Producción de hormigón verde a partir de ceniza de cascarilla de arroz y residuos de vidrio como sustitutos del cemento
Este artículo reporta el efecto de la incorporación de residuos de vidrio (RV) en las propiedades del hormigón que contiene ceniza de cascarilla de arroz (CCA) como reemplazo parcial del cemento. Se prepararon diferentes relaciones en masa CCA:RV 1:0, 1:1, 1:2 y 1:3 (CCA + RV = 5 %). Se evaluó el as...
- Autores:
-
Arbeláez Pérez, Oscar Felipe
Carvajal Jaramillo, Jeferson
Lasso Ceron, Cristian Arley
Rúa Suarez, Andrés Felipe
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2022
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/52511
- Acceso en línea:
- https://doi.org/10.18273/revion.v35n2-2022008
https://hdl.handle.net/20.500.12494/52511
- Palabra clave:
- Ceniza de cascarilla de arroz,
Residuos de vidrio
Conductividad térmica
Emisiones de CO2
puzolanas
Rice husk ash
Waste glass
Thermal conductivity
CO2 emissions
Pozzolans
- Rights
- embargoedAccess
- License
- Atribución – Sin Derivar
id |
COOPER2_3e65e4fd597fd89a1ad7b1ccc6752cfe |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/52511 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.none.fl_str_mv |
Producción de hormigón verde a partir de ceniza de cascarilla de arroz y residuos de vidrio como sustitutos del cemento |
title |
Producción de hormigón verde a partir de ceniza de cascarilla de arroz y residuos de vidrio como sustitutos del cemento |
spellingShingle |
Producción de hormigón verde a partir de ceniza de cascarilla de arroz y residuos de vidrio como sustitutos del cemento Ceniza de cascarilla de arroz, Residuos de vidrio Conductividad térmica Emisiones de CO2 puzolanas Rice husk ash Waste glass Thermal conductivity CO2 emissions Pozzolans |
title_short |
Producción de hormigón verde a partir de ceniza de cascarilla de arroz y residuos de vidrio como sustitutos del cemento |
title_full |
Producción de hormigón verde a partir de ceniza de cascarilla de arroz y residuos de vidrio como sustitutos del cemento |
title_fullStr |
Producción de hormigón verde a partir de ceniza de cascarilla de arroz y residuos de vidrio como sustitutos del cemento |
title_full_unstemmed |
Producción de hormigón verde a partir de ceniza de cascarilla de arroz y residuos de vidrio como sustitutos del cemento |
title_sort |
Producción de hormigón verde a partir de ceniza de cascarilla de arroz y residuos de vidrio como sustitutos del cemento |
dc.creator.fl_str_mv |
Arbeláez Pérez, Oscar Felipe Carvajal Jaramillo, Jeferson Lasso Ceron, Cristian Arley Rúa Suarez, Andrés Felipe |
dc.contributor.author.none.fl_str_mv |
Arbeláez Pérez, Oscar Felipe Carvajal Jaramillo, Jeferson Lasso Ceron, Cristian Arley Rúa Suarez, Andrés Felipe |
dc.subject.none.fl_str_mv |
Ceniza de cascarilla de arroz, Residuos de vidrio Conductividad térmica Emisiones de CO2 puzolanas |
topic |
Ceniza de cascarilla de arroz, Residuos de vidrio Conductividad térmica Emisiones de CO2 puzolanas Rice husk ash Waste glass Thermal conductivity CO2 emissions Pozzolans |
dc.subject.other.none.fl_str_mv |
Rice husk ash Waste glass Thermal conductivity CO2 emissions Pozzolans |
description |
Este artículo reporta el efecto de la incorporación de residuos de vidrio (RV) en las propiedades del hormigón que contiene ceniza de cascarilla de arroz (CCA) como reemplazo parcial del cemento. Se prepararon diferentes relaciones en masa CCA:RV 1:0, 1:1, 1:2 y 1:3 (CCA + RV = 5 %). Se evaluó el asentamiento, la resistencia a la compresión y las emisiones de CO2 de las mezclas de hormigón. Los resultados experimentales mostraron que el asentamiento aumentó gradualmente a medida que aumentaba el nivel de reemplazo de ceniza de cáscara de arroz por residuos de vidrio. La incorporación de residuos de vidrio aumenta la resistencia a la compresión, siendo la mezcla RHA:WG 1:3 la que presentó mayor resistencia a la compresión. Adicionalmente, con la sustitución del 5 % del cemento por ceniza de cascarilla de arroz y residuos de vidrio, se logra reducir la emisión de dióxido de carbono. Con base en este estudio, se puede concluir que las mezclas de hormigón que incorporan CCA y RV no solo aliviarán la carga ambiental, sino que también darán como resultado una construcción más sostenible y económica. |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-12-05 |
dc.date.accessioned.none.fl_str_mv |
2023-08-22T17:46:14Z |
dc.date.available.none.fl_str_mv |
2023-08-22T17:46:14Z 2027-08-14 |
dc.type.none.fl_str_mv |
Artículos Científicos |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://doi.org/10.18273/revion.v35n2-2022008 https://hdl.handle.net/20.500.12494/52511 |
dc.identifier.bibliographicCitation.none.fl_str_mv |
Arbeláez Pérez, O. F., Rúa Suárez, A. F. ., Carvajal Jaramillo, J. ., & Lasso Cerón, C. A. . (2022). Producción de hormigón verde a partir de ceniza de cascarilla de arroz y residuos de vidrio como sustitutos del cemento. Revista ION, 35(2), 101–109. https://doi.org/10.18273/revion.v35n2-2022008 |
url |
https://doi.org/10.18273/revion.v35n2-2022008 https://hdl.handle.net/20.500.12494/52511 |
identifier_str_mv |
Arbeláez Pérez, O. F., Rúa Suárez, A. F. ., Carvajal Jaramillo, J. ., & Lasso Cerón, C. A. . (2022). Producción de hormigón verde a partir de ceniza de cascarilla de arroz y residuos de vidrio como sustitutos del cemento. Revista ION, 35(2), 101–109. https://doi.org/10.18273/revion.v35n2-2022008 |
dc.relation.isversionof.none.fl_str_mv |
http://www.scielo.org.co/pdf/rion/v35n2/2145-8480-rion-35-02-101.pdf |
dc.relation.ispartofjournal.none.fl_str_mv |
Revista ION |
dc.relation.references.none.fl_str_mv |
Islam MJ, Islam K, Shahjalal M, Khatun E, Islam S, Razzaque AB. Influence of different types of fibers on the mechanical properties of recycled waste aggregate concrete. Constr Build Mater. 2022;337(January):127577. [2] Assawamartbunlue K, Surawattanawan P, Luknongbu W. ScienceDirect ScienceDirect ScienceDirect ScienceDirect temperature function for a long-term district heat demand forecast Assessing the feasibility of using the heat , demand-outdoor Specific energy consumption of cement in Thailand Specific energy consu. Energy Procedia 2019;156(September 2018):212–6. [3] Dey T, Bhattacharjee T, Nag P, Ritika, Ghati A, Kuila A. Valorization of agro-waste into value added products for sustainable development. Bioresour Technol Reports. 2021;16(August):100834. [4] Esmaeili J, Oudah Al-Mwanes A. A review: Properties of eco-friendly ultra-high-performance concrete incorporated with waste glass as a partial replacement for cement. Mater Today Proc. 2021;42:1958–65. [5] Soliman NA, Tagnit-Hamou A. Development of ultra-high-performance concrete using glass powder – Towards ecofriendly concrete. Constr Build Mater. 2016;125:600–12. [6] Raju AS, Anand KB, Rakesh P. Partial replacement of Ordinary Portland cement by LCD glass powder in concrete. Mater Today Proc. 2019;46:5131–7. [7] Jiang X, Xiao R, Bai Y, Huang B, Ma Y. Influence of waste glass powder as a supplementary cementitious material (SCM) on physical and mechanical properties of cement paste under high temperatures. J Clean Prod. 2022;340(January). [8] Kamali M, Ghahremaninezhad A. Effect of glass powders on the mechanical and durability properties of cementitious materials. Constr Build Mater. 2015;98:407–16. [9] Rajendran R, Sathishkumar A, Perumal K, Pannirselvam N, Lingeshwaran N, Babu Madavarapu S. An experiment on concrete replacing binding material as waste glass powder. Mater Today Proc. 2021;47(xxxx):5447–50. [10] Kumar Das S, Adediran A, Rodrigue Kaze C, Mohammed Mustakim S, Leklou N. Production, characteristics, and utilization of rice husk ash in alkali activated materials: An overview of fresh and hardened state properties. Constr Build Mater 2022;345(February):128341. [11] Wu K, Han H, Rößler C, Xu L, Ludwig HM. Rice hush ash as supplementary cementitious material for calcium aluminate cement – Effects on strength and hydration. Constr Build Mater. 2021;302(May). [12] Khan R, Jabbar A, Ahmad I, Khan W, Khan AN, Mirza J. Reduction in environmental problems using rice-husk ash in concrete. Constr Build Mater. 2012;30:360–5. [13] Harihanandh M, Rajashekhar reddy K. Study on durability of concrete by using rice husk as partial replacement of cement. Mater Today Proc. 2022;52:1794–9. [14] Camargo Pérez N, Higuera Sandoval C. Concreto Hidraulico Modificado con Silice obtenida de la cascarilla de arroz. Cienc e Ing Neogranadina. 2017;27:91–110. [15] Adesina A. Recent advances in the concrete industry to reduce its carbon dioxide emissions. Environ Challenges 2020;1(November):100004. [16] Alnahhal MF, Alengaram UJ, Jumaat MZ, Abutaha F, Alqedra MA, Nayaka RR. Assessment on engineering properties and CO2 emissions of recycled aggregate concrete incorporating waste products as supplements to Portland cement. J Clean Prod. 2018;203:822–35. [17] Santana-Carrillo JL, Burciaga-Díaz O, Escalante-Garcia JI. Blended limestone-Portland cement binders enhanced by waste glass based and commercial sodium silicate - Effect on properties and CO2 emissions. Cem Concr Compos. 2022;126(November 2021):104364. [18] Behera M, Rahman MR. Evaluating the combined effect of recycled aggregate and rice husk ash on concrete properties. Mater Today Proc. 2022;61:370–8. [19] Siddika A, Mamun MA Al, Alyousef R, Mohammadhosseini H. State-of-the-art-review on rice husk ash: A supplementary cementitious material in concrete. J King Saud Univ - Eng Sci. 2021;33(5):294–307. [20] Miller SA, Cunningham PR, Harvey JT. Rice-based ash in concrete: A review of past work and potential environmental sustainability. Resour Conserv Recycl. 2019;146(April):416–30. [21] Fapohunda C, Akinbile B, Shittu A. Structure and properties of mortar and concrete with rice husk ash as partial replacement of ordinary Portland cement – A review. Int J Sustain Built Environ. 2017;6(2):675–92. [22] Ibrahim KIM. Recycled waste glass powder as a partial replacement of cement in concrete containing silica fume and fly ash. Case Stud Constr Mater. 2021;15(June):e00630. [23] Bixapathi G, Saravanan M. Strength and durability of concrete using Rice Husk ash as a partial replacement of cement. Mater Today Proc. 2022;52:1606–10. 24. Santhosh KG, Subhani SM, Bahurudeen A. Recycling of palm oil fuel ash and rice husk ash in the cleaner production of concrete. J Clean Prod. 2022;354(November 2021):131736. 25. Alsubari B, Shafigh P, Jumaat MZ. Utilization of high-volume treated palm oil fuel ash to produce sustainable self-compacting concrete. J Clean Prod. 2016;137:982–96. 26. Hanif A, Kim Y, Lu Z, Park C. Early-age behavior of recycled aggregate concrete under steam curing regime. J Clean Prod. 2017;152:103–14. 27. Menchaca-Ballinas LE, Escalante-Garcia JI. Low CO2 emission cements of waste glass activated by CaO and NaOH. J Clean Prod. 2019;239:117992. |
dc.rights.license.none.fl_str_mv |
Atribución – Sin Derivar |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Atribución – Sin Derivar http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.none.fl_str_mv |
101-110 |
dc.coverage.temporal.none.fl_str_mv |
35 |
dc.publisher.none.fl_str_mv |
Universidad Cooperativa de Colombia |
dc.publisher.program.none.fl_str_mv |
Ingeniería Civil |
dc.publisher.place.none.fl_str_mv |
Medellín |
publisher.none.fl_str_mv |
Universidad Cooperativa de Colombia |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/9a733690-40e4-4b2d-953b-ce9162693c96/download https://repository.ucc.edu.co/bitstreams/b06b1f49-d1b9-4b6e-9240-676dd7c94598/download https://repository.ucc.edu.co/bitstreams/08f84294-0b2b-49ec-b03e-2b3b04d2aca6/download https://repository.ucc.edu.co/bitstreams/f9b1c263-997a-4792-981b-f65dc744ccba/download |
bitstream.checksum.fl_str_mv |
e84a684ad4bbfed2e2cb09ca330c223b 3bce4f7ab09dfc588f126e1e36e98a45 b67aab63c965f7e37862c03d27f8f20d e02481006af835dd5300eeed7e8903f7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1811565674372268032 |
spelling |
Arbeláez Pérez, Oscar FelipeCarvajal Jaramillo, JefersonLasso Ceron, Cristian ArleyRúa Suarez, Andrés Felipe352023-08-22T17:46:14Z2027-08-142023-08-22T17:46:14Z2022-12-05https://doi.org/10.18273/revion.v35n2-2022008https://hdl.handle.net/20.500.12494/52511Arbeláez Pérez, O. F., Rúa Suárez, A. F. ., Carvajal Jaramillo, J. ., & Lasso Cerón, C. A. . (2022). Producción de hormigón verde a partir de ceniza de cascarilla de arroz y residuos de vidrio como sustitutos del cemento. Revista ION, 35(2), 101–109. https://doi.org/10.18273/revion.v35n2-2022008Este artículo reporta el efecto de la incorporación de residuos de vidrio (RV) en las propiedades del hormigón que contiene ceniza de cascarilla de arroz (CCA) como reemplazo parcial del cemento. Se prepararon diferentes relaciones en masa CCA:RV 1:0, 1:1, 1:2 y 1:3 (CCA + RV = 5 %). Se evaluó el asentamiento, la resistencia a la compresión y las emisiones de CO2 de las mezclas de hormigón. Los resultados experimentales mostraron que el asentamiento aumentó gradualmente a medida que aumentaba el nivel de reemplazo de ceniza de cáscara de arroz por residuos de vidrio. La incorporación de residuos de vidrio aumenta la resistencia a la compresión, siendo la mezcla RHA:WG 1:3 la que presentó mayor resistencia a la compresión. Adicionalmente, con la sustitución del 5 % del cemento por ceniza de cascarilla de arroz y residuos de vidrio, se logra reducir la emisión de dióxido de carbono. Con base en este estudio, se puede concluir que las mezclas de hormigón que incorporan CCA y RV no solo aliviarán la carga ambiental, sino que también darán como resultado una construcción más sostenible y económica.This paper reports the effect of incorporation of waste glass (WG) on the properties of concrete containing rice husk ash (RHA) as partial replacement of cement. Different RHA:WG mass ratio 1:0, 1:1, 1:2 and 1:3 (RHA + WG = 5 %) were prepared. The slump, compressive strength and CO2 emissions were evaluated. The experimental results showed that the slump was gradually increased as the replacement level of rice husk ash by waste glass was increased. The incorporation of waste glass increases the compressive strength, being RHA:WG 1:3 the mixture that showed the highest compressive strength. Additionally, with the substitution of 5 % of cement by rice husk ash and waste glass, it is possible to reduce the emission of carbon dioxide. Based on this study, it can be concluded that the concrete mixtures incorporating RHA and WG will not only relieve the environmental burden but also result into a more sustainable and economical construction.0000-0001-8592-5333oscar.arbelaez@campusucc.edu.cojeferson.carvajalj@campusucc.edu.cocristian.lassoc@campusucc.edu.coandresf.rua@campusucc.edu.co101-110Universidad Cooperativa de ColombiaIngeniería CivilMedellínhttp://www.scielo.org.co/pdf/rion/v35n2/2145-8480-rion-35-02-101.pdfRevista IONIslam MJ, Islam K, Shahjalal M, Khatun E, Islam S, Razzaque AB. Influence of different types of fibers on the mechanical properties of recycled waste aggregate concrete. Constr Build Mater. 2022;337(January):127577. [2] Assawamartbunlue K, Surawattanawan P, Luknongbu W. ScienceDirect ScienceDirect ScienceDirect ScienceDirect temperature function for a long-term district heat demand forecast Assessing the feasibility of using the heat , demand-outdoor Specific energy consumption of cement in Thailand Specific energy consu. Energy Procedia 2019;156(September 2018):212–6. [3] Dey T, Bhattacharjee T, Nag P, Ritika, Ghati A, Kuila A. Valorization of agro-waste into value added products for sustainable development. Bioresour Technol Reports. 2021;16(August):100834. [4] Esmaeili J, Oudah Al-Mwanes A. A review: Properties of eco-friendly ultra-high-performance concrete incorporated with waste glass as a partial replacement for cement. Mater Today Proc. 2021;42:1958–65. [5] Soliman NA, Tagnit-Hamou A. Development of ultra-high-performance concrete using glass powder – Towards ecofriendly concrete. Constr Build Mater. 2016;125:600–12. [6] Raju AS, Anand KB, Rakesh P. Partial replacement of Ordinary Portland cement by LCD glass powder in concrete. Mater Today Proc. 2019;46:5131–7. [7] Jiang X, Xiao R, Bai Y, Huang B, Ma Y. Influence of waste glass powder as a supplementary cementitious material (SCM) on physical and mechanical properties of cement paste under high temperatures. J Clean Prod. 2022;340(January). [8] Kamali M, Ghahremaninezhad A. Effect of glass powders on the mechanical and durability properties of cementitious materials. Constr Build Mater. 2015;98:407–16. [9] Rajendran R, Sathishkumar A, Perumal K, Pannirselvam N, Lingeshwaran N, Babu Madavarapu S. An experiment on concrete replacing binding material as waste glass powder. Mater Today Proc. 2021;47(xxxx):5447–50. [10] Kumar Das S, Adediran A, Rodrigue Kaze C, Mohammed Mustakim S, Leklou N. Production, characteristics, and utilization of rice husk ash in alkali activated materials: An overview of fresh and hardened state properties. Constr Build Mater 2022;345(February):128341. [11] Wu K, Han H, Rößler C, Xu L, Ludwig HM. Rice hush ash as supplementary cementitious material for calcium aluminate cement – Effects on strength and hydration. Constr Build Mater. 2021;302(May). [12] Khan R, Jabbar A, Ahmad I, Khan W, Khan AN, Mirza J. Reduction in environmental problems using rice-husk ash in concrete. Constr Build Mater. 2012;30:360–5. [13] Harihanandh M, Rajashekhar reddy K. Study on durability of concrete by using rice husk as partial replacement of cement. Mater Today Proc. 2022;52:1794–9. [14] Camargo Pérez N, Higuera Sandoval C. Concreto Hidraulico Modificado con Silice obtenida de la cascarilla de arroz. Cienc e Ing Neogranadina. 2017;27:91–110. [15] Adesina A. Recent advances in the concrete industry to reduce its carbon dioxide emissions. Environ Challenges 2020;1(November):100004. [16] Alnahhal MF, Alengaram UJ, Jumaat MZ, Abutaha F, Alqedra MA, Nayaka RR. Assessment on engineering properties and CO2 emissions of recycled aggregate concrete incorporating waste products as supplements to Portland cement. J Clean Prod. 2018;203:822–35. [17] Santana-Carrillo JL, Burciaga-Díaz O, Escalante-Garcia JI. Blended limestone-Portland cement binders enhanced by waste glass based and commercial sodium silicate - Effect on properties and CO2 emissions. Cem Concr Compos. 2022;126(November 2021):104364. [18] Behera M, Rahman MR. Evaluating the combined effect of recycled aggregate and rice husk ash on concrete properties. Mater Today Proc. 2022;61:370–8. [19] Siddika A, Mamun MA Al, Alyousef R, Mohammadhosseini H. State-of-the-art-review on rice husk ash: A supplementary cementitious material in concrete. J King Saud Univ - Eng Sci. 2021;33(5):294–307. [20] Miller SA, Cunningham PR, Harvey JT. Rice-based ash in concrete: A review of past work and potential environmental sustainability. Resour Conserv Recycl. 2019;146(April):416–30. [21] Fapohunda C, Akinbile B, Shittu A. Structure and properties of mortar and concrete with rice husk ash as partial replacement of ordinary Portland cement – A review. Int J Sustain Built Environ. 2017;6(2):675–92. [22] Ibrahim KIM. Recycled waste glass powder as a partial replacement of cement in concrete containing silica fume and fly ash. Case Stud Constr Mater. 2021;15(June):e00630. [23] Bixapathi G, Saravanan M. Strength and durability of concrete using Rice Husk ash as a partial replacement of cement. Mater Today Proc. 2022;52:1606–10. 24. Santhosh KG, Subhani SM, Bahurudeen A. Recycling of palm oil fuel ash and rice husk ash in the cleaner production of concrete. J Clean Prod. 2022;354(November 2021):131736. 25. Alsubari B, Shafigh P, Jumaat MZ. Utilization of high-volume treated palm oil fuel ash to produce sustainable self-compacting concrete. J Clean Prod. 2016;137:982–96. 26. Hanif A, Kim Y, Lu Z, Park C. Early-age behavior of recycled aggregate concrete under steam curing regime. J Clean Prod. 2017;152:103–14. 27. Menchaca-Ballinas LE, Escalante-Garcia JI. Low CO2 emission cements of waste glass activated by CaO and NaOH. J Clean Prod. 2019;239:117992.Ceniza de cascarilla de arroz,Residuos de vidrioConductividad térmicaEmisiones de CO2puzolanasRice husk ashWaste glassThermal conductivityCO2 emissionsPozzolansProducción de hormigón verde a partir de ceniza de cascarilla de arroz y residuos de vidrio como sustitutos del cementoArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribución – Sin Derivarinfo:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfPublicationORIGINAL2023_Produccion_Hormigon_Verde.pdf2023_Produccion_Hormigon_Verde.pdfapplication/pdf199938https://repository.ucc.edu.co/bitstreams/9a733690-40e4-4b2d-953b-ce9162693c96/downloade84a684ad4bbfed2e2cb09ca330c223bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/b06b1f49-d1b9-4b6e-9240-676dd7c94598/download3bce4f7ab09dfc588f126e1e36e98a45MD52TEXT2023_Produccion_Hormigon_Verde.pdf.txt2023_Produccion_Hormigon_Verde.pdf.txtExtracted texttext/plain30926https://repository.ucc.edu.co/bitstreams/08f84294-0b2b-49ec-b03e-2b3b04d2aca6/downloadb67aab63c965f7e37862c03d27f8f20dMD53THUMBNAIL2023_Produccion_Hormigon_Verde.pdf.jpg2023_Produccion_Hormigon_Verde.pdf.jpgGenerated Thumbnailimage/jpeg12731https://repository.ucc.edu.co/bitstreams/f9b1c263-997a-4792-981b-f65dc744ccba/downloade02481006af835dd5300eeed7e8903f7MD5420.500.12494/52511oai:repository.ucc.edu.co:20.500.12494/525112024-08-10 21:02:42.797restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo= |