Viral respiratory infections and air pollutants

Air pollution is a public health issue of global importance and a risk factor for developing cardiorespiratory diseases. These contaminants induce reactive oxygen species (ROS) and increased pro-infammatory cytokines such as IL-1β, IL-6, and IL-8,triggering the infammatory response that alters cell...

Full description

Autores:
Loaiza Ceballos, María Camila
Marín Palma, Damariz
Zapata Builes, Wildeman
Hernández López, Juan Carlos
Tipo de recurso:
Article of investigation
Fecha de publicación:
2021
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/43643
Acceso en línea:
https://hdl.handle.net/20.500.12494/43643
Palabra clave:
Air pollution
Viral infection
Particulate matter
Infammation
Infuenza
Ozone
Respiratory syncytial virus
Rights
openAccess
License
Atribución
id COOPER2_3d12b37de6aee280c8ae921ea27dc466
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/43643
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Viral respiratory infections and air pollutants
title Viral respiratory infections and air pollutants
spellingShingle Viral respiratory infections and air pollutants
Air pollution
Viral infection
Particulate matter
Infammation
Infuenza
Ozone
Respiratory syncytial virus
title_short Viral respiratory infections and air pollutants
title_full Viral respiratory infections and air pollutants
title_fullStr Viral respiratory infections and air pollutants
title_full_unstemmed Viral respiratory infections and air pollutants
title_sort Viral respiratory infections and air pollutants
dc.creator.fl_str_mv Loaiza Ceballos, María Camila
Marín Palma, Damariz
Zapata Builes, Wildeman
Hernández López, Juan Carlos
dc.contributor.author.none.fl_str_mv Loaiza Ceballos, María Camila
Marín Palma, Damariz
Zapata Builes, Wildeman
Hernández López, Juan Carlos
dc.subject.spa.fl_str_mv Air pollution
Viral infection
Particulate matter
Infammation
Infuenza
Ozone
Respiratory syncytial virus
topic Air pollution
Viral infection
Particulate matter
Infammation
Infuenza
Ozone
Respiratory syncytial virus
description Air pollution is a public health issue of global importance and a risk factor for developing cardiorespiratory diseases. These contaminants induce reactive oxygen species (ROS) and increased pro-infammatory cytokines such as IL-1β, IL-6, and IL-8,triggering the infammatory response that alters cell and tissue homeostasis and facilitates the development of diseases. The efects of air pollutants such as ozone, particulate matter (PM10, PM2.5, and PM0.1), and indoor air pollutants on respiratory health have been widely reported. For instance, epidemiological and experimental studies have shown associations between hospital admissions for individual diseases and increased air pollutant levels. This review describes the association and relationships between exposure to air pollutants and respiratory viral infections, especially those caused by the respiratory syncytial virus and infuenza virus. The evidence suggests that exposure to air contaminants induces infammatory states, modulates the immune system, and increases molecules’ expression that favors respiratory viruses’ pathogenesis and afects the respiratory system. However, the mechanisms underlying these interactions have not yet been fully elucidated, so it is necessary to develop new studies to obtain information that will allow health and policy decisions to be made for the adequate control of respiratory infections, especially in the most vulnerable population, during periods of maximum air pollution.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-09-15
dc.date.accessioned.none.fl_str_mv 2022-02-03T19:32:32Z
dc.date.available.none.fl_str_mv 2022-02-03T19:32:32Z
dc.type.none.fl_str_mv Artículos Científicos
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.uri.spa.fl_str_mv 10.1007/s11869-021-01088-6
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/43643
dc.identifier.bibliographicCitation.spa.fl_str_mv Loaiza-Ceballos, M.C., Marín-Palma, D., Zapata, W. y Hernández JC. Viral respiratory infections and air pollutants. Air Qual Atmos Health. 2021 Sep 15:1-10. doi: 10.1007/s11869-021-01088-6
identifier_str_mv 10.1007/s11869-021-01088-6
Loaiza-Ceballos, M.C., Marín-Palma, D., Zapata, W. y Hernández JC. Viral respiratory infections and air pollutants. Air Qual Atmos Health. 2021 Sep 15:1-10. doi: 10.1007/s11869-021-01088-6
url https://hdl.handle.net/20.500.12494/43643
dc.relation.isversionof.spa.fl_str_mv https://link.springer.com/article/10.1007%2Fs11869-021-01088-6
dc.relation.ispartofjournal.spa.fl_str_mv Air Quality, Atmosphere & Health
dc.relation.references.spa.fl_str_mv Bernstein JA, Alexis N, Barnes C, Bernstein IL, Nel A, Peden D et al (2004) Health efects of air pollution. J Allergy Clin Immunol 114(5):1116–1123. https://doi.org/10.1016/j.jaci.2004.08.030
Stanaway JD, Afshin A, Gakidou E, Lim SS, Abate D, Abate KH et al (2018) Global, regional, and national comparative risk assessment of 84 behavioral, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease study 2017. Lancet 392(10159):1923–1994. https://doi.org/ 10.1016/S01406736(18)32225-6
Arias-Pérez RD, Taborda NA, Gómez DM, Narvaez JF, Porras J, Hernandez JC (2020) Infammatory efects of particulate matter air pollution. Environ Sci Pollut Res 27:42390–42404. https://doi. org/10.1007/s11356-020-10574-w
Barraza-Villarreal A, Sunyer J, Hernandez-Cadena L, Escamilla-Nuñez MC, Sienra-Monge JJ, Ramírez-Aguilar M et al (2008) Air pollution, airway infammation, and lung function in a cohort study of Mexico city schoolchildren. Environ Health Perspect 116(6):832– 838. https://doi.org/10.1289/ehp.10926
Stieb DM, Shutt R, Kauri LM, Roth G, Szyszkowicz M, Dobbin NA et al (2018) Cardiorespiratory efects of air pollution in a panel study of winter outdoor physical activity in older adults. J Occup Environ Med 60(8):673–682. https://doi.org/10.1097/JOM.00000 00000001334
Chen S-Y, Chan C-C, Su T-C (2017) Particulate and gaseous pollutants on infammation, thrombosis, and autonomic imbalance in subjects at risk for cardiovascular disease. Environ Pollut 223:403– 408. https://doi.org/10.1016/j.envpol.2017.01.037
Bourdrel T, Bind M-A, Béjot Y, Morel O, Argacha J-F (2017) Cardiovascular effects of air pollution. Arch Cardiovasc Dis 110(11):634–642. https://doi.org/10.1016/j.acvd.2017.05.003
Troeger C, Blacker B, Khalil IA, Rao PC, Cao J, Zimsen SRM et al (2018) Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease study 2016. Lancet Infect Dis 18(11):1191–1210. https://doi.org/10.1016/j.acvd.2017.05.003
Chen Z, Cui L, Cui X, Li X, Yu K, Yue K et al (2019) The association between high ambient air pollution exposure and respiratory health of young children: a cross-sectional study in Jinan. China Sci Total Environ 656:740–749. https://doi.org/10.1016/j.scito tenv.2018.11.368
He B, Huang JV, Kwok MK, Au Yeung SL, Hui LL, Li AM et al (2019) The association of early-life exposure to air pollution with lung function at ~17.5 years in the “Children of 1997” Hong Kong Chinese birth cohort. Environ Int. 123:444–450. https://doi.org/10.1016/j.envint.2018.11.073
de Miguel-Díez J, Hernández-Vázquez J, López-de-Andrés A, Álvaro-Meca A, Hernández-Barrera V, Jiménez-García R (2019) Analysis of environmental risk factors for chronic obstructive pulmonary disease exacerbation: a case-crossover study (2004–2013). PLoS ONE 14(5):e0217143. https://doi.org/ 10.1371/journal.pone.0217143
de Lichtenfels AJFC, van der Plaat DA, de Jong K, van Diemen CC, Postma DS, Nedeljkovic I et al (2018) Long-term air pollution exposure, genome-wide DNA methylation and lung function in the lifelines cohort study. Environ Health Perspect 126(2):027004. https://doi.org/10.1289/EHP2045
Eze IC, Jeong A, Schafner E, Rezwan FI, Ghantous A, Foraster M et al (2020) Genome-wide DNA methylation in peripherial blood and lonh-term exposure to source-specifc transportation noise and air pollution: The SAPALDIA study. Environ Health Perspect 128(6):067003. https://doi.org/10.1289/EHP6174
Pope CA, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K et al (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fne particulate air pollution. JAMA 287(9):1132– 1141. https://doi.org/10.1001/jama.287.9.1132
Tao Y, Wangd S, Mib S, Xiea X, Zhou S (2014) Air pollution and hospital admissions for respiratory diseases in Lanzhou. China Environ Pollut 185:196–201. https://doi.org/10.1016/j.envpol. 2013.10.035
Gouveia N, Fletcher T (2000) Respiratory diseases in children and outdoor air pollution in São Paulo, Brazil: a time series analysis. Occup Environ Med 57(7):477–483. https://doi.org/10.1136/ oem.57.7.477
Arbefeville S, Ferrieri P (2017) Epidemiologic analysis of respiratory viral infections mainly in hospitalized children and adults in a Midwest University medical center after the implementation of a 14-virus multiplex nucleic acid amplifcation test. Am J Clin Pathol 147(1):43–49. https://doi.org/10.1093/ajcp/aqw185
Valero N, Larreal Y, Arocha F, Gotera J, Mavarez A, Bermudez J et al (2009) Etiología viral de las infecciones respiratorias agudas. Invest Clin 50(3):359–368
Wang ZB, Ren L, Lu QB, Zhang XA, Miao D, Hu YY et al (2021) The impact of weather and air pollution on viral infection and disease outcome among pediatric pneumonia patients in Chongqing, China, from 2009 to 2018: a prospective observational study. Clin Infect Dis 73(2):e513–e522. https://doi.org/10.1093/ cid/ciaa997
Rodrigues AF, Santos AM, Ferreira AM, Marino R, Barreira ME, Cabeda JM (2019) Year-long rhinovirus infection is infuenced by atmospheric conditions, outdoor air virus presence, and immune system-related genetic polymorphisms. Food Environ Virol 11(4):340–349. https://doi.org/10.1007/s12560-019-09397-x
Spannhake EW, Reddy SPM, Jacoby DB, Yu X-Y, Saatian B, Tian J (2002) Synergism between rhinovirus infection and oxidant pollutant exposure enhances airway epithelial cell cytokine production. Environ Health Perspect 110(7):665–670. https://doi.org/10. 1289/ehp.02110665
Capistrano SJ, Zakarya R, Chen H, Oliver BG (2016) Biomass smoke exposure enhances rhinovirus-induced infammation in primary lung Fibroblasts. Int J Mol Sci 17(9):1403. https://doi.org/10. 3390/ijms17091403
Yeo N-K, Hwang Y-J, Kim S-T, Kwon HJ, Jang YJ (2010) Asian sand dust enhances rhinovirus-induced cytokine secretion and viral replication in human nasal epithelial cells. Toxicol Inhal 22(12):1038–1045. https://doi.org/10.3109/08958378.2010. 516282
Kim S-T, Ye M-K, Shin S-H (2011) Efects of Asian Sand Dust on Mucin Gene Expression and Activation of Nasal Polyp Epithelial Cells. Am J Rhinol Allergy 25(5):303–306. https://doi.org/10. 2500/ajra.2011.25.3627
Nenna R, Evangelisti M, Frassanito A, Scagnolari C, Pierangeli A, Antonelli G et al (2017) Respiratory syncytial virus bronchiolitis, weather conditions and air pollution in an Italian urban area: an observational study. Environ Res 158:188–193. https://doi.org/10. 1016/j.envres.2017.06.014
Hobson L, Everard ML (2008) The persistent respiratory syncytial virus in human dendritic cells and the infuence of nitric oxide. Clin Exp Immunol 151(2):359–366. https://doi.org/10.1111/j. 1365-2249.2007.03560.x
Conticini E, Frediani B, Caro D (2020) Can atmospheric pollution be considered a co-factor in extremely high levels of SARS-CoV-2 lethality in Northern Italy? Environ Pollut 261:114465. https:// doi.org/10.1016/j.envpol.2020.114465
Pansini R, Davide F (2020) COVID-19 higher mortality in Chinese regions with chronic exposure to lower air quality. Front Public Health 8:597753. https://doi.org/10.3389/fpubh.2020.597753
Copat C, Cristaldi A, Fiore M, Grassi A, Zuccarello P, Signorelli SS et al (2020) The role of air pollution (PM and NO2 in COVID19 spread and lethality: a systematic review. Environ Res 191:110129. https://doi.org/10.1016/j.envres.2020.110129
Wu X, Nethery RC, Sabath BM, Braun D, Dominici F. Exposure to air pollution and COVID-19 mortality in the United States: a nationwide cross-sectional study. medRxiv. 2020; 2020.04.05.20054502. https://doi.org/10.1101/2020.04.05.20054502
Borro M, Di Girolamo P, Gentile G, De Luca O, Preissner R, Marcolongo A et al (2020) Evidence-based considerantions exploring relations between SARS-CoV-2 pandemic and air pollution: Involvement of PM2.5 mediated up-regulation of the viral receptor ACE-2. Int J Environ Res Public Health 17(15):5573. https:// doi.org/10.3390/ijerph17155573
Nemmar A, Holme JA, Rosas I, Schwarze PE, Alfaro-Moreno E. Recent advances in particulate matter and nanoparticle toxicology: a review of the in vivo and in vitro studies. Biomed Res Int 2013 2013. https://doi.org/10.1155/2013/279371
Lee A, Kinney P, Chillrud S, Jack D (2015) A systematic review of innate immunomodulatory efects of household air pollution secondary to the burning of biomass fuels. Ann Glob Health 81(3):368–374. https://doi.org/10.1016/j.aogh.2015.08.006
Schilirò T, Alessandria L, Degan R, Traversi D, Gilli G (2010) Chemical characterization and cytotoxic efects in A549 cells of urbanair PM10 collected in Torino. Italy Environ Toxicol Pharmacol 29(2):150–157. https://doi.org/10.1016/j.etap.2009.12.005
Ghanbarian M, Nicknam MH, Mesdaghinia A, Yunesian M, Hassanvand MS, Soleimanifar N et al (2019) Investigation and comparison of in vitro genotoxic potency of PM10 collected in rural and urban sites at Tehran in diferent metrological conditions and diferent seasons. Biol Trace Elem Res 189:301–310. https://doi. org/10.1007/s12011-018-1469-9
Mishra R, Krishnamoorthy P, Gangamma S, Raut AA, Kumar H (2020) Particulate matter (PM10) enhances RNA virus infection through modulation of innate immune responses. Environ Pollut 266:115148. https://doi.org/10.1016/j.envpol.2020.115148
Carungo M, Dentali F, Mathieu G, Fontanella A, Mariani J, Bordini L et al (2018) PM10 exposure is associated with increased hospitalizations for respiratory syncytial virus bronchiolitis among infants in Lombardy. Italy Environ Res 166:452–457. https://doi. org/10.1016/j.envres.2018.06.016
Cruz Sánchez TM, Haddrell AE, Hackett TL, Singhera GK, Marchant D, Lekivetz R et al (2013) Formation of a stable mimic of ambient particulate matter containing viable infectious respiratory syncytial virus and Its dry-deposition directly onto cell cultures. Anal Chem 85(2):898–906. https://doi.org/10.1021/ac302174y
Hirota JA, Marchant DJ, Singhera GK, Moheimani F, Dorscheid DR, Carlsten C et al (2015) Urban particulate matter increaseshuman airway epithelial cell IL-1β secretion following scratch wounding and H1N1 infuenza A exposure in vitro. Exp Lung Res 41(6):353–362. https://doi.org/10.3109/01902148.2015. 1040528
Xu Z, Hu W, Williams G, Clements A, Kan H, Tong S (2013) Air pollution, temperature and pediatric infuenza in Brisbane. Australia Environ Int 59:384–388. https://doi.org/10.1016/j.envint.2013. 06.022
Zhang R, Meng Y, Song H, Niu R, Wang Y, Li Y et al (2021) The modifcations efect of temperature on the relationship between air pollutants and daily incidence on infuenza in Ningbo. China Respir Res 22:153. https://doi.org/10.1186/s12931-021-01744-6
Xiao T, Xu H, Xue J, Bai J, Wang Y, Liu Q et al (2019) NF-κBregulation of miR-155, via SOCS1/STAT3, is involved in the PM2.5-accelerated cell cycle and proliferation of human bronchial epithelial cells. Toxicol Appl Pharmacol 377:114616. https://doi. org/10.1016/j.taap.2019.114616
Yang B, Guo J, Xiao C (2018) Efect of PM2.5 environmental pollution on rat lung. Environ Sci Pollut Res Int 25(36):36136–36146. https://doi.org/10.1007/s11356-018-3492-y
Matus P, Oyarzún GM (2019) Impact of Particulate Matter (PM 2.5) and children’s hospitalizations for respiratory diseases. A case cross-over study. Rev Chil Pediatr 90(2):166–174. https://doi.org/ 10.32641/rchped.v90i2.750
Ma J-H, Song S-H, Guo M, Zhou J, Liu F, Peng L et al (2017) Longterm exposure to PM2.5 lower infuenza virus resistance via down-regulating pulmonary macrophage Kdm6a and mediates histones modifcation in IL-6 and IFN-β promoter regions. Biochem Biophys Res Commun 493(2):1122–1128. https://doi.org/ 10.1016/j.bbrc.2017.09.013
Rui W, Guan L, Zhang F, Zhang W, Ding W (2016) PM2.5-induced oxidative stress increases adhesion molecules expression in human endothelial cells through the ERK/AKT/NF-κB-dependent pathway. J Appl Toxicol 36(1):48–59. https://doi.org/10.1002/jat.3143
Nimmerjahn F, Dudziak D, Dirmeier U, Hobom G, Riedel A, Schlee M et al (2004) Active NF-κB signaling is a prerequisite for infuenza virus infection. J Gen Virol 85(8):2347–2356. https://doi.org/10. 1099/vir.0.79958-0
Jaligama S, Saravia J, You D, Yadav N, Lee GI, Shrestha B, et al. Regulatory T cells and IL10 suppress pulmonary host defense during early-life exposure to radical containing combustion derived ultrafne particulate matter. Respir Res 2017 18(15). https://doi. org/10.1186/s12931-016-0487-4
Lee GI, Saravia J, You D, Shrestha B, Jaligama S, Hebert VY, et al. Exposure to combustion generated environmentally persistent free radicals enhances the severity of influenza virus infection. Part Fibre Toxicol. 2014;11(57). https://doi.org/10.1186/ s12989-014-0057-1
Liang Y, Fang L, Pan H, Zhang K, Kan H, Brook JR, et al. PM2.5 in Beijing – temporal pattern and its association with influenza. Environ Health. 2014;13(102). https://doi.org/10.1186/ 1476-069X-13-102
Lu B, Wang Y, Zhu Z, Zhang Z, Dong T, Li F et al (2020) Epidemiological and genetic characteristics of infuenza virus and the efects of air pollution on laboratory-confrmed infuenza cases in Hulunbuir, China, from 2010 to 2019. Epidemiol Infect 148:e159. https://doi.org/10.1017/S0950268820001387
Wrotek A, Badyda A, Czechowski PO, Owczarek T, Dabrowiecki P, Jackowska T (2021) Air pollutants’ concentrations are associated with increased number of RSV hospitalizations in polish children. J Clin Med 10(15):3224. https://doi.org/10.3390/jcm10153224
Karr CJ, Rudra CB, Miller KA, Gould TR, Larson T, Sathyanarayana S et al (2009) Infant exposure to fne particulate matter and trafc and risk of hospitalization for RSV bronchiolitis in a region with lower ambient air pollution. Environ Res 109(3):321–327. https:// doi.org/10.1016/j.envres.2008.11.006
Renwick LC, Brown D, Clouter A, Donaldson K (2004) Increased infammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup Environ Med 61(5):442–447. https://doi.org/10.1136/oem.2003.008227
Pfefer PE, Ho TR, Mann EH, Kelly FJ, Sehlstedt M, Pourazar J et al (2018) Urban particulate matter stimulation of human dendritic cells enhances priming of naive CD8 T lymphocytes. Immunology 153(4):502–512. https://doi.org/10.1111/imm.12852
Chen Z-H, Wu Y-F, Wang P-L, Wu Y-P, Li Z-Y, Zhao Y et al (2016) Autophagy is essential for ultrafne particle-induced infammation and mucus hyperproduction in airway epithelium. Autophagy 12(2):297311. https://doi.org/10.1080/15548627.2015.1124224
Chakraborty S, Castranova V, Perez MK, Piedimonte G (2017) Nanoparticles increase human bronchial epithelial cell susceptibility to respiratory syncytial virus infection via nerve growth factorinduced Autophagy. Physiol Rep 5(13):e13344. https://doi.org/ 10.14814/phy2.13344
Lambert AL, Mangum JB, DeLorme MP, Everitt JI (2003) Ultrafne carbon black particles enhance respiratory syncytial virus-induced airway reactivity, pulmonary infammation, and chemokine expression. Toxicol Sci 72(2):339–346. https://doi.org/10.1093/toxsci/kfg032
Holland HD, Turekian KK. Environmental geochemistry: treatise on geochemistry. 2 ed. United Kingdom: Elsevier; 2005. 9 407–432
Sunil VR, Vayas KN, Massa CB, Gow AJ, Laskin JD, Laskin DL (2013) Ozone-induced injury and oxidative stress in the bronchiolar epithelium are associated with altered pulmonary mechanics. Toxicol Sci 133(2):309–319. https://doi.org/10.1093/toxsci/kft071
Holze C, Michaudel C, Mackowiak C, Haas DA, Benda C, Hubel P et al (2018) Oxeiptosis, a ROS-induced caspase-independent apoptosis-like cell-death pathway. Nat Immunol 19(2):130–140. https://doi.org/10.1038/s41590-017-0013-y
Kesic MJ, Meyer M, Bauer R, Jaspers I (2012) Exposure to ozone modulates human airway protease/antiprotease balance contributing to increased infuenza A infection. PLoS ONE 7(4):e35108. https://doi.org/10.1371/journal.pone.0035108
Wong CM, Yang L, Thach TQ, Chau PYK, Chan KP, Thomas GN et al (2009) Modifcation by infuenza on health efects of air pollution in Hong Kong. Environ Health Perspect 117(2):248–253. https:// doi.org/10.1289/ehp.11605
Meng Y, Lu Y, Xiang H, Liu S (2021) Short-term efects of ambient air pollution on the incidence of infuenza in Wuhan, China: a time-series analysis. Environ Res 192:110327. https://doi.org/10. 1016/j.envres.2020.110327
Ali ST, Wu P, Cauchemez S, He D, Fang VJ, Cowling BJ et al (2018) Ambient ozone and infuenza transmissibility in Hong Kong. Eur Respir J 51(5):1800369. https://doi.org/10.1183/13993003. 00369-2018
Ji JH, Na C, Qiang SZ, Jing YIN, Gang QZ, Jing M et al (2019) Inactivation of poliovirus by ozone and the impact of ozone on the viral genome. Biomed Environ Sci 32(5):324–333. https://doi.org/10. 3967/bes2019.044
Lin Y-C, Juan H-C, Cheng Y-C (2007) Ozone exposure in the culture medium inhibits enterovirus 71 virus replication and modulates cytokine production in rhabdomyosarcoma cells. Antiviral Res 76(3):241–251. https://doi.org/10.1016/j.antiviral.2007.07.004
Carazo Fernández L, Fernández Alvarez R, González-Barcala FJ, Rodríguez Portal JA (2013) Indoor air contaminants and their impact on respiratory pathologies. Arch Bronconeumol 49(1):22–27. https://doi.org/10.1016/j.arbr.2012.11.004
Gordon SB, Bruce NG, Grigg J, Hibberd PL, Kurmi OP, Kin-bong HL et al (2014) Respiratory risks from household air pollution in low and middle-income countries. Lancet Respir Med 2(10):823–860. https://doi.org/10.1016/S2213-2600(14)70168-7
Nsoh M, Mankollo BOY, Ebongue M, Cyprien KN, Likeng JLN, Islam SMS et al (2019) Acute respiratory infection related to air pollution in Bamenda, North West Region of Cameroon. Pan Afr Med J 32:99. https://doi.org/10.11604/pamj.2019.32.99.15228
Foster S, Bedford KJ, Gould MEL, Coward WR, Hewitt CRA (2003) Respiratory syncytial virus infection and virus-induced infammation are modifed by contaminants of indoor air. Immunology 108(1):109–115. https://doi.org/10.1046/j.1365-2567.2003. 01539.x
Hallak LK, Spillmann D, Collins PL, Peeples ME (2000) Glycosaminoglycan sulfation requirements for respiratory syncytial virus infection. J Virol 74(22):10508–10513. https://doi.org/10.1128/ jvi.74.22.10508-10513.2000
Ghaemmaghami AM, Robins A, Gough L, Sewell HF, Shakib F (2001) Human T cell subset commitment determined by the intrinsic property of antigen: the proteolytic activity of the major mite allergen Der p 1 conditions T cells to produce more IL-4 and fewer IFN-γ. Eur J Immunol 31(4):1211–1216. https://doi.org/10.1002/ 1521-4141(200104)31:4%3c1211::AID-IMMU1211%3e3.0.CO;2-R
Comoy EE, Pestel J, Duez C, Stewart GA, Vendeville C, Fournier C et al (1998) The house dust mite allergen, Dermatophagoides pteronyssinus, promotes type 2 responses by modulating the balance between IL-4 and IFN-γ. J Immunol 160(5):2456–2462
Maedel C, Kainz K, Frischer T, Reinweber M, Zacharasiewicz A (2018) Increased severity of respiratory syncytial virus airway infection due to passive smoke exposure. Pediatr Pulmonol 53(9):1299–1306. https://doi.org/10.1002/ppul.24137
Groskreutz DJ, Monick MM, Babor EC, Nyunoya T, Varga SM, Look DC et al (2009) Cigarette smoke alters respiratory syncytial virusinduced apoptosis and replication. Am J Respir Cell Mol Biol 41(2):189–198. https://doi.org/10.1165/rcmb.2008-0131OC
Castro S, Chakraborty K, Guerrero- PA (2011) Cigarette smoke suppresses TLR-7 stimulation in response to virus infection in plasmacytoid dendritic cells. Toxicol in Vitro 25(5):1106–1113. https://doi.org/10.1016/j.tiv.2011.03.011
Poon J, Campos M, Foronjy RF, Nath S, Gupta G, Railwah C et al (2019) Cigarette smoke exposure reduces leukemia inhibitory factor levels during respiratory syncytial viral infection. Int J Chron Obstruct Pulmon Dis 14:1305–1315. https://doi.org/10.2147/ COPD.S196658
Modestou MA, Manzel LJ, El-Mahdy S, Look DC. Inhibition of IFN-γ-dependent antiviral airway epithelial defense by cigarette smoke. Respir Res. 2010; 11(64). https://doi.org/10.1186/ 1465-9921-11-64
Yang W, Elankumaran S, Marr LC (2011) Concentrations and size distributions of airborne infuenza A viruses measured indoors at a health center, a daycare center, and on airplanes. J R Soc Interface 8(61):1176–1184. https://doi.org/10.1098/rsif.2010.0686
Feng Y, Kong Y, Barnes PF, Huang F-F, Klucar P, Wang X et al (2011) exposure to cigarette smoke inhibits the pulmonary T-cell response to infuenza virus and Mycobacterium tuberculosis. Infect Immun 79(1):229–237. https://doi.org/10.1128/IAI.00709-10
Zhou Y, Kang M-J, Jha BK, Silverman RH, Lee CG, Elias JA (2013) Role of RNase L in viral PAMP/infuenza virus and cigarette smoke-induced inflammation and remodeling. J Immunol 191(5):2637–2646. https://doi.org/10.4049/jimmunol.1300082
Wang J, Li Q, Xie J, Xu Y. Cigarette smoke inhibits BAFF expression and mucosal immunoglobulin A responses in the lung during infuenza virus infection. Respir Res. 2015 16(37). https://doi.org/ 10.1186/s12931-015-0201-y
dc.rights.license.none.fl_str_mv Atribución
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 1-10
dc.coverage.temporal.spa.fl_str_mv 15
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Programa de Medicina, Medellín y Envigado
dc.publisher.program.spa.fl_str_mv Medicina
dc.publisher.place.spa.fl_str_mv Medellín
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/2a19316c-42d7-466f-9f71-46f6cc92cfe4/download
https://repository.ucc.edu.co/bitstreams/f1eef4c5-47cb-481b-8ea8-b582273532e4/download
https://repository.ucc.edu.co/bitstreams/3a1e5111-2152-4393-ae3f-6a1d54cd33e0/download
https://repository.ucc.edu.co/bitstreams/4a1c2829-1cde-458b-87f3-83f3d01f0f95/download
bitstream.checksum.fl_str_mv 7209bb6bbfc35515c20cba628caf6452
3bce4f7ab09dfc588f126e1e36e98a45
74f5c290898dcdfe5cfcfc838181e6e4
091064090e03803b2b1022ca9e088cee
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1811565066549460992
spelling Loaiza Ceballos, María CamilaMarín Palma, DamarizZapata Builes, WildemanHernández López, Juan Carlos 152022-02-03T19:32:32Z2022-02-03T19:32:32Z2021-09-1510.1007/s11869-021-01088-6https://hdl.handle.net/20.500.12494/43643Loaiza-Ceballos, M.C., Marín-Palma, D., Zapata, W. y Hernández JC. Viral respiratory infections and air pollutants. Air Qual Atmos Health. 2021 Sep 15:1-10. doi: 10.1007/s11869-021-01088-6Air pollution is a public health issue of global importance and a risk factor for developing cardiorespiratory diseases. These contaminants induce reactive oxygen species (ROS) and increased pro-infammatory cytokines such as IL-1β, IL-6, and IL-8,triggering the infammatory response that alters cell and tissue homeostasis and facilitates the development of diseases. The efects of air pollutants such as ozone, particulate matter (PM10, PM2.5, and PM0.1), and indoor air pollutants on respiratory health have been widely reported. For instance, epidemiological and experimental studies have shown associations between hospital admissions for individual diseases and increased air pollutant levels. This review describes the association and relationships between exposure to air pollutants and respiratory viral infections, especially those caused by the respiratory syncytial virus and infuenza virus. The evidence suggests that exposure to air contaminants induces infammatory states, modulates the immune system, and increases molecules’ expression that favors respiratory viruses’ pathogenesis and afects the respiratory system. However, the mechanisms underlying these interactions have not yet been fully elucidated, so it is necessary to develop new studies to obtain information that will allow health and policy decisions to be made for the adequate control of respiratory infections, especially in the most vulnerable population, during periods of maximum air pollution.https://scienti.colciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000283088http://orcid.org/0000-0002-9200-5698https://scienti.colciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000011355juanc.hernandezl@campusucc.edu.co1-10Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Programa de Medicina, Medellín y EnvigadoMedicinaMedellínhttps://link.springer.com/article/10.1007%2Fs11869-021-01088-6Air Quality, Atmosphere & HealthBernstein JA, Alexis N, Barnes C, Bernstein IL, Nel A, Peden D et al (2004) Health efects of air pollution. J Allergy Clin Immunol 114(5):1116–1123. https://doi.org/10.1016/j.jaci.2004.08.030Stanaway JD, Afshin A, Gakidou E, Lim SS, Abate D, Abate KH et al (2018) Global, regional, and national comparative risk assessment of 84 behavioral, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease study 2017. Lancet 392(10159):1923–1994. https://doi.org/ 10.1016/S01406736(18)32225-6Arias-Pérez RD, Taborda NA, Gómez DM, Narvaez JF, Porras J, Hernandez JC (2020) Infammatory efects of particulate matter air pollution. Environ Sci Pollut Res 27:42390–42404. https://doi. org/10.1007/s11356-020-10574-wBarraza-Villarreal A, Sunyer J, Hernandez-Cadena L, Escamilla-Nuñez MC, Sienra-Monge JJ, Ramírez-Aguilar M et al (2008) Air pollution, airway infammation, and lung function in a cohort study of Mexico city schoolchildren. Environ Health Perspect 116(6):832– 838. https://doi.org/10.1289/ehp.10926Stieb DM, Shutt R, Kauri LM, Roth G, Szyszkowicz M, Dobbin NA et al (2018) Cardiorespiratory efects of air pollution in a panel study of winter outdoor physical activity in older adults. J Occup Environ Med 60(8):673–682. https://doi.org/10.1097/JOM.00000 00000001334Chen S-Y, Chan C-C, Su T-C (2017) Particulate and gaseous pollutants on infammation, thrombosis, and autonomic imbalance in subjects at risk for cardiovascular disease. Environ Pollut 223:403– 408. https://doi.org/10.1016/j.envpol.2017.01.037Bourdrel T, Bind M-A, Béjot Y, Morel O, Argacha J-F (2017) Cardiovascular effects of air pollution. Arch Cardiovasc Dis 110(11):634–642. https://doi.org/10.1016/j.acvd.2017.05.003Troeger C, Blacker B, Khalil IA, Rao PC, Cao J, Zimsen SRM et al (2018) Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease study 2016. Lancet Infect Dis 18(11):1191–1210. https://doi.org/10.1016/j.acvd.2017.05.003Chen Z, Cui L, Cui X, Li X, Yu K, Yue K et al (2019) The association between high ambient air pollution exposure and respiratory health of young children: a cross-sectional study in Jinan. China Sci Total Environ 656:740–749. https://doi.org/10.1016/j.scito tenv.2018.11.368He B, Huang JV, Kwok MK, Au Yeung SL, Hui LL, Li AM et al (2019) The association of early-life exposure to air pollution with lung function at ~17.5 years in the “Children of 1997” Hong Kong Chinese birth cohort. Environ Int. 123:444–450. https://doi.org/10.1016/j.envint.2018.11.073de Miguel-Díez J, Hernández-Vázquez J, López-de-Andrés A, Álvaro-Meca A, Hernández-Barrera V, Jiménez-García R (2019) Analysis of environmental risk factors for chronic obstructive pulmonary disease exacerbation: a case-crossover study (2004–2013). PLoS ONE 14(5):e0217143. https://doi.org/ 10.1371/journal.pone.0217143de Lichtenfels AJFC, van der Plaat DA, de Jong K, van Diemen CC, Postma DS, Nedeljkovic I et al (2018) Long-term air pollution exposure, genome-wide DNA methylation and lung function in the lifelines cohort study. Environ Health Perspect 126(2):027004. https://doi.org/10.1289/EHP2045Eze IC, Jeong A, Schafner E, Rezwan FI, Ghantous A, Foraster M et al (2020) Genome-wide DNA methylation in peripherial blood and lonh-term exposure to source-specifc transportation noise and air pollution: The SAPALDIA study. Environ Health Perspect 128(6):067003. https://doi.org/10.1289/EHP6174Pope CA, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K et al (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fne particulate air pollution. JAMA 287(9):1132– 1141. https://doi.org/10.1001/jama.287.9.1132Tao Y, Wangd S, Mib S, Xiea X, Zhou S (2014) Air pollution and hospital admissions for respiratory diseases in Lanzhou. China Environ Pollut 185:196–201. https://doi.org/10.1016/j.envpol. 2013.10.035Gouveia N, Fletcher T (2000) Respiratory diseases in children and outdoor air pollution in São Paulo, Brazil: a time series analysis. Occup Environ Med 57(7):477–483. https://doi.org/10.1136/ oem.57.7.477Arbefeville S, Ferrieri P (2017) Epidemiologic analysis of respiratory viral infections mainly in hospitalized children and adults in a Midwest University medical center after the implementation of a 14-virus multiplex nucleic acid amplifcation test. Am J Clin Pathol 147(1):43–49. https://doi.org/10.1093/ajcp/aqw185Valero N, Larreal Y, Arocha F, Gotera J, Mavarez A, Bermudez J et al (2009) Etiología viral de las infecciones respiratorias agudas. Invest Clin 50(3):359–368Wang ZB, Ren L, Lu QB, Zhang XA, Miao D, Hu YY et al (2021) The impact of weather and air pollution on viral infection and disease outcome among pediatric pneumonia patients in Chongqing, China, from 2009 to 2018: a prospective observational study. Clin Infect Dis 73(2):e513–e522. https://doi.org/10.1093/ cid/ciaa997Rodrigues AF, Santos AM, Ferreira AM, Marino R, Barreira ME, Cabeda JM (2019) Year-long rhinovirus infection is infuenced by atmospheric conditions, outdoor air virus presence, and immune system-related genetic polymorphisms. Food Environ Virol 11(4):340–349. https://doi.org/10.1007/s12560-019-09397-xSpannhake EW, Reddy SPM, Jacoby DB, Yu X-Y, Saatian B, Tian J (2002) Synergism between rhinovirus infection and oxidant pollutant exposure enhances airway epithelial cell cytokine production. Environ Health Perspect 110(7):665–670. https://doi.org/10. 1289/ehp.02110665Capistrano SJ, Zakarya R, Chen H, Oliver BG (2016) Biomass smoke exposure enhances rhinovirus-induced infammation in primary lung Fibroblasts. Int J Mol Sci 17(9):1403. https://doi.org/10. 3390/ijms17091403Yeo N-K, Hwang Y-J, Kim S-T, Kwon HJ, Jang YJ (2010) Asian sand dust enhances rhinovirus-induced cytokine secretion and viral replication in human nasal epithelial cells. Toxicol Inhal 22(12):1038–1045. https://doi.org/10.3109/08958378.2010. 516282Kim S-T, Ye M-K, Shin S-H (2011) Efects of Asian Sand Dust on Mucin Gene Expression and Activation of Nasal Polyp Epithelial Cells. Am J Rhinol Allergy 25(5):303–306. https://doi.org/10. 2500/ajra.2011.25.3627Nenna R, Evangelisti M, Frassanito A, Scagnolari C, Pierangeli A, Antonelli G et al (2017) Respiratory syncytial virus bronchiolitis, weather conditions and air pollution in an Italian urban area: an observational study. Environ Res 158:188–193. https://doi.org/10. 1016/j.envres.2017.06.014Hobson L, Everard ML (2008) The persistent respiratory syncytial virus in human dendritic cells and the infuence of nitric oxide. Clin Exp Immunol 151(2):359–366. https://doi.org/10.1111/j. 1365-2249.2007.03560.xConticini E, Frediani B, Caro D (2020) Can atmospheric pollution be considered a co-factor in extremely high levels of SARS-CoV-2 lethality in Northern Italy? Environ Pollut 261:114465. https:// doi.org/10.1016/j.envpol.2020.114465Pansini R, Davide F (2020) COVID-19 higher mortality in Chinese regions with chronic exposure to lower air quality. Front Public Health 8:597753. https://doi.org/10.3389/fpubh.2020.597753Copat C, Cristaldi A, Fiore M, Grassi A, Zuccarello P, Signorelli SS et al (2020) The role of air pollution (PM and NO2 in COVID19 spread and lethality: a systematic review. Environ Res 191:110129. https://doi.org/10.1016/j.envres.2020.110129Wu X, Nethery RC, Sabath BM, Braun D, Dominici F. Exposure to air pollution and COVID-19 mortality in the United States: a nationwide cross-sectional study. medRxiv. 2020; 2020.04.05.20054502. https://doi.org/10.1101/2020.04.05.20054502Borro M, Di Girolamo P, Gentile G, De Luca O, Preissner R, Marcolongo A et al (2020) Evidence-based considerantions exploring relations between SARS-CoV-2 pandemic and air pollution: Involvement of PM2.5 mediated up-regulation of the viral receptor ACE-2. Int J Environ Res Public Health 17(15):5573. https:// doi.org/10.3390/ijerph17155573Nemmar A, Holme JA, Rosas I, Schwarze PE, Alfaro-Moreno E. Recent advances in particulate matter and nanoparticle toxicology: a review of the in vivo and in vitro studies. Biomed Res Int 2013 2013. https://doi.org/10.1155/2013/279371Lee A, Kinney P, Chillrud S, Jack D (2015) A systematic review of innate immunomodulatory efects of household air pollution secondary to the burning of biomass fuels. Ann Glob Health 81(3):368–374. https://doi.org/10.1016/j.aogh.2015.08.006Schilirò T, Alessandria L, Degan R, Traversi D, Gilli G (2010) Chemical characterization and cytotoxic efects in A549 cells of urbanair PM10 collected in Torino. Italy Environ Toxicol Pharmacol 29(2):150–157. https://doi.org/10.1016/j.etap.2009.12.005Ghanbarian M, Nicknam MH, Mesdaghinia A, Yunesian M, Hassanvand MS, Soleimanifar N et al (2019) Investigation and comparison of in vitro genotoxic potency of PM10 collected in rural and urban sites at Tehran in diferent metrological conditions and diferent seasons. Biol Trace Elem Res 189:301–310. https://doi. org/10.1007/s12011-018-1469-9Mishra R, Krishnamoorthy P, Gangamma S, Raut AA, Kumar H (2020) Particulate matter (PM10) enhances RNA virus infection through modulation of innate immune responses. Environ Pollut 266:115148. https://doi.org/10.1016/j.envpol.2020.115148Carungo M, Dentali F, Mathieu G, Fontanella A, Mariani J, Bordini L et al (2018) PM10 exposure is associated with increased hospitalizations for respiratory syncytial virus bronchiolitis among infants in Lombardy. Italy Environ Res 166:452–457. https://doi. org/10.1016/j.envres.2018.06.016Cruz Sánchez TM, Haddrell AE, Hackett TL, Singhera GK, Marchant D, Lekivetz R et al (2013) Formation of a stable mimic of ambient particulate matter containing viable infectious respiratory syncytial virus and Its dry-deposition directly onto cell cultures. Anal Chem 85(2):898–906. https://doi.org/10.1021/ac302174yHirota JA, Marchant DJ, Singhera GK, Moheimani F, Dorscheid DR, Carlsten C et al (2015) Urban particulate matter increaseshuman airway epithelial cell IL-1β secretion following scratch wounding and H1N1 infuenza A exposure in vitro. Exp Lung Res 41(6):353–362. https://doi.org/10.3109/01902148.2015. 1040528Xu Z, Hu W, Williams G, Clements A, Kan H, Tong S (2013) Air pollution, temperature and pediatric infuenza in Brisbane. Australia Environ Int 59:384–388. https://doi.org/10.1016/j.envint.2013. 06.022Zhang R, Meng Y, Song H, Niu R, Wang Y, Li Y et al (2021) The modifcations efect of temperature on the relationship between air pollutants and daily incidence on infuenza in Ningbo. China Respir Res 22:153. https://doi.org/10.1186/s12931-021-01744-6Xiao T, Xu H, Xue J, Bai J, Wang Y, Liu Q et al (2019) NF-κBregulation of miR-155, via SOCS1/STAT3, is involved in the PM2.5-accelerated cell cycle and proliferation of human bronchial epithelial cells. Toxicol Appl Pharmacol 377:114616. https://doi. org/10.1016/j.taap.2019.114616Yang B, Guo J, Xiao C (2018) Efect of PM2.5 environmental pollution on rat lung. Environ Sci Pollut Res Int 25(36):36136–36146. https://doi.org/10.1007/s11356-018-3492-yMatus P, Oyarzún GM (2019) Impact of Particulate Matter (PM 2.5) and children’s hospitalizations for respiratory diseases. A case cross-over study. Rev Chil Pediatr 90(2):166–174. https://doi.org/ 10.32641/rchped.v90i2.750Ma J-H, Song S-H, Guo M, Zhou J, Liu F, Peng L et al (2017) Longterm exposure to PM2.5 lower infuenza virus resistance via down-regulating pulmonary macrophage Kdm6a and mediates histones modifcation in IL-6 and IFN-β promoter regions. Biochem Biophys Res Commun 493(2):1122–1128. https://doi.org/ 10.1016/j.bbrc.2017.09.013Rui W, Guan L, Zhang F, Zhang W, Ding W (2016) PM2.5-induced oxidative stress increases adhesion molecules expression in human endothelial cells through the ERK/AKT/NF-κB-dependent pathway. J Appl Toxicol 36(1):48–59. https://doi.org/10.1002/jat.3143Nimmerjahn F, Dudziak D, Dirmeier U, Hobom G, Riedel A, Schlee M et al (2004) Active NF-κB signaling is a prerequisite for infuenza virus infection. J Gen Virol 85(8):2347–2356. https://doi.org/10. 1099/vir.0.79958-0Jaligama S, Saravia J, You D, Yadav N, Lee GI, Shrestha B, et al. Regulatory T cells and IL10 suppress pulmonary host defense during early-life exposure to radical containing combustion derived ultrafne particulate matter. Respir Res 2017 18(15). https://doi. org/10.1186/s12931-016-0487-4Lee GI, Saravia J, You D, Shrestha B, Jaligama S, Hebert VY, et al. Exposure to combustion generated environmentally persistent free radicals enhances the severity of influenza virus infection. Part Fibre Toxicol. 2014;11(57). https://doi.org/10.1186/ s12989-014-0057-1Liang Y, Fang L, Pan H, Zhang K, Kan H, Brook JR, et al. PM2.5 in Beijing – temporal pattern and its association with influenza. Environ Health. 2014;13(102). https://doi.org/10.1186/ 1476-069X-13-102Lu B, Wang Y, Zhu Z, Zhang Z, Dong T, Li F et al (2020) Epidemiological and genetic characteristics of infuenza virus and the efects of air pollution on laboratory-confrmed infuenza cases in Hulunbuir, China, from 2010 to 2019. Epidemiol Infect 148:e159. https://doi.org/10.1017/S0950268820001387Wrotek A, Badyda A, Czechowski PO, Owczarek T, Dabrowiecki P, Jackowska T (2021) Air pollutants’ concentrations are associated with increased number of RSV hospitalizations in polish children. J Clin Med 10(15):3224. https://doi.org/10.3390/jcm10153224Karr CJ, Rudra CB, Miller KA, Gould TR, Larson T, Sathyanarayana S et al (2009) Infant exposure to fne particulate matter and trafc and risk of hospitalization for RSV bronchiolitis in a region with lower ambient air pollution. Environ Res 109(3):321–327. https:// doi.org/10.1016/j.envres.2008.11.006Renwick LC, Brown D, Clouter A, Donaldson K (2004) Increased infammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup Environ Med 61(5):442–447. https://doi.org/10.1136/oem.2003.008227Pfefer PE, Ho TR, Mann EH, Kelly FJ, Sehlstedt M, Pourazar J et al (2018) Urban particulate matter stimulation of human dendritic cells enhances priming of naive CD8 T lymphocytes. Immunology 153(4):502–512. https://doi.org/10.1111/imm.12852Chen Z-H, Wu Y-F, Wang P-L, Wu Y-P, Li Z-Y, Zhao Y et al (2016) Autophagy is essential for ultrafne particle-induced infammation and mucus hyperproduction in airway epithelium. Autophagy 12(2):297311. https://doi.org/10.1080/15548627.2015.1124224Chakraborty S, Castranova V, Perez MK, Piedimonte G (2017) Nanoparticles increase human bronchial epithelial cell susceptibility to respiratory syncytial virus infection via nerve growth factorinduced Autophagy. Physiol Rep 5(13):e13344. https://doi.org/ 10.14814/phy2.13344Lambert AL, Mangum JB, DeLorme MP, Everitt JI (2003) Ultrafne carbon black particles enhance respiratory syncytial virus-induced airway reactivity, pulmonary infammation, and chemokine expression. Toxicol Sci 72(2):339–346. https://doi.org/10.1093/toxsci/kfg032Holland HD, Turekian KK. Environmental geochemistry: treatise on geochemistry. 2 ed. United Kingdom: Elsevier; 2005. 9 407–432Sunil VR, Vayas KN, Massa CB, Gow AJ, Laskin JD, Laskin DL (2013) Ozone-induced injury and oxidative stress in the bronchiolar epithelium are associated with altered pulmonary mechanics. Toxicol Sci 133(2):309–319. https://doi.org/10.1093/toxsci/kft071Holze C, Michaudel C, Mackowiak C, Haas DA, Benda C, Hubel P et al (2018) Oxeiptosis, a ROS-induced caspase-independent apoptosis-like cell-death pathway. Nat Immunol 19(2):130–140. https://doi.org/10.1038/s41590-017-0013-yKesic MJ, Meyer M, Bauer R, Jaspers I (2012) Exposure to ozone modulates human airway protease/antiprotease balance contributing to increased infuenza A infection. PLoS ONE 7(4):e35108. https://doi.org/10.1371/journal.pone.0035108Wong CM, Yang L, Thach TQ, Chau PYK, Chan KP, Thomas GN et al (2009) Modifcation by infuenza on health efects of air pollution in Hong Kong. Environ Health Perspect 117(2):248–253. https:// doi.org/10.1289/ehp.11605Meng Y, Lu Y, Xiang H, Liu S (2021) Short-term efects of ambient air pollution on the incidence of infuenza in Wuhan, China: a time-series analysis. Environ Res 192:110327. https://doi.org/10. 1016/j.envres.2020.110327Ali ST, Wu P, Cauchemez S, He D, Fang VJ, Cowling BJ et al (2018) Ambient ozone and infuenza transmissibility in Hong Kong. Eur Respir J 51(5):1800369. https://doi.org/10.1183/13993003. 00369-2018Ji JH, Na C, Qiang SZ, Jing YIN, Gang QZ, Jing M et al (2019) Inactivation of poliovirus by ozone and the impact of ozone on the viral genome. Biomed Environ Sci 32(5):324–333. https://doi.org/10. 3967/bes2019.044Lin Y-C, Juan H-C, Cheng Y-C (2007) Ozone exposure in the culture medium inhibits enterovirus 71 virus replication and modulates cytokine production in rhabdomyosarcoma cells. Antiviral Res 76(3):241–251. https://doi.org/10.1016/j.antiviral.2007.07.004Carazo Fernández L, Fernández Alvarez R, González-Barcala FJ, Rodríguez Portal JA (2013) Indoor air contaminants and their impact on respiratory pathologies. Arch Bronconeumol 49(1):22–27. https://doi.org/10.1016/j.arbr.2012.11.004Gordon SB, Bruce NG, Grigg J, Hibberd PL, Kurmi OP, Kin-bong HL et al (2014) Respiratory risks from household air pollution in low and middle-income countries. Lancet Respir Med 2(10):823–860. https://doi.org/10.1016/S2213-2600(14)70168-7Nsoh M, Mankollo BOY, Ebongue M, Cyprien KN, Likeng JLN, Islam SMS et al (2019) Acute respiratory infection related to air pollution in Bamenda, North West Region of Cameroon. Pan Afr Med J 32:99. https://doi.org/10.11604/pamj.2019.32.99.15228Foster S, Bedford KJ, Gould MEL, Coward WR, Hewitt CRA (2003) Respiratory syncytial virus infection and virus-induced infammation are modifed by contaminants of indoor air. Immunology 108(1):109–115. https://doi.org/10.1046/j.1365-2567.2003. 01539.xHallak LK, Spillmann D, Collins PL, Peeples ME (2000) Glycosaminoglycan sulfation requirements for respiratory syncytial virus infection. J Virol 74(22):10508–10513. https://doi.org/10.1128/ jvi.74.22.10508-10513.2000Ghaemmaghami AM, Robins A, Gough L, Sewell HF, Shakib F (2001) Human T cell subset commitment determined by the intrinsic property of antigen: the proteolytic activity of the major mite allergen Der p 1 conditions T cells to produce more IL-4 and fewer IFN-γ. Eur J Immunol 31(4):1211–1216. https://doi.org/10.1002/ 1521-4141(200104)31:4%3c1211::AID-IMMU1211%3e3.0.CO;2-RComoy EE, Pestel J, Duez C, Stewart GA, Vendeville C, Fournier C et al (1998) The house dust mite allergen, Dermatophagoides pteronyssinus, promotes type 2 responses by modulating the balance between IL-4 and IFN-γ. J Immunol 160(5):2456–2462Maedel C, Kainz K, Frischer T, Reinweber M, Zacharasiewicz A (2018) Increased severity of respiratory syncytial virus airway infection due to passive smoke exposure. Pediatr Pulmonol 53(9):1299–1306. https://doi.org/10.1002/ppul.24137Groskreutz DJ, Monick MM, Babor EC, Nyunoya T, Varga SM, Look DC et al (2009) Cigarette smoke alters respiratory syncytial virusinduced apoptosis and replication. Am J Respir Cell Mol Biol 41(2):189–198. https://doi.org/10.1165/rcmb.2008-0131OCCastro S, Chakraborty K, Guerrero- PA (2011) Cigarette smoke suppresses TLR-7 stimulation in response to virus infection in plasmacytoid dendritic cells. Toxicol in Vitro 25(5):1106–1113. https://doi.org/10.1016/j.tiv.2011.03.011Poon J, Campos M, Foronjy RF, Nath S, Gupta G, Railwah C et al (2019) Cigarette smoke exposure reduces leukemia inhibitory factor levels during respiratory syncytial viral infection. Int J Chron Obstruct Pulmon Dis 14:1305–1315. https://doi.org/10.2147/ COPD.S196658Modestou MA, Manzel LJ, El-Mahdy S, Look DC. Inhibition of IFN-γ-dependent antiviral airway epithelial defense by cigarette smoke. Respir Res. 2010; 11(64). https://doi.org/10.1186/ 1465-9921-11-64Yang W, Elankumaran S, Marr LC (2011) Concentrations and size distributions of airborne infuenza A viruses measured indoors at a health center, a daycare center, and on airplanes. J R Soc Interface 8(61):1176–1184. https://doi.org/10.1098/rsif.2010.0686Feng Y, Kong Y, Barnes PF, Huang F-F, Klucar P, Wang X et al (2011) exposure to cigarette smoke inhibits the pulmonary T-cell response to infuenza virus and Mycobacterium tuberculosis. Infect Immun 79(1):229–237. https://doi.org/10.1128/IAI.00709-10Zhou Y, Kang M-J, Jha BK, Silverman RH, Lee CG, Elias JA (2013) Role of RNase L in viral PAMP/infuenza virus and cigarette smoke-induced inflammation and remodeling. J Immunol 191(5):2637–2646. https://doi.org/10.4049/jimmunol.1300082Wang J, Li Q, Xie J, Xu Y. Cigarette smoke inhibits BAFF expression and mucosal immunoglobulin A responses in the lung during infuenza virus infection. Respir Res. 2015 16(37). https://doi.org/ 10.1186/s12931-015-0201-yAir pollutionViral infectionParticulate matterInfammationInfuenzaOzoneRespiratory syncytial virusViral respiratory infections and air pollutantsArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINALReview Air Pollution & Virus 2021.pdfReview Air Pollution & Virus 2021.pdfArtículoapplication/pdf924167https://repository.ucc.edu.co/bitstreams/2a19316c-42d7-466f-9f71-46f6cc92cfe4/download7209bb6bbfc35515c20cba628caf6452MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/f1eef4c5-47cb-481b-8ea8-b582273532e4/download3bce4f7ab09dfc588f126e1e36e98a45MD52THUMBNAILReview Air Pollution & Virus 2021.pdf.jpgReview Air Pollution & Virus 2021.pdf.jpgGenerated Thumbnailimage/jpeg5508https://repository.ucc.edu.co/bitstreams/3a1e5111-2152-4393-ae3f-6a1d54cd33e0/download74f5c290898dcdfe5cfcfc838181e6e4MD53TEXTReview Air Pollution & Virus 2021.pdf.txtReview Air Pollution & Virus 2021.pdf.txtExtracted texttext/plain58807https://repository.ucc.edu.co/bitstreams/4a1c2829-1cde-458b-87f3-83f3d01f0f95/download091064090e03803b2b1022ca9e088ceeMD5420.500.12494/43643oai:repository.ucc.edu.co:20.500.12494/436432024-08-10 22:47:35.052restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=