Producción de hormigón verde a partir de ceniza de cascarilla de arroz y residuos de vidrio como sustitutos del cemento

Este artículo reporta el efecto de la incorporación de residuos de vidrio (RV) en las propiedades del hormigón que contiene ceniza de cascarilla de arroz (CCA) como reemplazo parcial del cemento. Se prepararon diferentes relaciones en masa CCA:RV 1:0, 1:1, 1:2 y 1:3 (CCA + RV = 5 %). Se evaluó el as...

Full description

Autores:
Arbeláez Pérez, Oscar Felipe
Carvajal Jaramillo, Jeferson
Lasso Ceron, Cristian Arley
Rúa Suarez, Andrés Felipe
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/52511
Acceso en línea:
https://doi.org/10.18273/revion.v35n2-2022008
https://hdl.handle.net/20.500.12494/52511
Palabra clave:
Ceniza de cascarilla de arroz,
Residuos de vidrio
Conductividad térmica
Emisiones de CO2
puzolanas
Rice husk ash
Waste glass
Thermal conductivity
CO2 emissions
Pozzolans
Rights
embargoedAccess
License
Atribución – Sin Derivar
id COOPER2_3e65e4fd597fd89a1ad7b1ccc6752cfe
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/52511
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.none.fl_str_mv Producción de hormigón verde a partir de ceniza de cascarilla de arroz y residuos de vidrio como sustitutos del cemento
title Producción de hormigón verde a partir de ceniza de cascarilla de arroz y residuos de vidrio como sustitutos del cemento
spellingShingle Producción de hormigón verde a partir de ceniza de cascarilla de arroz y residuos de vidrio como sustitutos del cemento
Ceniza de cascarilla de arroz,
Residuos de vidrio
Conductividad térmica
Emisiones de CO2
puzolanas
Rice husk ash
Waste glass
Thermal conductivity
CO2 emissions
Pozzolans
title_short Producción de hormigón verde a partir de ceniza de cascarilla de arroz y residuos de vidrio como sustitutos del cemento
title_full Producción de hormigón verde a partir de ceniza de cascarilla de arroz y residuos de vidrio como sustitutos del cemento
title_fullStr Producción de hormigón verde a partir de ceniza de cascarilla de arroz y residuos de vidrio como sustitutos del cemento
title_full_unstemmed Producción de hormigón verde a partir de ceniza de cascarilla de arroz y residuos de vidrio como sustitutos del cemento
title_sort Producción de hormigón verde a partir de ceniza de cascarilla de arroz y residuos de vidrio como sustitutos del cemento
dc.creator.fl_str_mv Arbeláez Pérez, Oscar Felipe
Carvajal Jaramillo, Jeferson
Lasso Ceron, Cristian Arley
Rúa Suarez, Andrés Felipe
dc.contributor.author.none.fl_str_mv Arbeláez Pérez, Oscar Felipe
Carvajal Jaramillo, Jeferson
Lasso Ceron, Cristian Arley
Rúa Suarez, Andrés Felipe
dc.subject.none.fl_str_mv Ceniza de cascarilla de arroz,
Residuos de vidrio
Conductividad térmica
Emisiones de CO2
puzolanas
topic Ceniza de cascarilla de arroz,
Residuos de vidrio
Conductividad térmica
Emisiones de CO2
puzolanas
Rice husk ash
Waste glass
Thermal conductivity
CO2 emissions
Pozzolans
dc.subject.other.none.fl_str_mv Rice husk ash
Waste glass
Thermal conductivity
CO2 emissions
Pozzolans
description Este artículo reporta el efecto de la incorporación de residuos de vidrio (RV) en las propiedades del hormigón que contiene ceniza de cascarilla de arroz (CCA) como reemplazo parcial del cemento. Se prepararon diferentes relaciones en masa CCA:RV 1:0, 1:1, 1:2 y 1:3 (CCA + RV = 5 %). Se evaluó el asentamiento, la resistencia a la compresión y las emisiones de CO2 de las mezclas de hormigón. Los resultados experimentales mostraron que el asentamiento aumentó gradualmente a medida que aumentaba el nivel de reemplazo de ceniza de cáscara de arroz por residuos de vidrio. La incorporación de residuos de vidrio aumenta la resistencia a la compresión, siendo la mezcla RHA:WG 1:3 la que presentó mayor resistencia a la compresión. Adicionalmente, con la sustitución del 5 % del cemento por ceniza de cascarilla de arroz y residuos de vidrio, se logra reducir la emisión de dióxido de carbono. Con base en este estudio, se puede concluir que las mezclas de hormigón que incorporan CCA y RV no solo aliviarán la carga ambiental, sino que también darán como resultado una construcción más sostenible y económica.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-12-05
dc.date.accessioned.none.fl_str_mv 2023-08-22T17:46:14Z
dc.date.available.none.fl_str_mv 2023-08-22T17:46:14Z
2027-08-14
dc.type.none.fl_str_mv Artículos Científicos
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://doi.org/10.18273/revion.v35n2-2022008
https://hdl.handle.net/20.500.12494/52511
dc.identifier.bibliographicCitation.none.fl_str_mv Arbeláez Pérez, O. F., Rúa Suárez, A. F. ., Carvajal Jaramillo, J. ., & Lasso Cerón, C. A. . (2022). Producción de hormigón verde a partir de ceniza de cascarilla de arroz y residuos de vidrio como sustitutos del cemento. Revista ION, 35(2), 101–109. https://doi.org/10.18273/revion.v35n2-2022008
url https://doi.org/10.18273/revion.v35n2-2022008
https://hdl.handle.net/20.500.12494/52511
identifier_str_mv Arbeláez Pérez, O. F., Rúa Suárez, A. F. ., Carvajal Jaramillo, J. ., & Lasso Cerón, C. A. . (2022). Producción de hormigón verde a partir de ceniza de cascarilla de arroz y residuos de vidrio como sustitutos del cemento. Revista ION, 35(2), 101–109. https://doi.org/10.18273/revion.v35n2-2022008
dc.relation.isversionof.none.fl_str_mv http://www.scielo.org.co/pdf/rion/v35n2/2145-8480-rion-35-02-101.pdf
dc.relation.ispartofjournal.none.fl_str_mv Revista ION
dc.relation.references.none.fl_str_mv Islam MJ, Islam K, Shahjalal M, Khatun E, Islam S, Razzaque AB. Influence of different types of fibers on the mechanical properties of recycled waste aggregate concrete. Constr Build Mater. 2022;337(January):127577. [2] Assawamartbunlue K, Surawattanawan P, Luknongbu W. ScienceDirect ScienceDirect ScienceDirect ScienceDirect temperature function for a long-term district heat demand forecast Assessing the feasibility of using the heat , demand-outdoor Specific energy consumption of cement in Thailand Specific energy consu. Energy Procedia 2019;156(September 2018):212–6. [3] Dey T, Bhattacharjee T, Nag P, Ritika, Ghati A, Kuila A. Valorization of agro-waste into value added products for sustainable development. Bioresour Technol Reports. 2021;16(August):100834. [4] Esmaeili J, Oudah Al-Mwanes A. A review: Properties of eco-friendly ultra-high-performance concrete incorporated with waste glass as a partial replacement for cement. Mater Today Proc. 2021;42:1958–65. [5] Soliman NA, Tagnit-Hamou A. Development of ultra-high-performance concrete using glass powder – Towards ecofriendly concrete. Constr Build Mater. 2016;125:600–12. [6] Raju AS, Anand KB, Rakesh P. Partial replacement of Ordinary Portland cement by LCD glass powder in concrete. Mater Today Proc. 2019;46:5131–7. [7] Jiang X, Xiao R, Bai Y, Huang B, Ma Y. Influence of waste glass powder as a supplementary cementitious material (SCM) on physical and mechanical properties of cement paste under high temperatures. J Clean Prod. 2022;340(January). [8] Kamali M, Ghahremaninezhad A. Effect of glass powders on the mechanical and durability properties of cementitious materials. Constr Build Mater. 2015;98:407–16. [9] Rajendran R, Sathishkumar A, Perumal K, Pannirselvam N, Lingeshwaran N, Babu Madavarapu S. An experiment on concrete replacing binding material as waste glass powder. Mater Today Proc. 2021;47(xxxx):5447–50. [10] Kumar Das S, Adediran A, Rodrigue Kaze C, Mohammed Mustakim S, Leklou N. Production, characteristics, and utilization of rice husk ash in alkali activated materials: An overview of fresh and hardened state properties. Constr Build Mater 2022;345(February):128341. [11] Wu K, Han H, Rößler C, Xu L, Ludwig HM. Rice hush ash as supplementary cementitious material for calcium aluminate cement – Effects on strength and hydration. Constr Build Mater. 2021;302(May). [12] Khan R, Jabbar A, Ahmad I, Khan W, Khan AN, Mirza J. Reduction in environmental problems using rice-husk ash in concrete. Constr Build Mater. 2012;30:360–5. [13] Harihanandh M, Rajashekhar reddy K. Study on durability of concrete by using rice husk as partial replacement of cement. Mater Today Proc. 2022;52:1794–9. [14] Camargo Pérez N, Higuera Sandoval C. Concreto Hidraulico Modificado con Silice obtenida de la cascarilla de arroz. Cienc e Ing Neogranadina. 2017;27:91–110. [15] Adesina A. Recent advances in the concrete industry to reduce its carbon dioxide emissions. Environ Challenges 2020;1(November):100004. [16] Alnahhal MF, Alengaram UJ, Jumaat MZ, Abutaha F, Alqedra MA, Nayaka RR. Assessment on engineering properties and CO2 emissions of recycled aggregate concrete incorporating waste products as supplements to Portland cement. J Clean Prod. 2018;203:822–35. [17] Santana-Carrillo JL, Burciaga-Díaz O, Escalante-Garcia JI. Blended limestone-Portland cement binders enhanced by waste glass based and commercial sodium silicate - Effect on properties and CO2 emissions. Cem Concr Compos. 2022;126(November 2021):104364. [18] Behera M, Rahman MR. Evaluating the combined effect of recycled aggregate and rice husk ash on concrete properties. Mater Today Proc. 2022;61:370–8. [19] Siddika A, Mamun MA Al, Alyousef R, Mohammadhosseini H. State-of-the-art-review on rice husk ash: A supplementary cementitious material in concrete. J King Saud Univ - Eng Sci. 2021;33(5):294–307. [20] Miller SA, Cunningham PR, Harvey JT. Rice-based ash in concrete: A review of past work and potential environmental sustainability. Resour Conserv Recycl. 2019;146(April):416–30. [21] Fapohunda C, Akinbile B, Shittu A. Structure and properties of mortar and concrete with rice husk ash as partial replacement of ordinary Portland cement – A review. Int J Sustain Built Environ. 2017;6(2):675–92. [22] Ibrahim KIM. Recycled waste glass powder as a partial replacement of cement in concrete containing silica fume and fly ash. Case Stud Constr Mater. 2021;15(June):e00630. [23] Bixapathi G, Saravanan M. Strength and durability of concrete using Rice Husk ash as a partial replacement of cement. Mater Today Proc. 2022;52:1606–10. 24. Santhosh KG, Subhani SM, Bahurudeen A. Recycling of palm oil fuel ash and rice husk ash in the cleaner production of concrete. J Clean Prod. 2022;354(November 2021):131736. 25. Alsubari B, Shafigh P, Jumaat MZ. Utilization of high-volume treated palm oil fuel ash to produce sustainable self-compacting concrete. J Clean Prod. 2016;137:982–96. 26. Hanif A, Kim Y, Lu Z, Park C. Early-age behavior of recycled aggregate concrete under steam curing regime. J Clean Prod. 2017;152:103–14. 27. Menchaca-Ballinas LE, Escalante-Garcia JI. Low CO2 emission cements of waste glass activated by CaO and NaOH. J Clean Prod. 2019;239:117992.
dc.rights.license.none.fl_str_mv Atribución – Sin Derivar
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Atribución – Sin Derivar
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.none.fl_str_mv 101-110
dc.coverage.temporal.none.fl_str_mv 35
dc.publisher.none.fl_str_mv Universidad Cooperativa de Colombia
dc.publisher.program.none.fl_str_mv Ingeniería Civil
dc.publisher.place.none.fl_str_mv Medellín
publisher.none.fl_str_mv Universidad Cooperativa de Colombia
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/9a733690-40e4-4b2d-953b-ce9162693c96/download
https://repository.ucc.edu.co/bitstreams/b06b1f49-d1b9-4b6e-9240-676dd7c94598/download
https://repository.ucc.edu.co/bitstreams/08f84294-0b2b-49ec-b03e-2b3b04d2aca6/download
https://repository.ucc.edu.co/bitstreams/f9b1c263-997a-4792-981b-f65dc744ccba/download
bitstream.checksum.fl_str_mv e84a684ad4bbfed2e2cb09ca330c223b
3bce4f7ab09dfc588f126e1e36e98a45
b67aab63c965f7e37862c03d27f8f20d
e02481006af835dd5300eeed7e8903f7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1811565674372268032
spelling Arbeláez Pérez, Oscar FelipeCarvajal Jaramillo, JefersonLasso Ceron, Cristian ArleyRúa Suarez, Andrés Felipe352023-08-22T17:46:14Z2027-08-142023-08-22T17:46:14Z2022-12-05https://doi.org/10.18273/revion.v35n2-2022008https://hdl.handle.net/20.500.12494/52511Arbeláez Pérez, O. F., Rúa Suárez, A. F. ., Carvajal Jaramillo, J. ., & Lasso Cerón, C. A. . (2022). Producción de hormigón verde a partir de ceniza de cascarilla de arroz y residuos de vidrio como sustitutos del cemento. Revista ION, 35(2), 101–109. https://doi.org/10.18273/revion.v35n2-2022008Este artículo reporta el efecto de la incorporación de residuos de vidrio (RV) en las propiedades del hormigón que contiene ceniza de cascarilla de arroz (CCA) como reemplazo parcial del cemento. Se prepararon diferentes relaciones en masa CCA:RV 1:0, 1:1, 1:2 y 1:3 (CCA + RV = 5 %). Se evaluó el asentamiento, la resistencia a la compresión y las emisiones de CO2 de las mezclas de hormigón. Los resultados experimentales mostraron que el asentamiento aumentó gradualmente a medida que aumentaba el nivel de reemplazo de ceniza de cáscara de arroz por residuos de vidrio. La incorporación de residuos de vidrio aumenta la resistencia a la compresión, siendo la mezcla RHA:WG 1:3 la que presentó mayor resistencia a la compresión. Adicionalmente, con la sustitución del 5 % del cemento por ceniza de cascarilla de arroz y residuos de vidrio, se logra reducir la emisión de dióxido de carbono. Con base en este estudio, se puede concluir que las mezclas de hormigón que incorporan CCA y RV no solo aliviarán la carga ambiental, sino que también darán como resultado una construcción más sostenible y económica.This paper reports the effect of incorporation of waste glass (WG) on the properties of concrete containing rice husk ash (RHA) as partial replacement of cement. Different RHA:WG mass ratio 1:0, 1:1, 1:2 and 1:3 (RHA + WG = 5 %) were prepared. The slump, compressive strength and CO2 emissions were evaluated. The experimental results showed that the slump was gradually increased as the replacement level of rice husk ash by waste glass was increased. The incorporation of waste glass increases the compressive strength, being RHA:WG 1:3 the mixture that showed the highest compressive strength. Additionally, with the substitution of 5 % of cement by rice husk ash and waste glass, it is possible to reduce the emission of carbon dioxide. Based on this study, it can be concluded that the concrete mixtures incorporating RHA and WG will not only relieve the environmental burden but also result into a more sustainable and economical construction.0000-0001-8592-5333oscar.arbelaez@campusucc.edu.cojeferson.carvajalj@campusucc.edu.cocristian.lassoc@campusucc.edu.coandresf.rua@campusucc.edu.co101-110Universidad Cooperativa de ColombiaIngeniería CivilMedellínhttp://www.scielo.org.co/pdf/rion/v35n2/2145-8480-rion-35-02-101.pdfRevista IONIslam MJ, Islam K, Shahjalal M, Khatun E, Islam S, Razzaque AB. Influence of different types of fibers on the mechanical properties of recycled waste aggregate concrete. Constr Build Mater. 2022;337(January):127577. [2] Assawamartbunlue K, Surawattanawan P, Luknongbu W. ScienceDirect ScienceDirect ScienceDirect ScienceDirect temperature function for a long-term district heat demand forecast Assessing the feasibility of using the heat , demand-outdoor Specific energy consumption of cement in Thailand Specific energy consu. Energy Procedia 2019;156(September 2018):212–6. [3] Dey T, Bhattacharjee T, Nag P, Ritika, Ghati A, Kuila A. Valorization of agro-waste into value added products for sustainable development. Bioresour Technol Reports. 2021;16(August):100834. [4] Esmaeili J, Oudah Al-Mwanes A. A review: Properties of eco-friendly ultra-high-performance concrete incorporated with waste glass as a partial replacement for cement. Mater Today Proc. 2021;42:1958–65. [5] Soliman NA, Tagnit-Hamou A. Development of ultra-high-performance concrete using glass powder – Towards ecofriendly concrete. Constr Build Mater. 2016;125:600–12. [6] Raju AS, Anand KB, Rakesh P. Partial replacement of Ordinary Portland cement by LCD glass powder in concrete. Mater Today Proc. 2019;46:5131–7. [7] Jiang X, Xiao R, Bai Y, Huang B, Ma Y. Influence of waste glass powder as a supplementary cementitious material (SCM) on physical and mechanical properties of cement paste under high temperatures. J Clean Prod. 2022;340(January). [8] Kamali M, Ghahremaninezhad A. Effect of glass powders on the mechanical and durability properties of cementitious materials. Constr Build Mater. 2015;98:407–16. [9] Rajendran R, Sathishkumar A, Perumal K, Pannirselvam N, Lingeshwaran N, Babu Madavarapu S. An experiment on concrete replacing binding material as waste glass powder. Mater Today Proc. 2021;47(xxxx):5447–50. [10] Kumar Das S, Adediran A, Rodrigue Kaze C, Mohammed Mustakim S, Leklou N. Production, characteristics, and utilization of rice husk ash in alkali activated materials: An overview of fresh and hardened state properties. Constr Build Mater 2022;345(February):128341. [11] Wu K, Han H, Rößler C, Xu L, Ludwig HM. Rice hush ash as supplementary cementitious material for calcium aluminate cement – Effects on strength and hydration. Constr Build Mater. 2021;302(May). [12] Khan R, Jabbar A, Ahmad I, Khan W, Khan AN, Mirza J. Reduction in environmental problems using rice-husk ash in concrete. Constr Build Mater. 2012;30:360–5. [13] Harihanandh M, Rajashekhar reddy K. Study on durability of concrete by using rice husk as partial replacement of cement. Mater Today Proc. 2022;52:1794–9. [14] Camargo Pérez N, Higuera Sandoval C. Concreto Hidraulico Modificado con Silice obtenida de la cascarilla de arroz. Cienc e Ing Neogranadina. 2017;27:91–110. [15] Adesina A. Recent advances in the concrete industry to reduce its carbon dioxide emissions. Environ Challenges 2020;1(November):100004. [16] Alnahhal MF, Alengaram UJ, Jumaat MZ, Abutaha F, Alqedra MA, Nayaka RR. Assessment on engineering properties and CO2 emissions of recycled aggregate concrete incorporating waste products as supplements to Portland cement. J Clean Prod. 2018;203:822–35. [17] Santana-Carrillo JL, Burciaga-Díaz O, Escalante-Garcia JI. Blended limestone-Portland cement binders enhanced by waste glass based and commercial sodium silicate - Effect on properties and CO2 emissions. Cem Concr Compos. 2022;126(November 2021):104364. [18] Behera M, Rahman MR. Evaluating the combined effect of recycled aggregate and rice husk ash on concrete properties. Mater Today Proc. 2022;61:370–8. [19] Siddika A, Mamun MA Al, Alyousef R, Mohammadhosseini H. State-of-the-art-review on rice husk ash: A supplementary cementitious material in concrete. J King Saud Univ - Eng Sci. 2021;33(5):294–307. [20] Miller SA, Cunningham PR, Harvey JT. Rice-based ash in concrete: A review of past work and potential environmental sustainability. Resour Conserv Recycl. 2019;146(April):416–30. [21] Fapohunda C, Akinbile B, Shittu A. Structure and properties of mortar and concrete with rice husk ash as partial replacement of ordinary Portland cement – A review. Int J Sustain Built Environ. 2017;6(2):675–92. [22] Ibrahim KIM. Recycled waste glass powder as a partial replacement of cement in concrete containing silica fume and fly ash. Case Stud Constr Mater. 2021;15(June):e00630. [23] Bixapathi G, Saravanan M. Strength and durability of concrete using Rice Husk ash as a partial replacement of cement. Mater Today Proc. 2022;52:1606–10. 24. Santhosh KG, Subhani SM, Bahurudeen A. Recycling of palm oil fuel ash and rice husk ash in the cleaner production of concrete. J Clean Prod. 2022;354(November 2021):131736. 25. Alsubari B, Shafigh P, Jumaat MZ. Utilization of high-volume treated palm oil fuel ash to produce sustainable self-compacting concrete. J Clean Prod. 2016;137:982–96. 26. Hanif A, Kim Y, Lu Z, Park C. Early-age behavior of recycled aggregate concrete under steam curing regime. J Clean Prod. 2017;152:103–14. 27. Menchaca-Ballinas LE, Escalante-Garcia JI. Low CO2 emission cements of waste glass activated by CaO and NaOH. J Clean Prod. 2019;239:117992.Ceniza de cascarilla de arroz,Residuos de vidrioConductividad térmicaEmisiones de CO2puzolanasRice husk ashWaste glassThermal conductivityCO2 emissionsPozzolansProducción de hormigón verde a partir de ceniza de cascarilla de arroz y residuos de vidrio como sustitutos del cementoArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribución – Sin Derivarinfo:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfPublicationORIGINAL2023_Produccion_Hormigon_Verde.pdf2023_Produccion_Hormigon_Verde.pdfapplication/pdf199938https://repository.ucc.edu.co/bitstreams/9a733690-40e4-4b2d-953b-ce9162693c96/downloade84a684ad4bbfed2e2cb09ca330c223bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/b06b1f49-d1b9-4b6e-9240-676dd7c94598/download3bce4f7ab09dfc588f126e1e36e98a45MD52TEXT2023_Produccion_Hormigon_Verde.pdf.txt2023_Produccion_Hormigon_Verde.pdf.txtExtracted texttext/plain30926https://repository.ucc.edu.co/bitstreams/08f84294-0b2b-49ec-b03e-2b3b04d2aca6/downloadb67aab63c965f7e37862c03d27f8f20dMD53THUMBNAIL2023_Produccion_Hormigon_Verde.pdf.jpg2023_Produccion_Hormigon_Verde.pdf.jpgGenerated Thumbnailimage/jpeg12731https://repository.ucc.edu.co/bitstreams/f9b1c263-997a-4792-981b-f65dc744ccba/downloade02481006af835dd5300eeed7e8903f7MD5420.500.12494/52511oai:repository.ucc.edu.co:20.500.12494/525112024-08-10 21:02:42.797restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=