo Sostenible (ODS) está jugando un papel clave para la agenda del gobierno y lo hará en los próximos años. En este contexto, existe un importante margen de mejora de las alternativas de gestión en los vertederos actualmente operativos en el país, especialmente en lo que se refiere a las medidas para reducir las emisiones fugitivas a la atmósfera y los lixiviados. Este trabajo evalúa, mediante métodos de evaluación del ciclo de vida (ACV), los impactos ambientales asociados a un vertedero en Colombia bajo cuatro escenarios diferentes: vertedero abierto (cero) y vertedero convencional bajo tres alternativas de gestión de gases de vertedero (GV): venteo (a), quema en antorcha (b) y valorización energética (c). Las categorías de impacto, así como los métodos de evaluación del impacto del ciclo de vida (EICV) utilizados, se determinaron a través de la revisión de estudios de ACV para sistemas de gestión de RSU en países en desarrollo. Los principales resultados muestran que el potencial de calentamiento global (PCG) fue el principal impacto ambiental causado por el funcionamiento del vertedero en las condiciones consideradas; sin embargo, el PCG se redujo significativamente al pasar de escenarios de gestión sin tratamiento de los Gases de Efecto Invernadero (o y a: comunes a la mayoría de los vertederos de los países en desarrollo) a escenarios en los que los Gases de Efecto Invernadero se queman (b) o se utilizan para la producción de energía (c). Estos resultados sugieren que se debe considerar la adopción de tecnologías para la captura, quema y recuperación de energía del LFG si se esperan reducciones importantes de GEI en el sector de la gestión de residuos, así como proporcionar incentivos económicos para mejorar la sostenibilidad operativa de los vertederos en los países en desarrollo.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-07-11
dc.date.accessioned.none.fl_str_mv 2022-09-20T13:52:40Z
dc.date.available.none.fl_str_mv 2022-09-20T13:52:40Z
dc.type.none.fl_str_mv Artículos Científicos
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 23311916
dc.identifier.uri.spa.fl_str_mv https://doi.org/10.1080/23311916.2021.1956860
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/46449
dc.identifier.bibliographicCitation.spa.fl_str_mv Diana M Caicedo-Concha, John J Sandoval-Cobo, Anne Stringfellow & Ramon Fernando Colmenares-Quintero | (2021) An evaluation of final disposal alternatives for municipal solid waste through life cycle assessment: A case of study in Colombia, Cogent Engineering, 8:1, 1956860, DOI: 10.1080/23311916.2021.1956860
identifier_str_mv 23311916
Diana M Caicedo-Concha, John J Sandoval-Cobo, Anne Stringfellow & Ramon Fernando Colmenares-Quintero | (2021) An evaluation of final disposal alternatives for municipal solid waste through life cycle assessment: A case of study in Colombia, Cogent Engineering, 8:1, 1956860, DOI: 10.1080/23311916.2021.1956860
url https://doi.org/10.1080/23311916.2021.1956860
https://hdl.handle.net/20.500.12494/46449
dc.relation.isversionof.spa.fl_str_mv https://www.tandfonline.com/doi/ref/10.1080/23311916.2021.1956860?scroll=top
dc.relation.ispartofjournal.spa.fl_str_mv Cogent Engineering
dc.relation.references.spa.fl_str_mv Abduli, A. N., & Mansoor Yonesi, A. (2011). Life cycle assessment (LCA) of solid waste management strategies in Tehran: Landfill and composting plus landfill. Environmental Monitoring and Assessment, 178(1), 487–498. https://doi.org/10.1007/s10661- 010-1707-x
Abeliotis, K., Kalogeropoulos, A., & Lasaridi, K. (2012). Life cycle assessment of the MBT plant in Ano Liossia, Athens, Greece. Waste Manag, 32(1), 213–219. https://doi.org/10.1016/j.wasman.2011.09.002
Arafat, H. A., Jijakli, K., & Ahsan, A. (Oct 2015). Environmental performance and energy recovery potential of five processes for municipal solid waste treatment. Journal of Cleaner Production, 105, 233–240. https://doi.org/10.1016/j.jclepro.2013.11.071
Assamoi, B., & Lawryshyn, Y. (2012). The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion. Waste Manag, 32(5), 1019–1030. https://doi.org/10.1016/j.wasman.2011. 10.023
Aye, L., & Widjaya, E. R. (2006). Environmental and economic analyses of waste disposal options for Caicedo-Concha et al., Cogent Engineering (2021), 8: 1956860 https://doi.org/10.1080/23311916.2021.1956860 Page 14 of 17 traditional markets in Indonesia. Waste Manag, 26 (10), 1180–1191. https://doi.org/10.1016/j.wasman. 2005.09.010
2005.09.010Banar, M., Cokaygil, Z., & Ozkan, A. (2009). Life cycle assessment of solid waste management options for Eskisehir, Turkey. Waste Manag, 29(1), 54–62. https:// doi.org/10.1016/j.wasman.2007.12.006
2007.12.006Bernstad Saraiva Schott, A., Wenzel, H., & la Cour Jansen, J. (Feb 2016). Identification of decisive fac tors for greenhouse gas emissions in comparative lifecycle assessments of food waste management – an analytical review. J. Clean. Prod, 13-24. https://doi. org/10.1016/j.jclepro.2016.01.079
2016.01.079BID. (2015). Estudio tecnologías alternativas de disposición final o aprovechamiento de residuos sólidos. Propuesta de ajuste al Decreto 838 de 2005. https://colaboracion.dnp.gov.co/CDT/Conpes/Econ% C3%B3micos/3874.pdf
pdfBoldrin, A., Neidel, T. L., Damgaard, A., Bhander, G. S., Møller, J., & Christensen, T. H. (2011). Modelling of environmental impacts from biological treatment of organic municipal waste in EASEWASTE. Waste Manag, 31(4), 619–630. https://doi.org/10.1016/j.was man.2010.10.025
Caicedo-Concha, D. M., Sandoval-Cobo, J. J., Fernando, C.- Q. R., Marmolejo-Rebellón, L. F., Torres-Lozada, P., & Sonia, H. (2019). The potential of methane produc tion using aged landfill waste in developing tries: A case of study in Colombia. Cogent Eng, 6(1), 1-15. https://doi.org/10.1080/23311916.2019. 1664862
Cárdenas Cleves, L. M., Parra Orobio, B. A., Torres Lozada, P., & Vásquez Franco, C. H. (2016). Perspectivas del ensayo de potencial bioquímico de metano - PBM para el control del proceso de digestión anaerobia de residuos. Rev. Investig. Optim. y Nuevos procesos en Ing, 29(1), 95–108. http://www. scielo.org.co/scielo.php?pid=S0120- 100X2016000100009&script=sci_abstract&tlng=es
Carolina, A. (2017). “Life Cycle Assessment and Multi- criteria Decision Analysis: Selection of a strategy for domestic food waste management in Rio de Janeiro. Journal of Cleaner Production, 143, 744 - 7561.
Cherubini, F., Bargigli, S., & Ulgiati, S. (2009). Life cycle assessment (LCA) of waste management strategies: landfilling, sorting plant and incineration. Energy, 34 (12), 2116–2123. https://doi.org/10.1016/j.energy. 2008.08.023
Chi, Y., Dong, J., Tang, Y., Huang, Q., & Ni, M. (2015). Life cycle assessment of municipal solid waste source-separated collection and integrated waste management systems in Hangzhou, China. J. Mater. Cycles Waste Manag, 17(4), 695–706. https://doi.org/ 10.1007/s10163-014-0300-8
Christensen, T. H. (2020). Application of LCA modelling in integrated waste management. Waste Manag, 118, 313–322. https://doi.org/10.1016/j.wasman.2020.08. 034
Clavreul, J., Baumeister, H., Christensen, T. H., & Damgaard, A. (Oct 2014). An environmental assess ment system for environmental technologies. Environmental Modelling and Software, 60, 18–30. https://doi.org/10.1016/j.envsoft.2014.06.007
de Planeación, D. N. (2016). Política nacional para la gestión de residuos sólidos. CONPES 3874, I, 73. https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%C3%B3micos/3874.pdf [Google Scholar]
Damgaard, A., Manfredi, S., Merrild, H., Stensøe, S., & Christensen, T. H. (2011). LCA and economic evaluation of landfill leachate and gas technologies. Waste Manag, 31(7), 1532–1541. https://doi.org/10.1016/j.wasman.2011.02.027 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
Edwards, J., Othman, M., Crossin, E., & Burn, S. (2017). Anaerobic co-digestion of municipal food waste and sewage sludge: A comparative life cycle assessment in the context of a waste service provision. Bioresource Technology, 223, 237–249. https://doi.org/10.1016/j.biortech.2016.10.044 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
European Commission. (2010). International Reference Life Cycle Data System (ILCD) Handbook and General Guide for Life Cycle Assessment. DOI: https://doi.org/10.2788/94987 [Google Scholar]
Ferronato, N., Moresco, L., Guisbert Lizarazu, G. E., Gorritty Portillo, M. A., Conti, F., & Torretta, V. (2021). Sensitivity analysis and improvements of the recycling rate in municipal solid waste life cycle assessment: focus on a Latin American developing context. Waste Manag, 128, 1–15. https://doi.org/10.1016/j.wasman.2021.04.043 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
Gunamantha, M., & Sarto. (2012). Life cycle assessment of municipal solid waste treatment to energy options: case study of KARTAMANTUL region, Yogyakarta. Renew. Energy, 41, 277–284. https://doi.org/10.1016/j.renene.2011.11.008 [Crossref], [Web of Science ®], [Google Scholar]
Hong, J., Li, X., & Zhaojie, C. (Nov 2010). Life cycle assessment of four municipal solid waste management scenarios in China. Waste Manag, 30(11), 2362–2369. https://doi.org/10.1016/j.wasman.2010.03.038 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
Hong, R. J. (2006). Life cycle assessment of BMT-based integrated municipal solid waste management: case study in Pudong, China. Resour. Conserv. Recycl, 49(2), 129–146. https://doi.org/10.1016/j.resconrec.2006.03.007 [Crossref], [Web of Science ®], [Google Scholar]
Icontec. (2006). “Gestión ambiental. Análisis de Ciclo de Vida. Principios y marco de referencia. UNE-EN ISO 14040:2006”. [Google Scholar]
ISO. (2006). ISO 14040:2006(es), Gestión ambiental — Análisis del ciclo de vida — Principios y marco de referencia. [Google Scholar]
ISO – ICONTEC. (2007). Norma técnica Colombiana TTC-ISO 14040. Icontec, (571), 1–24. https://tienda.icontec.org/gp-gestion-ambiental-analisis-del-ciclo-de-vida-principios-y-marco-de-referencia-ntc-iso14040-2007.html [Google Scholar]
Laner, D. (2009). The consideration of long-term emissions from landfills within life-cycle assessment. Waste Manag. Res, 27(5), 463–470. https://doi.org/10.1177/0734242X09102335 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
Laurent, A. (Mar 2014). Review of LCA studies of solid waste management systems–part II: Methodological guidance for a better practice. Waste Manag, 34(3), 589–606. https://doi.org/10.1016/j.wasman.2013.12.004 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
Liamsanguan, C., & Gheewala, S. H. (2008). LCA: A decision support tool for environmental assessment of MSW management systems. Journal of Environmental Management, 87(1), 132–138. https://doi.org/10.1016/j.jenvman.2007.01.003 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
Lima, P. D. M., Colvero, D. A., Gomes, A. P., Wenzel, H., Schalch, V., & Cimpan, C. (2018). Environmental assessment of existing and alternative options for management of municipal solid waste in Brazil. Waste Manag, 78, 857–870. https://doi.org/10.1016/j.wasman.2018.07.007 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
Majumdar, D. (2014). Emission, speciation, and evaluation of impacts of non-methane volatile organic compounds from open dump site. Journal of the Air & Waste Management Association, 67(7), 834-845. https://www.tandfonline.com/doi/full/ https://doi.org/10.1080/10962247.2013.873747 [Taylor & Francis Online], [Google Scholar]
Manaf, L. A., Samah, M. A. A., & Zukki, N. I. M. (2009). Municipal solid waste management in Malaysia: practices and challenges. Waste Manag, 29(11), 2902–2906. https://doi.org/10.1016/j.wasman.2008.07.015 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
Max, L., Coelho, G., & Celina, L. (2018). Resources, conservation and recycling applying life cycle assessment to support environmentally sustainable waste management strategies in Brazil. “Resources, Conserv. Recycl, 128, 438–450. https://doi.org/10.1016/j.resconrec.2016.09.026 [Crossref], [Web of Science ®], [Google Scholar]
Mendes, M. R., Aramaki, T., & Hanaki, K. (2003). Assessment of the environmental impact of management measures for the biodegradable fraction of municipal solid waste in Sao Paulo City. Waste Manag, 23(5), 403–409. https://doi.org/10.1016/S0956-053X(03)00058-8 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
Mendes, M. R., Aramaki, T., & Hanaki, K. (2004). Comparison of the environmental impact of incineration and landfilling in Sao Paulo City as determined by LCA. Resour. Conserv. Recycl, 41(1), 47–63. https://doi.org/10.1016/j.resconrec.2003.08.003 [Crossref], [Web of Science ®], [Google Scholar]
Menikpura, S. N. M., Gheewala, S. H., & Bonnet, S. (2012). Sustainability assessment of municipal solid waste management in Sri Lanka: problems and prospects. J. Mater. Cycles Waste Manag, 14(3), 181–192. https://doi.org/10.1007/s10163-012-0055-z [Crossref], [Web of Science ®], [Google Scholar]
Milutinovi, B., Stefanovi, G., Ðeki, P. S., Mijailovi, I., & Tomi, M. (2017). Environmental assessment of waste management scenarios with energy recovery using life cycle assessment and multi-criteria analysis. Energy, 137, 917–926. https://doi.org/10.1016/j.energy.2017.02.167 [Crossref], [Web of Science ®], [Google Scholar]
Ministerio de Ambiente y Desarrollo Sostenible. (2019). Estrategia Nacional de Economía Circular. [Google Scholar]
Özeler, D., Yetiş, Ü., & Demirer, G. N. (2006). Life cycle assesment of municipal solid waste management methods: ankara case study. Environ. Int, 32(3), 405–411. https://doi.org/10.1016/j.envint.2005.10.002 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
Saheri, S. (2012). Life cycle assessment for solid waste disposal options in Malaysia. Polish J. Environ. Stud, 21(5), 1377–1382. [Web of Science ®], [Google Scholar]
Sandoval-Cobo, J. J. (2020). Methane potential and degradation kinetics of fresh and excavated municipal solid waste from a tropical landfill in Colombia. Sustain. Environ. Res, 30(1). https://doi.org/10.1186/s42834-020-00048-6 [Crossref], [Web of Science ®], [Google Scholar]
Superintendencia de Servicios Públicos Domiciliarios. (2018). Informe de Disposición Final de Residuos Sólidos – 2017. [Google Scholar]
Traivivatana, S., Wangjiraniran, W., Junlakarn, S., & Wansophark, N. (Oct 2017). Thailand energy outlook for the Thailand integrated energy blueprint (TIEB). Energy Procedia, 138, 399–404. https://doi.org/10.1016/j.egypro.2017.10.179 [Crossref], [Google Scholar]
United Nations Department of Economic and Social Affairs (UN DESA). (2018). “Sustainable Development Goals Report 2018,” p. 64. [Crossref], [Google Scholar]
Urup Anders, A. D. O. (2014). “Landfilling in EASETECH.” p. 46. [Google Scholar]
USEPA/ISWA. (2012). International Best Practices Guide for Landfill Gas Energy Project. U.S. Environmental Protection Agency and ISWA (International Waste Management Association). [Google Scholar]
Xing, W., Lu, W., Zhao, Y., Zhang, X., Deng, W., & Christensen, T. H. (2013). Environmental impact assessment of leachate recirculation in landfill of municipal solid waste by comparing with evaporation and discharge (EASEWASTE). Waste Manag, 33(2), 382–389. https://www.sciencedirect.com/science/article/abs/pii/S0956053X12004795 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
Yang, N., Damgaard, A., Lü, F., Shao, L. M., Brogaard, L. K. S., & He, P. J. (2014). Environmental impact assessment on the construction and operation of municipal solid waste sanitary landfills in developing countries: China case study. Waste Manag, 34(5), 929–937. https://doi.org/10.1016/j.wasman.2014.02.017 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
Yang, N., Zhang, H., Shao, L.-M., Lü, F., & He, P.-J. (Nov 2013). Greenhouse gas emissions during MSW landfilling in China: influence of waste characteristics and LFG treatment measures. Journal of Environmental Management, 129(5), 510–521. https://doi.org/10.1016/j.jenvman.2013.08.039 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
Zhao, W., van der Voet, E., Zhang, Y., & Huppes, G. (2009). Life cycle assessment of municipal solid waste management with regard to greenhouse gas emissions: case study of Tianjin, China. The Science of the Total Environment, 407(5), 1517–1526. https://doi.org/10.1016/j.scitotenv.2008.11.007 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
Zhao, Y., Christensen, T. H., Lu, W., Wu, H., & Wang, H. (2011). Environmental impact assessment of solid waste management in Beijing City, China. Waste Manag, 31(4), 793–799. https://doi.org/10.1016/j.wasman.2010.11.007 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
Zhao, Y., Wang, H. T., Lu, W. J., Damgaard, A., & Christensen, T. H. (2009). Life-cycle assessment of the municipal solid waste management system in Hangzhou, China (EASEWASTE). Waste Manag. Res, 27(4), 399–406. https://doi.org/10.1177/0734242X09103823 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
Ziegler-Rodriguez, K., Margallo, M., Aldaco, R., Vázquez-Rowe, I., & Kahhat, R. (2019). Transitioning from open dumpsters to landfilling in Peru: environmental benefits and challenges from a life-cycle perspective. Journal of Cleaner Production, 229, 989–1003. https://doi.org/10.1016/j.jclepro.2019.05.015 [Crossref], [Web of Science ®], [Google Scholar]
dc.rights.license.none.fl_str_mv Atribución
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 1 - 18
dc.coverage.temporal.spa.fl_str_mv Vol. 8, No. 1
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Mecánica, Medellín y Envigado
dc.publisher.program.spa.fl_str_mv Ingeniería mecanica
dc.publisher.place.spa.fl_str_mv Medellín
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/6d6bb3af-3d2d-4269-aac5-a65ea93a655b/download
https://repository.ucc.edu.co/bitstreams/88dac977-cf1f-464e-8bea-77e43e1d0350/download
https://repository.ucc.edu.co/bitstreams/fa65ef23-fda7-417e-9d81-5e2850d3c197/download
https://repository.ucc.edu.co/bitstreams/28524711-71a4-4a67-9dc4-954c6247b936/download
https://repository.ucc.edu.co/bitstreams/9c1d03f9-9217-45af-a3f7-197e8adf9d4c/download
https://repository.ucc.edu.co/bitstreams/3d6222e1-97fa-45e3-88d7-917790e8eed7/download
https://repository.ucc.edu.co/bitstreams/574a8dce-aa41-486d-ac2c-0be02bee0b15/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
80de8b8a43bc0264669d5b3026b8f6ab
f854ae65b938f4e3ef3f01249fb1a84c
e1dc66e849fdbd4a07e34fec97d86ecd
7ac7bdba18914c4e2cb32a8aa48ebcc5
0944b40b1987b46bf3370fd55d345c98
f03197da301a07d3fb8eae5dd904c3f1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1811565478096666624
spelling Caicedo Concha, Diana MilenaSandoval-Cobo, John JStringfellow, AnneColmenares Quintero, Ramón FernandoVol. 8, No. 12022-09-20T13:52:40Z2022-09-20T13:52:40Z2021-07-1123311916https://doi.org/10.1080/23311916.2021.1956860https://hdl.handle.net/20.500.12494/46449Diana M Caicedo-Concha, John J Sandoval-Cobo, Anne Stringfellow & Ramon Fernando Colmenares-Quintero | (2021) An evaluation of final disposal alternatives for municipal solid waste through life cycle assessment: A case of study in Colombia, Cogent Engineering, 8:1, 1956860, DOI: 10.1080/23311916.2021.1956860El relleno sanitario sigue siendo la tecnología más utilizada en los países en vías de desarrollo para la disposición final de los residuos sólidos urbanos (RSU), a pesar de los impactos negativos sobre el medio ambiente como los causados por la liberación de gases de efecto invernadero (GEI) que contribuyen al calentamiento global (GW). El gobierno colombiano estableció una meta de reducción del 20% de las emisiones de GEI para el año 2030, para lo cual el sector de la gestión de residuos sólidos tiene un papel importante. Además, el logro de las metas de los Objetivos de Desarrollo Sostenible (ODS) está jugando un papel clave para la agenda del gobierno y lo hará en los próximos años. En este contexto, existe un importante margen de mejora de las alternativas de gestión en los vertederos actualmente operativos en el país, especialmente en lo que se refiere a las medidas para reducir las emisiones fugitivas a la atmósfera y los lixiviados. Este trabajo evalúa, mediante métodos de evaluación del ciclo de vida (ACV), los impactos ambientales asociados a un vertedero en Colombia bajo cuatro escenarios diferentes: vertedero abierto (cero) y vertedero convencional bajo tres alternativas de gestión de gases de vertedero (GV): venteo (a), quema en antorcha (b) y valorización energética (c). Las categorías de impacto, así como los métodos de evaluación del impacto del ciclo de vida (EICV) utilizados, se determinaron a través de la revisión de estudios de ACV para sistemas de gestión de RSU en países en desarrollo. Los principales resultados muestran que el potencial de calentamiento global (PCG) fue el principal impacto ambiental causado por el funcionamiento del vertedero en las condiciones consideradas; sin embargo, el PCG se redujo significativamente al pasar de escenarios de gestión sin tratamiento de los Gases de Efecto Invernadero (o y a: comunes a la mayoría de los vertederos de los países en desarrollo) a escenarios en los que los Gases de Efecto Invernadero se queman (b) o se utilizan para la producción de energía (c). Estos resultados sugieren que se debe considerar la adopción de tecnologías para la captura, quema y recuperación de energía del LFG si se esperan reducciones importantes de GEI en el sector de la gestión de residuos, así como proporcionar incentivos económicos para mejorar la sostenibilidad operativa de los vertederos en los países en desarrollo.Landfilling is still the most common technology used in developing countries for the final disposal of municipal solid waste (MSW), albeit the negative impacts on the environment such as those caused by the release of greenhouse gases (GHG) that contribute to global warming (GW). The Colombian government set a target of 20% reduction in GHG emissions by year 2030, for which the solid waste management sector has an important role to play. Also, the achievement of the targets of sustainable development goals (SDG) is playing a key role for the government agenda and will do so for the next years. In this context, there is an important room for improvement of the management alternatives in currently operative landfills in the country, especially in terms of measures to reduce fugitive air emissions and leachates. This paper evaluates, using life cycle assessment (LCA) methods, the environmental impacts associated with a landfill in Colombia under four different scenarios: open dumps (zero) and conventional landfill under three landfill gas (LFG) management alternatives: venting (a), flaring (b), and energy recovery (c). The impact categories as well as the life cycle impact assessment (LCIA) methods used were determined through the review of LCA studies for MSW management systems in developing countries. Main results show that global warming potential (GWP) was the main environmental impact caused by the landfill operation under the conditions considered; however, GWP was significantly reduced with the shifting from management scenarios with no LFG treatment (o and a: common to most landfills in developing countries) to scenarios where LFG is either flare (b) or utilized for energy production (c). These results suggest that adoption of technologies for LFG capture, burn, and energy recovery must be considered if important reductions of GHGs are expected from the waste management sector, as well as to provide economic incentives to improve the operational sustainability of landfills in developing countries.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001434849https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000192503https://orcid.org/0000-0003-4031-4568https://orcid.org/0000-0003-1166-1982https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000005961https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000002878diana.caicedoc@campusucc.edu.coramon.colmenaresq@campusucc.edu.co1 - 18Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Mecánica, Medellín y EnvigadoIngeniería mecanicaMedellínhttps://www.tandfonline.com/doi/ref/10.1080/23311916.2021.1956860?scroll=topCogent EngineeringAbduli, A. N., & Mansoor Yonesi, A. (2011). Life cycle assessment (LCA) of solid waste management strategies in Tehran: Landfill and composting plus landfill. Environmental Monitoring and Assessment, 178(1), 487–498. https://doi.org/10.1007/s10661- 010-1707-xAbeliotis, K., Kalogeropoulos, A., & Lasaridi, K. (2012). Life cycle assessment of the MBT plant in Ano Liossia, Athens, Greece. Waste Manag, 32(1), 213–219. https://doi.org/10.1016/j.wasman.2011.09.002Arafat, H. A., Jijakli, K., & Ahsan, A. (Oct 2015). Environmental performance and energy recovery potential of five processes for municipal solid waste treatment. Journal of Cleaner Production, 105, 233–240. https://doi.org/10.1016/j.jclepro.2013.11.071Assamoi, B., & Lawryshyn, Y. (2012). The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion. Waste Manag, 32(5), 1019–1030. https://doi.org/10.1016/j.wasman.2011. 10.023Aye, L., & Widjaya, E. R. (2006). Environmental and economic analyses of waste disposal options for Caicedo-Concha et al., Cogent Engineering (2021), 8: 1956860 https://doi.org/10.1080/23311916.2021.1956860 Page 14 of 17 traditional markets in Indonesia. Waste Manag, 26 (10), 1180–1191. https://doi.org/10.1016/j.wasman. 2005.09.0102005.09.010Banar, M., Cokaygil, Z., & Ozkan, A. (2009). Life cycle assessment of solid waste management options for Eskisehir, Turkey. Waste Manag, 29(1), 54–62. https:// doi.org/10.1016/j.wasman.2007.12.0062007.12.006Bernstad Saraiva Schott, A., Wenzel, H., & la Cour Jansen, J. (Feb 2016). Identification of decisive fac tors for greenhouse gas emissions in comparative lifecycle assessments of food waste management – an analytical review. J. Clean. Prod, 13-24. https://doi. org/10.1016/j.jclepro.2016.01.0792016.01.079BID. (2015). Estudio tecnologías alternativas de disposición final o aprovechamiento de residuos sólidos. Propuesta de ajuste al Decreto 838 de 2005. https://colaboracion.dnp.gov.co/CDT/Conpes/Econ% C3%B3micos/3874.pdfpdfBoldrin, A., Neidel, T. L., Damgaard, A., Bhander, G. S., Møller, J., & Christensen, T. H. (2011). Modelling of environmental impacts from biological treatment of organic municipal waste in EASEWASTE. Waste Manag, 31(4), 619–630. https://doi.org/10.1016/j.was man.2010.10.025Caicedo-Concha, D. M., Sandoval-Cobo, J. J., Fernando, C.- Q. R., Marmolejo-Rebellón, L. F., Torres-Lozada, P., & Sonia, H. (2019). The potential of methane produc tion using aged landfill waste in developing tries: A case of study in Colombia. Cogent Eng, 6(1), 1-15. https://doi.org/10.1080/23311916.2019. 1664862Cárdenas Cleves, L. M., Parra Orobio, B. A., Torres Lozada, P., & Vásquez Franco, C. H. (2016). Perspectivas del ensayo de potencial bioquímico de metano - PBM para el control del proceso de digestión anaerobia de residuos. Rev. Investig. Optim. y Nuevos procesos en Ing, 29(1), 95–108. http://www. scielo.org.co/scielo.php?pid=S0120- 100X2016000100009&script=sci_abstract&tlng=esCarolina, A. (2017). “Life Cycle Assessment and Multi- criteria Decision Analysis: Selection of a strategy for domestic food waste management in Rio de Janeiro. Journal of Cleaner Production, 143, 744 - 7561.Cherubini, F., Bargigli, S., & Ulgiati, S. (2009). Life cycle assessment (LCA) of waste management strategies: landfilling, sorting plant and incineration. Energy, 34 (12), 2116–2123. https://doi.org/10.1016/j.energy. 2008.08.023Chi, Y., Dong, J., Tang, Y., Huang, Q., & Ni, M. (2015). Life cycle assessment of municipal solid waste source-separated collection and integrated waste management systems in Hangzhou, China. J. Mater. Cycles Waste Manag, 17(4), 695–706. https://doi.org/ 10.1007/s10163-014-0300-8Christensen, T. H. (2020). Application of LCA modelling in integrated waste management. Waste Manag, 118, 313–322. https://doi.org/10.1016/j.wasman.2020.08. 034Clavreul, J., Baumeister, H., Christensen, T. H., & Damgaard, A. (Oct 2014). An environmental assess ment system for environmental technologies. Environmental Modelling and Software, 60, 18–30. https://doi.org/10.1016/j.envsoft.2014.06.007de Planeación, D. N. (2016). Política nacional para la gestión de residuos sólidos. CONPES 3874, I, 73. https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%C3%B3micos/3874.pdf [Google Scholar]Damgaard, A., Manfredi, S., Merrild, H., Stensøe, S., & Christensen, T. H. (2011). LCA and economic evaluation of landfill leachate and gas technologies. Waste Manag, 31(7), 1532–1541. https://doi.org/10.1016/j.wasman.2011.02.027 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]Edwards, J., Othman, M., Crossin, E., & Burn, S. (2017). Anaerobic co-digestion of municipal food waste and sewage sludge: A comparative life cycle assessment in the context of a waste service provision. Bioresource Technology, 223, 237–249. https://doi.org/10.1016/j.biortech.2016.10.044 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]European Commission. (2010). International Reference Life Cycle Data System (ILCD) Handbook and General Guide for Life Cycle Assessment. DOI: https://doi.org/10.2788/94987 [Google Scholar]Ferronato, N., Moresco, L., Guisbert Lizarazu, G. E., Gorritty Portillo, M. A., Conti, F., & Torretta, V. (2021). Sensitivity analysis and improvements of the recycling rate in municipal solid waste life cycle assessment: focus on a Latin American developing context. Waste Manag, 128, 1–15. https://doi.org/10.1016/j.wasman.2021.04.043 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]Gunamantha, M., & Sarto. (2012). Life cycle assessment of municipal solid waste treatment to energy options: case study of KARTAMANTUL region, Yogyakarta. Renew. Energy, 41, 277–284. https://doi.org/10.1016/j.renene.2011.11.008 [Crossref], [Web of Science ®], [Google Scholar]Hong, J., Li, X., & Zhaojie, C. (Nov 2010). Life cycle assessment of four municipal solid waste management scenarios in China. Waste Manag, 30(11), 2362–2369. https://doi.org/10.1016/j.wasman.2010.03.038 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]Hong, R. J. (2006). Life cycle assessment of BMT-based integrated municipal solid waste management: case study in Pudong, China. Resour. Conserv. Recycl, 49(2), 129–146. https://doi.org/10.1016/j.resconrec.2006.03.007 [Crossref], [Web of Science ®], [Google Scholar]Icontec. (2006). “Gestión ambiental. Análisis de Ciclo de Vida. Principios y marco de referencia. UNE-EN ISO 14040:2006”. [Google Scholar]ISO. (2006). ISO 14040:2006(es), Gestión ambiental — Análisis del ciclo de vida — Principios y marco de referencia. [Google Scholar]ISO – ICONTEC. (2007). Norma técnica Colombiana TTC-ISO 14040. Icontec, (571), 1–24. https://tienda.icontec.org/gp-gestion-ambiental-analisis-del-ciclo-de-vida-principios-y-marco-de-referencia-ntc-iso14040-2007.html [Google Scholar]Laner, D. (2009). The consideration of long-term emissions from landfills within life-cycle assessment. Waste Manag. Res, 27(5), 463–470. https://doi.org/10.1177/0734242X09102335 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]Laurent, A. (Mar 2014). Review of LCA studies of solid waste management systems–part II: Methodological guidance for a better practice. Waste Manag, 34(3), 589–606. https://doi.org/10.1016/j.wasman.2013.12.004 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]Liamsanguan, C., & Gheewala, S. H. (2008). LCA: A decision support tool for environmental assessment of MSW management systems. Journal of Environmental Management, 87(1), 132–138. https://doi.org/10.1016/j.jenvman.2007.01.003 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]Lima, P. D. M., Colvero, D. A., Gomes, A. P., Wenzel, H., Schalch, V., & Cimpan, C. (2018). Environmental assessment of existing and alternative options for management of municipal solid waste in Brazil. Waste Manag, 78, 857–870. https://doi.org/10.1016/j.wasman.2018.07.007 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]Majumdar, D. (2014). Emission, speciation, and evaluation of impacts of non-methane volatile organic compounds from open dump site. Journal of the Air & Waste Management Association, 67(7), 834-845. https://www.tandfonline.com/doi/full/ https://doi.org/10.1080/10962247.2013.873747 [Taylor & Francis Online], [Google Scholar]Manaf, L. A., Samah, M. A. A., & Zukki, N. I. M. (2009). Municipal solid waste management in Malaysia: practices and challenges. Waste Manag, 29(11), 2902–2906. https://doi.org/10.1016/j.wasman.2008.07.015 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]Max, L., Coelho, G., & Celina, L. (2018). Resources, conservation and recycling applying life cycle assessment to support environmentally sustainable waste management strategies in Brazil. “Resources, Conserv. Recycl, 128, 438–450. https://doi.org/10.1016/j.resconrec.2016.09.026 [Crossref], [Web of Science ®], [Google Scholar]Mendes, M. R., Aramaki, T., & Hanaki, K. (2003). Assessment of the environmental impact of management measures for the biodegradable fraction of municipal solid waste in Sao Paulo City. Waste Manag, 23(5), 403–409. https://doi.org/10.1016/S0956-053X(03)00058-8 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]Mendes, M. R., Aramaki, T., & Hanaki, K. (2004). Comparison of the environmental impact of incineration and landfilling in Sao Paulo City as determined by LCA. Resour. Conserv. Recycl, 41(1), 47–63. https://doi.org/10.1016/j.resconrec.2003.08.003 [Crossref], [Web of Science ®], [Google Scholar]Menikpura, S. N. M., Gheewala, S. H., & Bonnet, S. (2012). Sustainability assessment of municipal solid waste management in Sri Lanka: problems and prospects. J. Mater. Cycles Waste Manag, 14(3), 181–192. https://doi.org/10.1007/s10163-012-0055-z [Crossref], [Web of Science ®], [Google Scholar]Milutinovi, B., Stefanovi, G., Ðeki, P. S., Mijailovi, I., & Tomi, M. (2017). Environmental assessment of waste management scenarios with energy recovery using life cycle assessment and multi-criteria analysis. Energy, 137, 917–926. https://doi.org/10.1016/j.energy.2017.02.167 [Crossref], [Web of Science ®], [Google Scholar]Ministerio de Ambiente y Desarrollo Sostenible. (2019). Estrategia Nacional de Economía Circular. [Google Scholar]Özeler, D., Yetiş, Ü., & Demirer, G. N. (2006). Life cycle assesment of municipal solid waste management methods: ankara case study. Environ. Int, 32(3), 405–411. https://doi.org/10.1016/j.envint.2005.10.002 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]Saheri, S. (2012). Life cycle assessment for solid waste disposal options in Malaysia. Polish J. Environ. Stud, 21(5), 1377–1382. [Web of Science ®], [Google Scholar]Sandoval-Cobo, J. J. (2020). Methane potential and degradation kinetics of fresh and excavated municipal solid waste from a tropical landfill in Colombia. Sustain. Environ. Res, 30(1). https://doi.org/10.1186/s42834-020-00048-6 [Crossref], [Web of Science ®], [Google Scholar]Superintendencia de Servicios Públicos Domiciliarios. (2018). Informe de Disposición Final de Residuos Sólidos – 2017. [Google Scholar]Traivivatana, S., Wangjiraniran, W., Junlakarn, S., & Wansophark, N. (Oct 2017). Thailand energy outlook for the Thailand integrated energy blueprint (TIEB). Energy Procedia, 138, 399–404. https://doi.org/10.1016/j.egypro.2017.10.179 [Crossref], [Google Scholar]United Nations Department of Economic and Social Affairs (UN DESA). (2018). “Sustainable Development Goals Report 2018,” p. 64. [Crossref], [Google Scholar]Urup Anders, A. D. O. (2014). “Landfilling in EASETECH.” p. 46. [Google Scholar]USEPA/ISWA. (2012). International Best Practices Guide for Landfill Gas Energy Project. U.S. Environmental Protection Agency and ISWA (International Waste Management Association). [Google Scholar]Xing, W., Lu, W., Zhao, Y., Zhang, X., Deng, W., & Christensen, T. H. (2013). Environmental impact assessment of leachate recirculation in landfill of municipal solid waste by comparing with evaporation and discharge (EASEWASTE). Waste Manag, 33(2), 382–389. https://www.sciencedirect.com/science/article/abs/pii/S0956053X12004795 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]Yang, N., Damgaard, A., Lü, F., Shao, L. M., Brogaard, L. K. S., & He, P. J. (2014). Environmental impact assessment on the construction and operation of municipal solid waste sanitary landfills in developing countries: China case study. Waste Manag, 34(5), 929–937. https://doi.org/10.1016/j.wasman.2014.02.017 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]Yang, N., Zhang, H., Shao, L.-M., Lü, F., & He, P.-J. (Nov 2013). Greenhouse gas emissions during MSW landfilling in China: influence of waste characteristics and LFG treatment measures. Journal of Environmental Management, 129(5), 510–521. https://doi.org/10.1016/j.jenvman.2013.08.039 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]Zhao, W., van der Voet, E., Zhang, Y., & Huppes, G. (2009). Life cycle assessment of municipal solid waste management with regard to greenhouse gas emissions: case study of Tianjin, China. The Science of the Total Environment, 407(5), 1517–1526. https://doi.org/10.1016/j.scitotenv.2008.11.007 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]Zhao, Y., Christensen, T. H., Lu, W., Wu, H., & Wang, H. (2011). Environmental impact assessment of solid waste management in Beijing City, China. Waste Manag, 31(4), 793–799. https://doi.org/10.1016/j.wasman.2010.11.007 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]Zhao, Y., Wang, H. T., Lu, W. J., Damgaard, A., & Christensen, T. H. (2009). Life-cycle assessment of the municipal solid waste management system in Hangzhou, China (EASEWASTE). Waste Manag. Res, 27(4), 399–406. https://doi.org/10.1177/0734242X09103823 [Crossref], [PubMed], [Web of Science ®], [Google Scholar]Ziegler-Rodriguez, K., Margallo, M., Aldaco, R., Vázquez-Rowe, I., & Kahhat, R. (2019). Transitioning from open dumpsters to landfilling in Peru: environmental benefits and challenges from a life-cycle perspective. Journal of Cleaner Production, 229, 989–1003. https://doi.org/10.1016/j.jclepro.2019.05.015 [Crossref], [Web of Science ®], [Google Scholar]VertederoGas de vertederoBiogásAnálisis del ciclo de vidaPaíses en desarrolloObjetivos de Desarrollo SostenibleLandfillLandfill gasBiogasLife cycle analysisDeveloping countriesSustainable Development GoalsAn evaluation of final disposal alternatives for Municipal Solid Waste through Life Cycle Assessment: a case of study in ColombiaArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.ucc.edu.co/bitstreams/6d6bb3af-3d2d-4269-aac5-a65ea93a655b/download8a4605be74aa9ea9d79846c1fba20a33MD53ORIGINAL2021-CaicedoyColmenares-Disposal_Alternatives_Solid_Waste2021-CaicedoyColmenares-Disposal_Alternatives_Solid_WasteArtículoapplication/pdf6118730https://repository.ucc.edu.co/bitstreams/88dac977-cf1f-464e-8bea-77e43e1d0350/download80de8b8a43bc0264669d5b3026b8f6abMD512021-CaicedoyColmenares-Disposal_Alternatives_Solid_Waste-LicenciadeUso2021-CaicedoyColmenares-Disposal_Alternatives_Solid_Waste-LicenciadeUsoLicencia de Usoapplication/pdf133065https://repository.ucc.edu.co/bitstreams/fa65ef23-fda7-417e-9d81-5e2850d3c197/downloadf854ae65b938f4e3ef3f01249fb1a84cMD52THUMBNAIL2021-CaicedoyColmenares-Disposal_Alternatives_Solid_Waste.jpg2021-CaicedoyColmenares-Disposal_Alternatives_Solid_Waste.jpgGenerated Thumbnailimage/jpeg4366https://repository.ucc.edu.co/bitstreams/28524711-71a4-4a67-9dc4-954c6247b936/downloade1dc66e849fdbd4a07e34fec97d86ecdMD542021-CaicedoyColmenares-Disposal_Alternatives_Solid_Waste-LicenciadeUso.jpg2021-CaicedoyColmenares-Disposal_Alternatives_Solid_Waste-LicenciadeUso.jpgGenerated Thumbnailimage/jpeg5381https://repository.ucc.edu.co/bitstreams/9c1d03f9-9217-45af-a3f7-197e8adf9d4c/download7ac7bdba18914c4e2cb32a8aa48ebcc5MD55TEXT2021-CaicedoyColmenares-Disposal_Alternatives_Solid_Waste.txt2021-CaicedoyColmenares-Disposal_Alternatives_Solid_Waste.txtExtracted texttext/plain66353https://repository.ucc.edu.co/bitstreams/3d6222e1-97fa-45e3-88d7-917790e8eed7/download0944b40b1987b46bf3370fd55d345c98MD562021-CaicedoyColmenares-Disposal_Alternatives_Solid_Waste-LicenciadeUso.txt2021-CaicedoyColmenares-Disposal_Alternatives_Solid_Waste-LicenciadeUso.txtExtracted texttext/plain5556https://repository.ucc.edu.co/bitstreams/574a8dce-aa41-486d-ac2c-0be02bee0b15/downloadf03197da301a07d3fb8eae5dd904c3f1MD5720.500.12494/46449oai:repository.ucc.edu.co:20.500.12494/464492024-08-10 21:03:15.798open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=