Detección del fraude financiero mediante la aplicación de técnicas de aprendizaje automático con enfoque basado en anomalías

La detección de fraudes en entornos financieros es un área crítica cuyo objetivo es identificar patrones o actividades anómalas que puedan indicar prácticas fraudulentas. Se implementa un sistema de detección de fraudes financieros utilizando modelos supervisados, como Random Forest, Logistic Regres...

Full description

Autores:
Bustamante Molano, Luisa Ximena
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
spa
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/56439
Acceso en línea:
https://hdl.handle.net/20.500.12494/56439
Palabra clave:
000 - Ciencias de la computación, información y obras generales
Aprendizaje
Anomalías
Métricas externas
Fraude financiero
Machine learning
Anomalies
External metrics
Financial fraud
Rights
closedAccess
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
id COOPER2_3ad84e2fb387b84feb44b597bf13ff84
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/56439
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Detección del fraude financiero mediante la aplicación de técnicas de aprendizaje automático con enfoque basado en anomalías
title Detección del fraude financiero mediante la aplicación de técnicas de aprendizaje automático con enfoque basado en anomalías
spellingShingle Detección del fraude financiero mediante la aplicación de técnicas de aprendizaje automático con enfoque basado en anomalías
000 - Ciencias de la computación, información y obras generales
Aprendizaje
Anomalías
Métricas externas
Fraude financiero
Machine learning
Anomalies
External metrics
Financial fraud
title_short Detección del fraude financiero mediante la aplicación de técnicas de aprendizaje automático con enfoque basado en anomalías
title_full Detección del fraude financiero mediante la aplicación de técnicas de aprendizaje automático con enfoque basado en anomalías
title_fullStr Detección del fraude financiero mediante la aplicación de técnicas de aprendizaje automático con enfoque basado en anomalías
title_full_unstemmed Detección del fraude financiero mediante la aplicación de técnicas de aprendizaje automático con enfoque basado en anomalías
title_sort Detección del fraude financiero mediante la aplicación de técnicas de aprendizaje automático con enfoque basado en anomalías
dc.creator.fl_str_mv Bustamante Molano, Luisa Ximena
dc.contributor.advisor.none.fl_str_mv Gutiérrez Pórtela, Fernando
Hernández Aros, Ludivia
dc.contributor.author.none.fl_str_mv Bustamante Molano, Luisa Ximena
dc.subject.ddc.none.fl_str_mv 000 - Ciencias de la computación, información y obras generales
topic 000 - Ciencias de la computación, información y obras generales
Aprendizaje
Anomalías
Métricas externas
Fraude financiero
Machine learning
Anomalies
External metrics
Financial fraud
dc.subject.proposal.spa.fl_str_mv Aprendizaje
Anomalías
Métricas externas
Fraude financiero
dc.subject.proposal.eng.fl_str_mv Machine learning
Anomalies
External metrics
Financial fraud
description La detección de fraudes en entornos financieros es un área crítica cuyo objetivo es identificar patrones o actividades anómalas que puedan indicar prácticas fraudulentas. Se implementa un sistema de detección de fraudes financieros utilizando modelos supervisados, como Random Forest, Logistic Regression y Support Vector Machine, así como modelos no supervisados, como Isolation Forest, Local Outlier Factor y One Class Support Vector Machine. El estudio empleó un enfoque de investigación cuantitativo y experimental con alcance explicativo para aplicar técnicas de aprendizaje automático y medir el rendimiento y la evaluación de los modelos. Se utilizó una metodología de software híbrida (espiral y CRISP-DM), la aplicación se desarrolló utilizando Streamlit en un entorno virtual, que incluye módulos de inicio de sesión, detección e informe de resultados. El modelo One-Class SV destaca por su recall (79%), pero tiene una precisión y una puntuación F1 bajas, lo que puede dar lugar a falsos positivos. Por otro lado, la regresión logística muestra un rendimiento más equilibrado con precisión (1%) y recall (25%). Ambos modelos demuestran una capacidad relativamente mejor para identificar casos positivos.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-22T14:18:05Z
dc.date.available.none.fl_str_mv 2024-07-22T14:18:05Z
dc.date.issued.none.fl_str_mv 2024
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.citation.none.fl_str_mv Bustamante Molano, L. X. (2024). Detección del fraude financiero mediante la aplicación de técnicas de aprendizaje automático con enfoque basado en anomalías [Tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional Universidad Cooperativa de Colombia.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/56439
identifier_str_mv Bustamante Molano, L. X. (2024). Detección del fraude financiero mediante la aplicación de técnicas de aprendizaje automático con enfoque basado en anomalías [Tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional Universidad Cooperativa de Colombia.
url https://hdl.handle.net/20.500.12494/56439
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv A. Singh, A. Jain, and S. E. Biable, “Financial Fraud Detection Approach Based on Firefly Optimization Algorithm and Support Vector Machine,” Applied Computational Intelligence and Soft Computing, vol. 2022, pp. 1–10, 2022, doi: 10.1155/2022/1468015.
A. Abdallah, M. A. Maarof, and A. Zainal, “Fraud detection system: A survey,” Journal of Network and Computer Applications, vol. 68, pp. 90–113, 2016, doi: 10.1016/j.jnca.2016.04.007.
PricewaterhouseCoopers, “Encuesta Global de Crimen y Fraude Económico de PwC Colombia 2022 - 2023.” Accessed: Jun. 21, 2023. [Online]. Available: https://www.pwc.com/co/es/publicaciones/encuesta-crimen-fraude-economico.html
J. West and M. Bhattacharya, “Intelligent financial fraud detection: A comprehensive review,” Comput Secur, vol. 57, pp. 47–66, 2016, doi: 10.1016/j.cose.2015.09.005.
K. G. Al-Hashedi and P. Magalingam, “Financial fraud detection applying data mining techniques: A comprehensive review from 2009 to 2019,” Comput Sci Rev, vol. 40, p. 100402, 2021, doi: 10.1016/j.cosrev.2021.100402.
A. Reurink, “Financial Fraud: A Literature Review,” J Econ Surv, vol. 32, no. 5, pp. 1292–1325, 2018, doi: 10.1111/joes.12294.
M. Ahmed, A. N. Mahmood, and Md. R. Islam, “A survey of anomaly detection techniques in financial domain,” Future Generation Computer Systems, vol. 55, pp. 278–288, 2016, doi: 10.1016/j.future.2015.01.001.
V. K. Wadhwa, A. K. Saini, and S. S. Kumar, “Financial fraud prediction models: A review of research evidence,” International Journal of Scientific and Technology Research, vol. 9, no. 1, pp. 677–680, 2020.
A. Ali et al., “Financial Fraud Detection Based On Machine Learning: A Systematic Literature Review.,” Applied Sciences (Switzerland), 2022, doi: 10.3390/app12199637.
W. Hilal, S. A. Gadsden, and J. Yawney, “Financial Fraud: A Review of Anomaly Detection Techniques and Recent Advances,” Expert Syst Appl, vol. 193, p. 116429, 2022, doi: 10.1016/j.eswa.2021.116429.
A. Ramírez-Alpízar, M. Jenkins, A. Martínez, and C. Quesada-López, “Use of data mining and machine learning techniques for fraud detection in financial statements: a systematic mapping study,” Revista Ibérica de Sistemas e Tecnologias de Informação; Lousada N.o E28. pp. 97–109, 2020.
R. M. Dantas, R. Firdaus, F. Jaleel, P. Neves Mata, M. N. Mata, and G. Li, “Systemic Acquired Critique of Credit Card Deception Exposure through Machine Learning,” Journal of Open Innovation: Technology, Market, and Complexity, vol. 8, no. 4, p. 192, 2022, doi: 10.3390/joitmc8040192.
W. Mongwe and K. Malan, “A Survey of Automated Financial Statement Fraud Detection with Relevance to the South African Context,” South African Computer Journal, vol. 32, no. 1, 2020, doi: 10.18489/sacj.v32i1.777.
J. Nicholls, A. Kuppa, and N.-A. Le-Khac, “Financial Cybercrime: A Comprehensive Survey of Deep Learning Approaches to Tackle the Evolving Financial Crime Landscape,” IEEE Access, vol. 9, pp. 163965–163986, 2021, doi: 10.1109/ACCESS.2021.3134076.
R. Hernández-Sampieri and C. P. Mendoza Torres, Metodología de la investigación: Las rutas cuantitativa, cualitativa y mixta, McGRAW-HILL. Ciudad de México, 2018.
S. Gupta and S. K. Mehta, “Data Mining-based Financial Statement Fraud Detection: Systematic Literature Review and Meta-analysis to Estimate Data Sample Mapping of Fraudulent Companies Against Non-fraudulent Companies,” Global Business Review, pp. 097215092098485–097215092098485, 2021, doi: 10.1177/0972150920984857.
J. Nonnenmacher and J. Marx Gómez, “Unsupervised anomaly detection for internal auditing: Literature review and research agenda,” The International Journal of Digital Accounting Research, pp. 1–22, 2021, doi: 10.4192/1577-8517-v21_1.
UAF, “EGMONT,” Unidad de Análisis Financiero Gobierno de Chile. Accessed: Aug. 17, 2023. [Online]. Available: https://www.uaf.cl/asuntos/egmont.aspx
A. A. S. Alsuwailem, E. Salem, and A. K. J. Saudagar, “Performance of Different Machine Learning Algorithms in Detecting Financial Fraud,” Comput Econ, 2022, doi: 10.1007/s10614-022-10314-x.
Y.-W. Ti, Y.-Y. Hsin, T.-S. Dai, M.-C. Huang, and L.-C. Liu, “Feature generation and contribution comparison for electronic fraud detection,” Sci Rep, vol. 12, no. 1, p. 18042, 2022, doi: 10.1038/s41598-022-22130-2.
D. G. Whiting, J. V Hansen, J. B. McDonald, C. Albrecht, and W. S. Albrecht, “Machine Learning Methods for Detecting Patterns of Management Fraud,” Comput Intell, vol. 28, no. 4, pp. 505–527, 2012, doi: 10.1111/j.1467-8640.2012.00425.x.
M. G. Saragih, J. Chin, R. Setyawasih, P. T. Nguyen, and K. Shankar, “Machine Learning Methods for Analysis Fraud Credit Card Transaction,” Int J Eng Adv Technol, vol. 8, no. 6S, pp. 870–874, 2019, doi: 10.35940/ijeat.F1164.0886S19.
KPMG, “Una triple amenaza en las Américas,” KMPG. Accessed: Jun. 21, 2023. [Online]. Available: https://kpmg.com/co/es/home/insights/2022/01/kpmg-fraud-outlook-survey.html
F. Arévalo, P. Barucca, I.-E. Téllez-León, W. Rodríguez, G. Gage, and R. Morales, “Identifying clusters of anomalous payments in the salvadorian payment system,” Latin American Journal of Central Banking, vol. 3, no. 1, p. 100050, 2022, doi: 10.1016/j.latcb.2022.100050.
M. Lokanan, V. Tran, and N. H. Vuong, “Detecting anomalies in financial statements using machine learning algorithm,” Asian Journal of Accounting Research, vol. 4, no. 2, pp. 181–201, 2019, doi: 10.1108/AJAR-09-2018-0032.
X. Ma et al., “A Comprehensive Survey on Graph Anomaly Detection With Deep Learning,” IEEE Trans Knowl Data Eng, vol. 35, no. 12, pp. 12012–12038, Dec. 2023, doi: 10.1109/TKDE.2021.3118815.
M. Davidow and D. S. Matteson, “Factor analysis of mixed data for anomaly detection,” Statistical Analysis and Data Mining: The ASA Data Science Journal, vol. 15, no. 4, pp. 480–493, Aug. 2022, doi: 10.1002/sam.11585.
Y. Shi, Y. Liu, H. Tong, J. He, G. Yan, and N. Cao, “Visual Analytics of Anomalous User Behaviors: A Survey,” IEEE Trans Big Data, pp. 1–1, 2020, doi: 10.1109/TBDATA.2020.2964169.
V. Hodge and J. Austin, “A Survey of Outlier Detection Methodologies,” Artif Intell Rev, vol. 22, no. 2, pp. 85–126, Oct. 2004, doi: 10.1023/B:AIRE.0000045502.10941.a9.
M. A. F. Pimentel, D. A. Clifton, L. Clifton, and L. Tarassenko, “A review of novelty detection,” Signal Processing, vol. 99, pp. 215–249, Jun. 2014, doi: 10.1016/j.sigpro.2013.12.026.
V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection,” ACM Comput Surv, vol. 41, no. 3, pp. 1–58, Jul. 2009, doi: 10.1145/1541880.1541882.
D. Huang, D. Mu, L. Yang, and X. Cai, “CoDetect: Financial Fraud Detection With Anomaly Feature Detection,” IEEE Access, vol. 6, pp. 19161–19174, 2018, doi: 10.1109/ACCESS.2018.2816564.
J. Vanhoeyveld, D. Martens, and B. Peeters, “Value-added tax fraud detection with scalable anomaly detection techniques,” Appl Soft Comput, vol. 86, p. 105895, 2020, doi: 10.1016/j.asoc.2019.105895.
M. Goldstein and S. Uchida, “A Comparative Evaluation of Unsupervised Anomaly Detection Algorithms for Multivariate Data,” PLoS One, vol. 11, no. 4, p. e0152173, Apr. 2016, doi: 10.1371/journal.pone.0152173.
B. Wu, X. Lv, A. Alghamdi, H. Abosaq, and M. Alrizq, “Advancement of management information system for discovering fraud in master card based intelligent supervised machine learning and deep learning during SARS-CoV2,” Inf Process Manag, vol. 60, no. 2, p. 103231, 2023, doi: 10.1016/j.ipm.2022.103231.
Y.-F. Kao and R. Venkatachalam, “Human and Machine Learning,” Comput Econ, vol. 57, no. 3, pp. 889–909, Mar. 2021, doi: 10.1007/s10614-018-9803-z.
D. Neagu, “Special issue on computational intelligence algorithms and applications,” Soft comput, vol. 20, no. 8, pp. 2921–2922, Aug. 2016, doi: 10.1007/s00500-016-2261-4.
J. G. Hoffer et al., “Theory-inspired machine learning—towards a synergy between knowledge and data,” Welding in the World, vol. 66, no. 7, pp. 1291–1304, Jul. 2022, doi: 10.1007/s40194-022-01270-z.
B. Rushing, “No free theory choice from machine learning,” Synthese, vol. 200, no. 5, p. 414, Oct. 2022, doi: 10.1007/s11229-022-03901-w.
M. Bies, M. Cvetič, R. Donagi, L. Lin, M. Liu, and F. Ruehle, “Machine learning and algebraic approaches towards complete matter spectra in 4d F-theory,” Journal of High Energy Physics, vol. 2021, no. 1, p. 196, Jan. 2021, doi: 10.1007/JHEP01(2021)196.
A. Bakumenko and A. Elragal, “Detecting Anomalies in Financial Data Using Machine Learning Algorithms,” Systems, 2022, doi: 10.3390/systems10050130.
M. Zupan, V. Budimir, and S. Letinic, “Journal entry anomaly detection model,” Intelligent Systems in Accounting, Finance and Management, vol. 27, no. 4, pp. 197–209, 2020, doi: 10.1002/isaf.1485.
M. Seera, C. P. Lim, A. Kumar, L. Dhamotharan, and K. H. Tan, “An intelligent payment card fraud detection system,” Ann Oper Res, 2021, doi: 10.1007/s10479-021-04149-2.
M. Papík and L. Papíková, “Detecting accounting fraud in companies reporting under US GAAP through data mining,” International Journal of Accounting Information Systems, vol. 45, p. 100559, 2022, doi: 10.1016/j.accinf.2022.100559.
A. Alwadain, R. F. Ali, and A. Muneer, “Estimating Financial Fraud through Transaction-Level Features and Machine Learning,” Mathematics, vol. 11, no. 5, p. 1184, 2023, doi: 10.3390/math11051184.
P. Vanini, S. Rossi, E. Zvizdic, and T. Domenig, “Online payment fraud: from anomaly detection to risk management,” Financial Innovation, vol. 9, no. 1, p. 66, 2023, doi: 10.1186/s40854-023-00470-w.
M. A. K. Achakzai and P. Juan, “Using machine learning Meta-Classifiers to detect financial frauds,” Financ Res Lett, vol. 48, p. 102915, Aug. 2022, doi: 10.1016/j.frl.2022.102915.
C. Hamza, A. Lylia, C. Nadine, and C. Nicolas, “Semi-supervised Method to Detect Fraudulent Transactions and Identify Fraud Types while Minimizing Mounting Costs,” International Journal of Advanced Computer Science and Applications, vol. 14, no. 2, 2023, doi: 10.14569/IJACSA.2023.0140298.
ACFE, “¿Qué es el fraude?,” Asociación de Examinadores de Fraude Certificados . Accessed: Aug. 03, 2023. [Online]. Available: https://www.acfe-spain.com/recursos-contra-fraude/que-es-el-fraude
A. Abdallah, M. A. Maarof, and A. Zainal, “Fraud detection system: A survey,” Journal of Network and Computer Applications, vol. 68, pp. 90–113, Jun. 2016, doi: 10.1016/j.jnca.2016.04.007.
A. Singh, A. Jain, and S. E. Biable, “Financial Fraud Detection Approach Based on Firefly Optimization Algorithm and Support Vector Machine,” Applied Computational Intelligence and Soft Computing, vol. 2022, pp. 1–10, Jun. 2022, doi: 10.1155/2022/1468015.
D. M. Hawkins, Identification of Outliers. Dordrecht: Springer Netherlands, 1980. doi: 10.1007/978-94-015-3994-4.
L. Ai, J. Langer, S. H. Muggleton, and U. Schmid, “Explanatory machine learning for sequential human teaching,” Mach Learn, Jun. 2023, doi: 10.1007/s10994-023-06351-8.
J. Qiu, Q. Wu, G. Ding, Y. Xu, and S. Feng, “A survey of machine learning for big data processing,” EURASIP J Adv Signal Process, vol. 2016, no. 1, p. 67, Dec. 2016, doi: 10.1186/s13634-016-0355-x.
J. U. Hansen and P. Quinon, “The importance of expert knowledge in big data and machine learning,” Synthese, vol. 201, no. 2, p. 35, Jan. 2023, doi: 10.1007/s11229-023-04041-5.
M. S. Siadaty and W. A. Knaus, “Locating previously unknown patterns in data-mining results: a dual data- and knowledge-mining method,” BMC Med Inform Decis Mak, vol. 6, no. 1, p. 13, Dec. 2006, doi: 10.1186/1472-6947-6-13.
U. H. W. A. Hewage, R. Sinha, and M. A. Naeem, “Privacy-preserving data (stream) mining techniques and their impact on data mining accuracy: a systematic literature review,” Artif Intell Rev, vol. 56, no. 9, pp. 10427–10464, Sep. 2023, doi: 10.1007/s10462-023-10425-3.
Función Pública, “Ley 1581 de 2012.” Accessed: Aug. 03, 2023. [Online]. Available: https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=49981
Xperta Legis, “Proyecto de Ley 354 de 2021 Octubre 26,” Xperta Legis. Accessed: Aug. 04, 2023. [Online]. Available: https://xperta.legis.co/visor/legfinan/legfinan_10c06e55778f479c9896fe30c17dfaf4/legisnet-financiero-cambiario-y-bursatil/proyecto-de-ley-354-de-2021-octubre-26-senado-de-la-republica
M. S. Guerreiro, L. Lima Rodrigues, and R. Craig, “Institutional theory and IFRS: an agenda for future research,” Spanish Journal of Finance and Accounting / Revista Española de Financiación y Contabilidad, vol. 50, no. 1, pp. 65–88, Jan. 2021, doi: 10.1080/02102412.2020.1712877.
F. J. Valencia-Duque and M. Orozco-Alzate, “Metodología para la implementación de un Sistema de Gestión de Seguridad de la Información basado en la familia de normas ISO/IEC 27000,” RISTI - Revista Ibérica de Sistemas e Tecnologias de Informação, no. 22, pp. 73–88, Jun. 2017, doi: 10.17013/risti.22.73-88.
eur-lex, “Propuesta de reglamento del parlamento europeo y del consejo por el que se establecen normas armonizadas en materia de inteligencia artificial (ley de inteligencia artificial) y se modifican determinados actos legislativos de la unión,” European Union law. Accessed: Aug. 04, 2023. [Online]. Available: https://eur-lex.europa.eu/legal-content/ES/TXT/?uri=celex:52021PC0206
IEEE SA, “P7003 Consideraciones de sesgo algorítmico,” Standards IEEE. Accessed: Aug. 04, 2023. [Online]. Available: https://standards.ieee.org/ieee/7003/6980/
ISO, “ISO/IEC 23053:2022 Framework for Artificial Intelligence (AI) Systems Using Machine Learning (ML).” Accessed: Aug. 04, 2023. [Online]. Available: https://www.iso.org/standard/74438.html
J. Hérnandez Orallo, J. Ramírez Quintana, and C. Ferri Ramírez, Introducción a la minería de datos, Pearson education. Madrid: Pearson education, 2004.
Y. Bao, B. Ke, B. Li, J. Yu, and J. Zhang, “Detecting Accounting Frauds in Publicly Traded U.S. Firms: New Perspective and New Method,” SSRN Electronic Journal, 2015, doi: 10.2139/ssrn.2670703.
A. B. Nassif, M. A. Talib, Q. Nasir, and F. M. Dakalbab, “Machine Learning for Anomaly Detection: A Systematic Review,” IEEE Access, vol. 9, pp. 78658–78700, 2021, doi: 10.1109/ACCESS.2021.3083060.
S. Wang, J. F. Balarezo, S. Kandeepan, A. Al-Hourani, K. G. Chavez, and B. Rubinstein, “Machine Learning in Network Anomaly Detection: A Survey,” IEEE Access, vol. 9, pp. 152379–152396, 2021, doi: 10.1109/ACCESS.2021.3126834.
X. Ju, J. Qian, Z. Chen, C. Zhao, and J. Qian, “Mulr4FL: Effective Fault Localization of Evolution Software Based on Multivariate Logistic Regression Model,” IEEE Access, vol. 8, pp. 207858–207870, 2020, doi: 10.1109/ACCESS.2020.3037235.
T.-H. S. Li, H.-J. Chiu, and P.-H. Kuo, “Hepatitis C Virus Detection Model by Using Random Forest, Logistic-Regression and ABC Algorithm,” IEEE Access, vol. 10, pp. 91045–91058, 2022, doi: 10.1109/ACCESS.2022.3202295.
M. Kim, J. Lee, L. Ohno-Machado, and X. Jiang, “Secure and Differentially Private Logistic Regression for Horizontally Distributed Data,” IEEE Transactions on Information Forensics and Security, vol. 15, pp. 695–710, 2020, doi: 10.1109/TIFS.2019.2925496.
J. C. Nwadiuto, S. Yoshino, H. Okuda, and T. Suzuki, “Variable Selection and Modeling of Drivers’ Decision in Overtaking Behavior Based on Logistic Regression Model With Gazing Information,” IEEE Access, vol. 9, pp. 127672–127684, 2021, doi: 10.1109/ACCESS.2021.3111753.
L. Breiman, “Random Forests,” Mach Learn, vol. 45, no. 1, pp. 5–32, 2001, doi: 10.1023/A:1010933404324.
C. Zhang, X. Wang, S. Chen, H. Li, X. Wu, and X. Zhang, “A Modified Random Forest Based on Kappa Measure and Binary Artificial Bee Colony Algorithm,” IEEE Access, vol. 9, pp. 117679–117690, 2021, doi: 10.1109/ACCESS.2021.3105796.
M. Schonlau and R. Y. Zou, “The random forest algorithm for statistical learning,” The Stata Journal: Promoting communications on statistics and Stata, vol. 20, no. 1, pp. 3–29, Mar. 2020, doi: 10.1177/1536867X20909688.
L. Dong et al., “Very High-Resolution Remote Sensing Imagery Classification Using a Fusion of Random Forest and Deep Learning Technique—Subtropical Area for Example,” IEEE J Sel Top Appl Earth Obs Remote Sens, vol. 13, pp. 113–128, 2020, doi: 10.1109/JSTARS.2019.2953234.
M. Kühnlein, T. Appelhans, B. Thies, and T. Nauss, “Improving the accuracy of rainfall rates from optical satellite sensors with machine learning — A random forests-based approach applied to MSG SEVIRI,” Remote Sens Environ, vol. 141, pp. 129–143, Feb. 2014, doi: 10.1016/j.rse.2013.10.026.
P. B. Yang, Y. J. Chan, S. K. Yazdi, and J. W. Lim, “Optimisation and economic analysis of industrial-scale anaerobic co-digestion (ACoD) of palm oil mill effluent (POME) and decanter cake (DC) using machine learning models: A comparative study of Gradient Boosting Machines (GBM), K-nearest neighbours (KNN), and random forest (RF),” Journal of Water Process Engineering, vol. 58, p. 104752, Feb. 2024, doi: 10.1016/j.jwpe.2023.104752.
M. Sheykhmousa, M. Mahdianpari, H. Ghanbari, F. Mohammadimanesh, P. Ghamisi, and S. Homayouni, “Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review,” IEEE J Sel Top Appl Earth Obs Remote Sens, vol. 13, pp. 6308–6325, 2020, doi: 10.1109/JSTARS.2020.3026724.
G. Mountrakis, J. Im, and C. Ogole, “Support vector machines in remote sensing: A review,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 66, no. 3, pp. 247–259, May 2011, doi: 10.1016/j.isprsjprs.2010.11.001.
F. Gharebaghi and A. Amiri, “LP-MLTSVM: Laplacian Multi-Label Twin Support Vector Machine for Semi-Supervised Classification,” IEEE Access, vol. 10, pp. 13738–13752, 2022, doi: 10.1109/ACCESS.2021.3139929.
H. Cao, J. Zhang, F. Yang, Q. An, and Y. Wang, “Extending Capture Range for Piston Error in Segmented Primary Mirror Telescopes Based on Wavelet Support Vector Machine With Improved Particle Swarm Optimization,” IEEE Access, vol. 8, pp. 111585–111597, 2020, doi: 10.1109/ACCESS.2020.3002901.
R. Zhang, Y. Li, Y. Gui, D. J. Armaghani, and M. Yari, “A stacked multiple kernel support vector machine for blast induced flyrock prediction,” Geohazard Mechanics, Jan. 2024, doi: 10.1016/j.ghm.2024.01.002.
M. Dongliang, L. Yi, Z. Tao, and H. Yanping, “Research on prediction and analysis of supercritical water heat transfer coefficient based on support vector machine,” Nuclear Engineering and Technology, vol. 55, no. 11, pp. 4102–4111, Nov. 2023, doi: 10.1016/j.net.2023.07.030.
Y. Chabchoub, M. U. Togbe, A. Boly, and R. Chiky, “An In-Depth Study and Improvement of Isolation Forest,” IEEE Access, vol. 10, pp. 10219–10237, 2022, doi: 10.1109/ACCESS.2022.3144425.
F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation Forest,” in 2008 Eighth IEEE International Conference on Data Mining, IEEE, Dec. 2008, pp. 413–422. doi: 10.1109/ICDM.2008.17.
F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation-Based Anomaly Detection,” ACM Trans Knowl Discov Data, vol. 6, no. 1, pp. 1–39, Mar. 2012, doi: 10.1145/2133360.2133363.
T. Al-Shehari, M. Al-Razgan, T. Alfakih, R. A. Alsowail, and S. Pandiaraj, “Insider Threat Detection Model Using Anomaly-Based Isolation Forest Algorithm,” IEEE Access, vol. 11, pp. 118170–118185, 2023, doi: 10.1109/ACCESS.2023.3326750.
M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF: identifying density-based local outliers,” ACM SIGMOD Record, vol. 29, no. 2, pp. 93–104, Jun. 2000, doi: 10.1145/335191.335388.
Y. Peng et al., “Electricity Theft Detection in AMI Based on Clustering and Local Outlier Factor,” IEEE Access, vol. 9, pp. 107250–107259, 2021, doi: 10.1109/ACCESS.2021.3100980.
S. Su et al., “An Efficient Density-Based Local Outlier Detection Approach for Scattered Data,” IEEE Access, vol. 7, pp. 1006–1020, 2019, doi: 10.1109/ACCESS.2018.2886197.
S. Levikari, T. J. Kärkkäinen, C. Andersson, J. Tamminen, M. Nykyri, and P. Silventoinen, “Nondestructive Acoustic Testing of Ceramic Capacitors Using One-Class Support Vector Machine With Automated Hyperparameter Selection,” IEEE Access, vol. 8, pp. 226337–226351, 2020, doi: 10.1109/ACCESS.2020.3045830.
B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson, “Estimating the Support of a High-Dimensional Distribution,” Neural Comput, vol. 13, no. 7, pp. 1443–1471, Jul. 2001, doi: 10.1162/089976601750264965.
X. Tao, Y. Yu, L. Fu, J. Liu, and Y. Zhang, “An insider user authentication method based on improved temporal convolutional network,” High-Confidence Computing, vol. 3, no. 4, p. 100169, Dec. 2023, doi: 10.1016/j.hcc.2023.100169.
J. Nie, Y. Dong, and R. Zuo, “Construction Land Information Extraction and Expansion Analysis of Xiaogan City Using One-Class Support Vector Machine,” IEEE J Sel Top Appl Earth Obs Remote Sens, vol. 15, pp. 3519–3532, 2022, doi: 10.1109/JSTARS.2022.3170495.
I. M. Nazar and M. Aksoy, “Radio Frequency Interference Detection in Passive Microwave Remote Sensing Using One-Class Support Vector Machines,” IEEE J Sel Top Appl Earth Obs Remote Sens, vol. 16, pp. 6682–6692, 2023, doi: 10.1109/JSTARS.2023.3293393.
Z. Wang and Y.-J. Cha, “Unsupervised deep learning approach using a deep auto-encoder with a one-class support vector machine to detect damage,” Struct Health Monit, vol. 20, no. 1, pp. 406–425, Jan. 2021, doi: 10.1177/1475921720934051.
J. Pang, X. Pu, and C. Li, “A Hybrid Algorithm Incorporating Vector Quantization and One-Class Support Vector Machine for Industrial Anomaly Detection,” IEEE Trans Industr Inform, vol. 18, no. 12, pp. 8786–8796, Dec. 2022, doi: 10.1109/TII.2022.3145834.
T. Salman, A. Ghubaish, D. Unal, and R. Jain, “Safety Score as an Evaluation Metric for Machine Learning Models of Security Applications,” IEEE Networking Letters, vol. 2, no. 4, pp. 207–211, Dec. 2020, doi: 10.1109/LNET.2020.3016583.
G. De Carvalho Bertoli et al., “An End-to-End Framework for Machine Learning-Based Network Intrusion Detection System,” IEEE Access, vol. 9, pp. 106790–106805, 2021, doi: 10.1109/ACCESS.2021.3101188.
R. Boutaba et al., “A comprehensive survey on machine learning for networking: evolution, applications and research opportunities,” Journal of Internet Services and Applications, vol. 9, no. 1, p. 16, Dec. 2018, doi: 10.1186/s13174-018-0087-2.
A. Galal and X. Hesselbach, “Machine Learning Models for Traffic Classification in Electromagnetic Nano-Networks,” IEEE Access, vol. 10, pp. 38089–38103, 2022, doi: 10.1109/ACCESS.2022.3165013.
Y. Shuai, C. Jiang, X. Su, C. Yuan, and X. Huang, “A Hybrid Clustering Model for Analyzing COVID-19 National Prevention and Control Strategy,” in 2020 IEEE 6th International Conference on Control Science and Systems Engineering (ICCSSE), IEEE, Jul. 2020, pp. 68–71. doi: 10.1109/ICCSSE50399.2020.9171941.
A. Razzaque and D. A. Badholia, “PCA based feature extraction and MPSO based feature selection for gene expression microarray medical data classification,” Measurement: Sensors, vol. 31, p. 100945, Feb. 2024, doi: 10.1016/j.measen.2023.100945.
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.creativecommons.none.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_14cb
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 International
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.extent.none.fl_str_mv 70 p.
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería de Sistemas, Ibagué
dc.publisher.program.none.fl_str_mv Ingeniería de Sistemas
dc.publisher.faculty.none.fl_str_mv Ingenierías
dc.publisher.place.none.fl_str_mv Ibagué
dc.publisher.branch.none.fl_str_mv Ibagué
publisher.none.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería de Sistemas, Ibagué
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/ab6aeb6a-8e66-4651-a667-e7584392b3de/download
https://repository.ucc.edu.co/bitstreams/02799b78-573c-42cf-918c-cdbdf37ad416/download
https://repository.ucc.edu.co/bitstreams/00ddd8e0-f102-4160-bbd2-e867a72fde8b/download
https://repository.ucc.edu.co/bitstreams/aa564a27-d67e-4170-bf44-d22905437594/download
https://repository.ucc.edu.co/bitstreams/7f70a2bd-240e-47eb-bb96-76eb3fb66231/download
https://repository.ucc.edu.co/bitstreams/9b0be545-6475-44dc-9698-8705e6266c0e/download
https://repository.ucc.edu.co/bitstreams/19763fb6-f214-4ace-bbac-4388a61b2cbb/download
https://repository.ucc.edu.co/bitstreams/776464ba-8872-405d-99e9-057f093468a5/download
https://repository.ucc.edu.co/bitstreams/971c6dce-80f8-4e1e-ba63-124b16794bea/download
https://repository.ucc.edu.co/bitstreams/401b6778-ece9-4fbe-8521-b99e6ecd3087/download
https://repository.ucc.edu.co/bitstreams/5f189b56-3272-4050-a378-8cf6b73fcacf/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
3bce4f7ab09dfc588f126e1e36e98a45
bb4f38ebfa8442b2a91b0d1080ef2fb6
f124cff003ed09e0b18b0638067ac72a
6cf584083c69145a588d3b39eb705718
1890d5b4f7ab1bc42e6b1a0bf609455a
b62f25285740eec46e08413587393bcb
9eeef7f53c5dba08569c7c4a36604ba1
a073e5745e2f349fde8e8062bb648796
3e68f1af33e05700c0b41bb815cb228f
8d32265883674b08161a6e0dea4f84a5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814246823408173056
spelling Gutiérrez Pórtela, FernandoHernández Aros, LudiviaBustamante Molano, Luisa Ximena2024-07-22T14:18:05Z2024-07-22T14:18:05Z2024Bustamante Molano, L. X. (2024). Detección del fraude financiero mediante la aplicación de técnicas de aprendizaje automático con enfoque basado en anomalías [Tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional Universidad Cooperativa de Colombia.https://hdl.handle.net/20.500.12494/56439La detección de fraudes en entornos financieros es un área crítica cuyo objetivo es identificar patrones o actividades anómalas que puedan indicar prácticas fraudulentas. Se implementa un sistema de detección de fraudes financieros utilizando modelos supervisados, como Random Forest, Logistic Regression y Support Vector Machine, así como modelos no supervisados, como Isolation Forest, Local Outlier Factor y One Class Support Vector Machine. El estudio empleó un enfoque de investigación cuantitativo y experimental con alcance explicativo para aplicar técnicas de aprendizaje automático y medir el rendimiento y la evaluación de los modelos. Se utilizó una metodología de software híbrida (espiral y CRISP-DM), la aplicación se desarrolló utilizando Streamlit en un entorno virtual, que incluye módulos de inicio de sesión, detección e informe de resultados. El modelo One-Class SV destaca por su recall (79%), pero tiene una precisión y una puntuación F1 bajas, lo que puede dar lugar a falsos positivos. Por otro lado, la regresión logística muestra un rendimiento más equilibrado con precisión (1%) y recall (25%). Ambos modelos demuestran una capacidad relativamente mejor para identificar casos positivos.Fraud detection in financial environments is a critical area aimed at identifying patterns or anomalous activities that may indicate fraudulent practices. A financial fraud detection system is implemented using supervised models, such as Random Forest, Logistic Regression and Support Vector Machine, as well as unsupervised models, such as Isolation Forest, Local Outlier Factor and One Class Support Vector Machine. The study employed a quantitative and experimental research approach with explanatory scope to apply machine learning techniques and measure model performance and evaluation. A hybrid software methodology (Spiral and CRISP-DM) was used, the application was developed using Streamlit in a virtual environment, including login, detection, and result reporting modules. The One-Class SV model stands out for its recall (79%), but has a low accuracy and F1 score, which can lead to false positives. On the other hand, logistic regression shows a more balanced performance with precision (1%) and recall (25%). Both models demonstrate a better ability to identify positive cases.Resumen -- Introducción -- 1. Descripción del problema -- 2. Justificación -- 3. Objetivos -- 3.1. Objetivo general -- 3.2. Objetivos específicos -- 4. Marco referencial -- 4.1. Marco teórico -- 4.1.1. Teoría de las anomalías -- 4.1.2. Teoría de la detección de fraudes financieros -- 4.1.3. Teoría del aprendizaje automático -- 4.2. Estado del arte -- 4.3. Marco conceptual -- 4.4. Marco normativo -- 5. Metodología -- 5.1. Primer ciclo: comprensión del negocio -- 5.2. Segundo ciclo: comprensión de los datos -- 5.3. Tercer ciclo: preparación de datos -- 5.4. Cuarto ciclo: modelamiento -- 5.5. Quinto ciclo: evaluación -- 5.6. Sexto ciclo: despliegue -- 6. Resultado -- 6.1. Objetivos del negocio y objetivos minería de datos -- 6.2. Conjunto de datos y preprocesamiento de datos -- 6.3. Evaluación del modelo basado en enfoque de anomalías -- 6.4. Arquitectura sistema detección fraude financiero -- 6.5. Implementación sistema entorno de pruebas -- 7. Conclusiones -- 8. Recomendaciones -- Referencias --PregradoIngeniería de Sistemas70 p.application/pdfspaUniversidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería de Sistemas, IbaguéIngeniería de SistemasIngenieríasIbaguéIbaguéhttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/closedAccessAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://purl.org/coar/access_right/c_14cb000 - Ciencias de la computación, información y obras generalesAprendizajeAnomalíasMétricas externasFraude financieroMachine learningAnomaliesExternal metricsFinancial fraudDetección del fraude financiero mediante la aplicación de técnicas de aprendizaje automático con enfoque basado en anomalíasTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/acceptedVersionA. Singh, A. Jain, and S. E. Biable, “Financial Fraud Detection Approach Based on Firefly Optimization Algorithm and Support Vector Machine,” Applied Computational Intelligence and Soft Computing, vol. 2022, pp. 1–10, 2022, doi: 10.1155/2022/1468015.A. Abdallah, M. A. Maarof, and A. Zainal, “Fraud detection system: A survey,” Journal of Network and Computer Applications, vol. 68, pp. 90–113, 2016, doi: 10.1016/j.jnca.2016.04.007.PricewaterhouseCoopers, “Encuesta Global de Crimen y Fraude Económico de PwC Colombia 2022 - 2023.” Accessed: Jun. 21, 2023. [Online]. Available: https://www.pwc.com/co/es/publicaciones/encuesta-crimen-fraude-economico.htmlJ. West and M. Bhattacharya, “Intelligent financial fraud detection: A comprehensive review,” Comput Secur, vol. 57, pp. 47–66, 2016, doi: 10.1016/j.cose.2015.09.005.K. G. Al-Hashedi and P. Magalingam, “Financial fraud detection applying data mining techniques: A comprehensive review from 2009 to 2019,” Comput Sci Rev, vol. 40, p. 100402, 2021, doi: 10.1016/j.cosrev.2021.100402.A. Reurink, “Financial Fraud: A Literature Review,” J Econ Surv, vol. 32, no. 5, pp. 1292–1325, 2018, doi: 10.1111/joes.12294.M. Ahmed, A. N. Mahmood, and Md. R. Islam, “A survey of anomaly detection techniques in financial domain,” Future Generation Computer Systems, vol. 55, pp. 278–288, 2016, doi: 10.1016/j.future.2015.01.001.V. K. Wadhwa, A. K. Saini, and S. S. Kumar, “Financial fraud prediction models: A review of research evidence,” International Journal of Scientific and Technology Research, vol. 9, no. 1, pp. 677–680, 2020.A. Ali et al., “Financial Fraud Detection Based On Machine Learning: A Systematic Literature Review.,” Applied Sciences (Switzerland), 2022, doi: 10.3390/app12199637.W. Hilal, S. A. Gadsden, and J. Yawney, “Financial Fraud: A Review of Anomaly Detection Techniques and Recent Advances,” Expert Syst Appl, vol. 193, p. 116429, 2022, doi: 10.1016/j.eswa.2021.116429.A. Ramírez-Alpízar, M. Jenkins, A. Martínez, and C. Quesada-López, “Use of data mining and machine learning techniques for fraud detection in financial statements: a systematic mapping study,” Revista Ibérica de Sistemas e Tecnologias de Informação; Lousada N.o E28. pp. 97–109, 2020.R. M. Dantas, R. Firdaus, F. Jaleel, P. Neves Mata, M. N. Mata, and G. Li, “Systemic Acquired Critique of Credit Card Deception Exposure through Machine Learning,” Journal of Open Innovation: Technology, Market, and Complexity, vol. 8, no. 4, p. 192, 2022, doi: 10.3390/joitmc8040192.W. Mongwe and K. Malan, “A Survey of Automated Financial Statement Fraud Detection with Relevance to the South African Context,” South African Computer Journal, vol. 32, no. 1, 2020, doi: 10.18489/sacj.v32i1.777.J. Nicholls, A. Kuppa, and N.-A. Le-Khac, “Financial Cybercrime: A Comprehensive Survey of Deep Learning Approaches to Tackle the Evolving Financial Crime Landscape,” IEEE Access, vol. 9, pp. 163965–163986, 2021, doi: 10.1109/ACCESS.2021.3134076.R. Hernández-Sampieri and C. P. Mendoza Torres, Metodología de la investigación: Las rutas cuantitativa, cualitativa y mixta, McGRAW-HILL. Ciudad de México, 2018.S. Gupta and S. K. Mehta, “Data Mining-based Financial Statement Fraud Detection: Systematic Literature Review and Meta-analysis to Estimate Data Sample Mapping of Fraudulent Companies Against Non-fraudulent Companies,” Global Business Review, pp. 097215092098485–097215092098485, 2021, doi: 10.1177/0972150920984857.J. Nonnenmacher and J. Marx Gómez, “Unsupervised anomaly detection for internal auditing: Literature review and research agenda,” The International Journal of Digital Accounting Research, pp. 1–22, 2021, doi: 10.4192/1577-8517-v21_1.UAF, “EGMONT,” Unidad de Análisis Financiero Gobierno de Chile. Accessed: Aug. 17, 2023. [Online]. Available: https://www.uaf.cl/asuntos/egmont.aspxA. A. S. Alsuwailem, E. Salem, and A. K. J. Saudagar, “Performance of Different Machine Learning Algorithms in Detecting Financial Fraud,” Comput Econ, 2022, doi: 10.1007/s10614-022-10314-x.Y.-W. Ti, Y.-Y. Hsin, T.-S. Dai, M.-C. Huang, and L.-C. Liu, “Feature generation and contribution comparison for electronic fraud detection,” Sci Rep, vol. 12, no. 1, p. 18042, 2022, doi: 10.1038/s41598-022-22130-2.D. G. Whiting, J. V Hansen, J. B. McDonald, C. Albrecht, and W. S. Albrecht, “Machine Learning Methods for Detecting Patterns of Management Fraud,” Comput Intell, vol. 28, no. 4, pp. 505–527, 2012, doi: 10.1111/j.1467-8640.2012.00425.x.M. G. Saragih, J. Chin, R. Setyawasih, P. T. Nguyen, and K. Shankar, “Machine Learning Methods for Analysis Fraud Credit Card Transaction,” Int J Eng Adv Technol, vol. 8, no. 6S, pp. 870–874, 2019, doi: 10.35940/ijeat.F1164.0886S19.KPMG, “Una triple amenaza en las Américas,” KMPG. Accessed: Jun. 21, 2023. [Online]. Available: https://kpmg.com/co/es/home/insights/2022/01/kpmg-fraud-outlook-survey.htmlF. Arévalo, P. Barucca, I.-E. Téllez-León, W. Rodríguez, G. Gage, and R. Morales, “Identifying clusters of anomalous payments in the salvadorian payment system,” Latin American Journal of Central Banking, vol. 3, no. 1, p. 100050, 2022, doi: 10.1016/j.latcb.2022.100050.M. Lokanan, V. Tran, and N. H. Vuong, “Detecting anomalies in financial statements using machine learning algorithm,” Asian Journal of Accounting Research, vol. 4, no. 2, pp. 181–201, 2019, doi: 10.1108/AJAR-09-2018-0032.X. Ma et al., “A Comprehensive Survey on Graph Anomaly Detection With Deep Learning,” IEEE Trans Knowl Data Eng, vol. 35, no. 12, pp. 12012–12038, Dec. 2023, doi: 10.1109/TKDE.2021.3118815.M. Davidow and D. S. Matteson, “Factor analysis of mixed data for anomaly detection,” Statistical Analysis and Data Mining: The ASA Data Science Journal, vol. 15, no. 4, pp. 480–493, Aug. 2022, doi: 10.1002/sam.11585.Y. Shi, Y. Liu, H. Tong, J. He, G. Yan, and N. Cao, “Visual Analytics of Anomalous User Behaviors: A Survey,” IEEE Trans Big Data, pp. 1–1, 2020, doi: 10.1109/TBDATA.2020.2964169.V. Hodge and J. Austin, “A Survey of Outlier Detection Methodologies,” Artif Intell Rev, vol. 22, no. 2, pp. 85–126, Oct. 2004, doi: 10.1023/B:AIRE.0000045502.10941.a9.M. A. F. Pimentel, D. A. Clifton, L. Clifton, and L. Tarassenko, “A review of novelty detection,” Signal Processing, vol. 99, pp. 215–249, Jun. 2014, doi: 10.1016/j.sigpro.2013.12.026.V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection,” ACM Comput Surv, vol. 41, no. 3, pp. 1–58, Jul. 2009, doi: 10.1145/1541880.1541882.D. Huang, D. Mu, L. Yang, and X. Cai, “CoDetect: Financial Fraud Detection With Anomaly Feature Detection,” IEEE Access, vol. 6, pp. 19161–19174, 2018, doi: 10.1109/ACCESS.2018.2816564.J. Vanhoeyveld, D. Martens, and B. Peeters, “Value-added tax fraud detection with scalable anomaly detection techniques,” Appl Soft Comput, vol. 86, p. 105895, 2020, doi: 10.1016/j.asoc.2019.105895.M. Goldstein and S. Uchida, “A Comparative Evaluation of Unsupervised Anomaly Detection Algorithms for Multivariate Data,” PLoS One, vol. 11, no. 4, p. e0152173, Apr. 2016, doi: 10.1371/journal.pone.0152173.B. Wu, X. Lv, A. Alghamdi, H. Abosaq, and M. Alrizq, “Advancement of management information system for discovering fraud in master card based intelligent supervised machine learning and deep learning during SARS-CoV2,” Inf Process Manag, vol. 60, no. 2, p. 103231, 2023, doi: 10.1016/j.ipm.2022.103231.Y.-F. Kao and R. Venkatachalam, “Human and Machine Learning,” Comput Econ, vol. 57, no. 3, pp. 889–909, Mar. 2021, doi: 10.1007/s10614-018-9803-z.D. Neagu, “Special issue on computational intelligence algorithms and applications,” Soft comput, vol. 20, no. 8, pp. 2921–2922, Aug. 2016, doi: 10.1007/s00500-016-2261-4.J. G. Hoffer et al., “Theory-inspired machine learning—towards a synergy between knowledge and data,” Welding in the World, vol. 66, no. 7, pp. 1291–1304, Jul. 2022, doi: 10.1007/s40194-022-01270-z.B. Rushing, “No free theory choice from machine learning,” Synthese, vol. 200, no. 5, p. 414, Oct. 2022, doi: 10.1007/s11229-022-03901-w.M. Bies, M. Cvetič, R. Donagi, L. Lin, M. Liu, and F. Ruehle, “Machine learning and algebraic approaches towards complete matter spectra in 4d F-theory,” Journal of High Energy Physics, vol. 2021, no. 1, p. 196, Jan. 2021, doi: 10.1007/JHEP01(2021)196.A. Bakumenko and A. Elragal, “Detecting Anomalies in Financial Data Using Machine Learning Algorithms,” Systems, 2022, doi: 10.3390/systems10050130.M. Zupan, V. Budimir, and S. Letinic, “Journal entry anomaly detection model,” Intelligent Systems in Accounting, Finance and Management, vol. 27, no. 4, pp. 197–209, 2020, doi: 10.1002/isaf.1485.M. Seera, C. P. Lim, A. Kumar, L. Dhamotharan, and K. H. Tan, “An intelligent payment card fraud detection system,” Ann Oper Res, 2021, doi: 10.1007/s10479-021-04149-2.M. Papík and L. Papíková, “Detecting accounting fraud in companies reporting under US GAAP through data mining,” International Journal of Accounting Information Systems, vol. 45, p. 100559, 2022, doi: 10.1016/j.accinf.2022.100559.A. Alwadain, R. F. Ali, and A. Muneer, “Estimating Financial Fraud through Transaction-Level Features and Machine Learning,” Mathematics, vol. 11, no. 5, p. 1184, 2023, doi: 10.3390/math11051184.P. Vanini, S. Rossi, E. Zvizdic, and T. Domenig, “Online payment fraud: from anomaly detection to risk management,” Financial Innovation, vol. 9, no. 1, p. 66, 2023, doi: 10.1186/s40854-023-00470-w.M. A. K. Achakzai and P. Juan, “Using machine learning Meta-Classifiers to detect financial frauds,” Financ Res Lett, vol. 48, p. 102915, Aug. 2022, doi: 10.1016/j.frl.2022.102915.C. Hamza, A. Lylia, C. Nadine, and C. Nicolas, “Semi-supervised Method to Detect Fraudulent Transactions and Identify Fraud Types while Minimizing Mounting Costs,” International Journal of Advanced Computer Science and Applications, vol. 14, no. 2, 2023, doi: 10.14569/IJACSA.2023.0140298.ACFE, “¿Qué es el fraude?,” Asociación de Examinadores de Fraude Certificados . Accessed: Aug. 03, 2023. [Online]. Available: https://www.acfe-spain.com/recursos-contra-fraude/que-es-el-fraudeA. Abdallah, M. A. Maarof, and A. Zainal, “Fraud detection system: A survey,” Journal of Network and Computer Applications, vol. 68, pp. 90–113, Jun. 2016, doi: 10.1016/j.jnca.2016.04.007.A. Singh, A. Jain, and S. E. Biable, “Financial Fraud Detection Approach Based on Firefly Optimization Algorithm and Support Vector Machine,” Applied Computational Intelligence and Soft Computing, vol. 2022, pp. 1–10, Jun. 2022, doi: 10.1155/2022/1468015.D. M. Hawkins, Identification of Outliers. Dordrecht: Springer Netherlands, 1980. doi: 10.1007/978-94-015-3994-4.L. Ai, J. Langer, S. H. Muggleton, and U. Schmid, “Explanatory machine learning for sequential human teaching,” Mach Learn, Jun. 2023, doi: 10.1007/s10994-023-06351-8.J. Qiu, Q. Wu, G. Ding, Y. Xu, and S. Feng, “A survey of machine learning for big data processing,” EURASIP J Adv Signal Process, vol. 2016, no. 1, p. 67, Dec. 2016, doi: 10.1186/s13634-016-0355-x.J. U. Hansen and P. Quinon, “The importance of expert knowledge in big data and machine learning,” Synthese, vol. 201, no. 2, p. 35, Jan. 2023, doi: 10.1007/s11229-023-04041-5.M. S. Siadaty and W. A. Knaus, “Locating previously unknown patterns in data-mining results: a dual data- and knowledge-mining method,” BMC Med Inform Decis Mak, vol. 6, no. 1, p. 13, Dec. 2006, doi: 10.1186/1472-6947-6-13.U. H. W. A. Hewage, R. Sinha, and M. A. Naeem, “Privacy-preserving data (stream) mining techniques and their impact on data mining accuracy: a systematic literature review,” Artif Intell Rev, vol. 56, no. 9, pp. 10427–10464, Sep. 2023, doi: 10.1007/s10462-023-10425-3.Función Pública, “Ley 1581 de 2012.” Accessed: Aug. 03, 2023. [Online]. Available: https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=49981Xperta Legis, “Proyecto de Ley 354 de 2021 Octubre 26,” Xperta Legis. Accessed: Aug. 04, 2023. [Online]. Available: https://xperta.legis.co/visor/legfinan/legfinan_10c06e55778f479c9896fe30c17dfaf4/legisnet-financiero-cambiario-y-bursatil/proyecto-de-ley-354-de-2021-octubre-26-senado-de-la-republicaM. S. Guerreiro, L. Lima Rodrigues, and R. Craig, “Institutional theory and IFRS: an agenda for future research,” Spanish Journal of Finance and Accounting / Revista Española de Financiación y Contabilidad, vol. 50, no. 1, pp. 65–88, Jan. 2021, doi: 10.1080/02102412.2020.1712877.F. J. Valencia-Duque and M. Orozco-Alzate, “Metodología para la implementación de un Sistema de Gestión de Seguridad de la Información basado en la familia de normas ISO/IEC 27000,” RISTI - Revista Ibérica de Sistemas e Tecnologias de Informação, no. 22, pp. 73–88, Jun. 2017, doi: 10.17013/risti.22.73-88.eur-lex, “Propuesta de reglamento del parlamento europeo y del consejo por el que se establecen normas armonizadas en materia de inteligencia artificial (ley de inteligencia artificial) y se modifican determinados actos legislativos de la unión,” European Union law. Accessed: Aug. 04, 2023. [Online]. Available: https://eur-lex.europa.eu/legal-content/ES/TXT/?uri=celex:52021PC0206IEEE SA, “P7003 Consideraciones de sesgo algorítmico,” Standards IEEE. Accessed: Aug. 04, 2023. [Online]. Available: https://standards.ieee.org/ieee/7003/6980/ISO, “ISO/IEC 23053:2022 Framework for Artificial Intelligence (AI) Systems Using Machine Learning (ML).” Accessed: Aug. 04, 2023. [Online]. Available: https://www.iso.org/standard/74438.htmlJ. Hérnandez Orallo, J. Ramírez Quintana, and C. Ferri Ramírez, Introducción a la minería de datos, Pearson education. Madrid: Pearson education, 2004.Y. Bao, B. Ke, B. Li, J. Yu, and J. Zhang, “Detecting Accounting Frauds in Publicly Traded U.S. Firms: New Perspective and New Method,” SSRN Electronic Journal, 2015, doi: 10.2139/ssrn.2670703.A. B. Nassif, M. A. Talib, Q. Nasir, and F. M. Dakalbab, “Machine Learning for Anomaly Detection: A Systematic Review,” IEEE Access, vol. 9, pp. 78658–78700, 2021, doi: 10.1109/ACCESS.2021.3083060.S. Wang, J. F. Balarezo, S. Kandeepan, A. Al-Hourani, K. G. Chavez, and B. Rubinstein, “Machine Learning in Network Anomaly Detection: A Survey,” IEEE Access, vol. 9, pp. 152379–152396, 2021, doi: 10.1109/ACCESS.2021.3126834.X. Ju, J. Qian, Z. Chen, C. Zhao, and J. Qian, “Mulr4FL: Effective Fault Localization of Evolution Software Based on Multivariate Logistic Regression Model,” IEEE Access, vol. 8, pp. 207858–207870, 2020, doi: 10.1109/ACCESS.2020.3037235.T.-H. S. Li, H.-J. Chiu, and P.-H. Kuo, “Hepatitis C Virus Detection Model by Using Random Forest, Logistic-Regression and ABC Algorithm,” IEEE Access, vol. 10, pp. 91045–91058, 2022, doi: 10.1109/ACCESS.2022.3202295.M. Kim, J. Lee, L. Ohno-Machado, and X. Jiang, “Secure and Differentially Private Logistic Regression for Horizontally Distributed Data,” IEEE Transactions on Information Forensics and Security, vol. 15, pp. 695–710, 2020, doi: 10.1109/TIFS.2019.2925496.J. C. Nwadiuto, S. Yoshino, H. Okuda, and T. Suzuki, “Variable Selection and Modeling of Drivers’ Decision in Overtaking Behavior Based on Logistic Regression Model With Gazing Information,” IEEE Access, vol. 9, pp. 127672–127684, 2021, doi: 10.1109/ACCESS.2021.3111753.L. Breiman, “Random Forests,” Mach Learn, vol. 45, no. 1, pp. 5–32, 2001, doi: 10.1023/A:1010933404324.C. Zhang, X. Wang, S. Chen, H. Li, X. Wu, and X. Zhang, “A Modified Random Forest Based on Kappa Measure and Binary Artificial Bee Colony Algorithm,” IEEE Access, vol. 9, pp. 117679–117690, 2021, doi: 10.1109/ACCESS.2021.3105796.M. Schonlau and R. Y. Zou, “The random forest algorithm for statistical learning,” The Stata Journal: Promoting communications on statistics and Stata, vol. 20, no. 1, pp. 3–29, Mar. 2020, doi: 10.1177/1536867X20909688.L. Dong et al., “Very High-Resolution Remote Sensing Imagery Classification Using a Fusion of Random Forest and Deep Learning Technique—Subtropical Area for Example,” IEEE J Sel Top Appl Earth Obs Remote Sens, vol. 13, pp. 113–128, 2020, doi: 10.1109/JSTARS.2019.2953234.M. Kühnlein, T. Appelhans, B. Thies, and T. Nauss, “Improving the accuracy of rainfall rates from optical satellite sensors with machine learning — A random forests-based approach applied to MSG SEVIRI,” Remote Sens Environ, vol. 141, pp. 129–143, Feb. 2014, doi: 10.1016/j.rse.2013.10.026.P. B. Yang, Y. J. Chan, S. K. Yazdi, and J. W. Lim, “Optimisation and economic analysis of industrial-scale anaerobic co-digestion (ACoD) of palm oil mill effluent (POME) and decanter cake (DC) using machine learning models: A comparative study of Gradient Boosting Machines (GBM), K-nearest neighbours (KNN), and random forest (RF),” Journal of Water Process Engineering, vol. 58, p. 104752, Feb. 2024, doi: 10.1016/j.jwpe.2023.104752.M. Sheykhmousa, M. Mahdianpari, H. Ghanbari, F. Mohammadimanesh, P. Ghamisi, and S. Homayouni, “Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review,” IEEE J Sel Top Appl Earth Obs Remote Sens, vol. 13, pp. 6308–6325, 2020, doi: 10.1109/JSTARS.2020.3026724.G. Mountrakis, J. Im, and C. Ogole, “Support vector machines in remote sensing: A review,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 66, no. 3, pp. 247–259, May 2011, doi: 10.1016/j.isprsjprs.2010.11.001.F. Gharebaghi and A. Amiri, “LP-MLTSVM: Laplacian Multi-Label Twin Support Vector Machine for Semi-Supervised Classification,” IEEE Access, vol. 10, pp. 13738–13752, 2022, doi: 10.1109/ACCESS.2021.3139929.H. Cao, J. Zhang, F. Yang, Q. An, and Y. Wang, “Extending Capture Range for Piston Error in Segmented Primary Mirror Telescopes Based on Wavelet Support Vector Machine With Improved Particle Swarm Optimization,” IEEE Access, vol. 8, pp. 111585–111597, 2020, doi: 10.1109/ACCESS.2020.3002901.R. Zhang, Y. Li, Y. Gui, D. J. Armaghani, and M. Yari, “A stacked multiple kernel support vector machine for blast induced flyrock prediction,” Geohazard Mechanics, Jan. 2024, doi: 10.1016/j.ghm.2024.01.002.M. Dongliang, L. Yi, Z. Tao, and H. Yanping, “Research on prediction and analysis of supercritical water heat transfer coefficient based on support vector machine,” Nuclear Engineering and Technology, vol. 55, no. 11, pp. 4102–4111, Nov. 2023, doi: 10.1016/j.net.2023.07.030.Y. Chabchoub, M. U. Togbe, A. Boly, and R. Chiky, “An In-Depth Study and Improvement of Isolation Forest,” IEEE Access, vol. 10, pp. 10219–10237, 2022, doi: 10.1109/ACCESS.2022.3144425.F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation Forest,” in 2008 Eighth IEEE International Conference on Data Mining, IEEE, Dec. 2008, pp. 413–422. doi: 10.1109/ICDM.2008.17.F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation-Based Anomaly Detection,” ACM Trans Knowl Discov Data, vol. 6, no. 1, pp. 1–39, Mar. 2012, doi: 10.1145/2133360.2133363.T. Al-Shehari, M. Al-Razgan, T. Alfakih, R. A. Alsowail, and S. Pandiaraj, “Insider Threat Detection Model Using Anomaly-Based Isolation Forest Algorithm,” IEEE Access, vol. 11, pp. 118170–118185, 2023, doi: 10.1109/ACCESS.2023.3326750.M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF: identifying density-based local outliers,” ACM SIGMOD Record, vol. 29, no. 2, pp. 93–104, Jun. 2000, doi: 10.1145/335191.335388.Y. Peng et al., “Electricity Theft Detection in AMI Based on Clustering and Local Outlier Factor,” IEEE Access, vol. 9, pp. 107250–107259, 2021, doi: 10.1109/ACCESS.2021.3100980.S. Su et al., “An Efficient Density-Based Local Outlier Detection Approach for Scattered Data,” IEEE Access, vol. 7, pp. 1006–1020, 2019, doi: 10.1109/ACCESS.2018.2886197.S. Levikari, T. J. Kärkkäinen, C. Andersson, J. Tamminen, M. Nykyri, and P. Silventoinen, “Nondestructive Acoustic Testing of Ceramic Capacitors Using One-Class Support Vector Machine With Automated Hyperparameter Selection,” IEEE Access, vol. 8, pp. 226337–226351, 2020, doi: 10.1109/ACCESS.2020.3045830.B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson, “Estimating the Support of a High-Dimensional Distribution,” Neural Comput, vol. 13, no. 7, pp. 1443–1471, Jul. 2001, doi: 10.1162/089976601750264965.X. Tao, Y. Yu, L. Fu, J. Liu, and Y. Zhang, “An insider user authentication method based on improved temporal convolutional network,” High-Confidence Computing, vol. 3, no. 4, p. 100169, Dec. 2023, doi: 10.1016/j.hcc.2023.100169.J. Nie, Y. Dong, and R. Zuo, “Construction Land Information Extraction and Expansion Analysis of Xiaogan City Using One-Class Support Vector Machine,” IEEE J Sel Top Appl Earth Obs Remote Sens, vol. 15, pp. 3519–3532, 2022, doi: 10.1109/JSTARS.2022.3170495.I. M. Nazar and M. Aksoy, “Radio Frequency Interference Detection in Passive Microwave Remote Sensing Using One-Class Support Vector Machines,” IEEE J Sel Top Appl Earth Obs Remote Sens, vol. 16, pp. 6682–6692, 2023, doi: 10.1109/JSTARS.2023.3293393.Z. Wang and Y.-J. Cha, “Unsupervised deep learning approach using a deep auto-encoder with a one-class support vector machine to detect damage,” Struct Health Monit, vol. 20, no. 1, pp. 406–425, Jan. 2021, doi: 10.1177/1475921720934051.J. Pang, X. Pu, and C. Li, “A Hybrid Algorithm Incorporating Vector Quantization and One-Class Support Vector Machine for Industrial Anomaly Detection,” IEEE Trans Industr Inform, vol. 18, no. 12, pp. 8786–8796, Dec. 2022, doi: 10.1109/TII.2022.3145834.T. Salman, A. Ghubaish, D. Unal, and R. Jain, “Safety Score as an Evaluation Metric for Machine Learning Models of Security Applications,” IEEE Networking Letters, vol. 2, no. 4, pp. 207–211, Dec. 2020, doi: 10.1109/LNET.2020.3016583.G. De Carvalho Bertoli et al., “An End-to-End Framework for Machine Learning-Based Network Intrusion Detection System,” IEEE Access, vol. 9, pp. 106790–106805, 2021, doi: 10.1109/ACCESS.2021.3101188.R. Boutaba et al., “A comprehensive survey on machine learning for networking: evolution, applications and research opportunities,” Journal of Internet Services and Applications, vol. 9, no. 1, p. 16, Dec. 2018, doi: 10.1186/s13174-018-0087-2.A. Galal and X. Hesselbach, “Machine Learning Models for Traffic Classification in Electromagnetic Nano-Networks,” IEEE Access, vol. 10, pp. 38089–38103, 2022, doi: 10.1109/ACCESS.2022.3165013.Y. Shuai, C. Jiang, X. Su, C. Yuan, and X. Huang, “A Hybrid Clustering Model for Analyzing COVID-19 National Prevention and Control Strategy,” in 2020 IEEE 6th International Conference on Control Science and Systems Engineering (ICCSSE), IEEE, Jul. 2020, pp. 68–71. doi: 10.1109/ICCSSE50399.2020.9171941.A. Razzaque and D. A. Badholia, “PCA based feature extraction and MPSO based feature selection for gene expression microarray medical data classification,” Measurement: Sensors, vol. 31, p. 100945, Feb. 2024, doi: 10.1016/j.measen.2023.100945.PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repository.ucc.edu.co/bitstreams/ab6aeb6a-8e66-4651-a667-e7584392b3de/download4460e5956bc1d1639be9ae6146a50347MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/02799b78-573c-42cf-918c-cdbdf37ad416/download3bce4f7ab09dfc588f126e1e36e98a45MD52ORIGINAL2024_Trabajo_Grado.pdf2024_Trabajo_Grado.pdfapplication/pdf1415351https://repository.ucc.edu.co/bitstreams/00ddd8e0-f102-4160-bbd2-e867a72fde8b/downloadbb4f38ebfa8442b2a91b0d1080ef2fb6MD532024_Licencia_Uso.pdf2024_Licencia_Uso.pdfapplication/pdf194996https://repository.ucc.edu.co/bitstreams/aa564a27-d67e-4170-bf44-d22905437594/downloadf124cff003ed09e0b18b0638067ac72aMD542024_Acta_Sustentacion.pdf2024_Acta_Sustentacion.pdfapplication/pdf215466https://repository.ucc.edu.co/bitstreams/7f70a2bd-240e-47eb-bb96-76eb3fb66231/download6cf584083c69145a588d3b39eb705718MD55TEXT2024_Trabajo_Grado.pdf.txt2024_Trabajo_Grado.pdf.txtExtracted texttext/plain102257https://repository.ucc.edu.co/bitstreams/9b0be545-6475-44dc-9698-8705e6266c0e/download1890d5b4f7ab1bc42e6b1a0bf609455aMD562024_Licencia_Uso.pdf.txt2024_Licencia_Uso.pdf.txtExtracted texttext/plain5813https://repository.ucc.edu.co/bitstreams/19763fb6-f214-4ace-bbac-4388a61b2cbb/downloadb62f25285740eec46e08413587393bcbMD582024_Acta_Sustentacion.pdf.txt2024_Acta_Sustentacion.pdf.txtExtracted texttext/plain1126https://repository.ucc.edu.co/bitstreams/776464ba-8872-405d-99e9-057f093468a5/download9eeef7f53c5dba08569c7c4a36604ba1MD510THUMBNAIL2024_Trabajo_Grado.pdf.jpg2024_Trabajo_Grado.pdf.jpgGenerated Thumbnailimage/jpeg6187https://repository.ucc.edu.co/bitstreams/971c6dce-80f8-4e1e-ba63-124b16794bea/downloada073e5745e2f349fde8e8062bb648796MD572024_Licencia_Uso.pdf.jpg2024_Licencia_Uso.pdf.jpgGenerated Thumbnailimage/jpeg12941https://repository.ucc.edu.co/bitstreams/401b6778-ece9-4fbe-8521-b99e6ecd3087/download3e68f1af33e05700c0b41bb815cb228fMD592024_Acta_Sustentacion.pdf.jpg2024_Acta_Sustentacion.pdf.jpgGenerated Thumbnailimage/jpeg10432https://repository.ucc.edu.co/bitstreams/5f189b56-3272-4050-a378-8cf6b73fcacf/download8d32265883674b08161a6e0dea4f84a5MD51120.500.12494/56439oai:repository.ucc.edu.co:20.500.12494/564392024-07-23 03:04:02.785https://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalrestrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=