Facial thermal and blood perfusion patterns of human emotions: Proof-of-Concept
El objetivo del trabajo fue realizar un estudio preliminar de prueba de concepto para evaluar emociones mediante imágenes termográficas y algoritmo de perfusión sanguínea; las imágenes se obtuvieron para la línea de base y valencia positiva y negativa según el protocolo de la base de datos de imágen...
- Autores:
-
Aristizábal Tique, Víctor Hugo
Henao Pérez, Marcela
López Medina, Diana Carolina
Zambrano Cruz, Renato
Díaz Londoño, Gloria
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/52514
- Acceso en línea:
- https://doi.org/10.1016/j.jtherbio.2023.103464
https://hdl.handle.net/20.500.12494/52514
- Palabra clave:
- Imagen térmica infrarroja
Psicofisiología
Arousal
Valencia emocional
Prueba de concepto
Thermal infrared imaging
Psychophysiology
Arousal
Emotional valence
Proof of concept
- Rights
- openAccess
- License
- Atribución – No comercial – Sin Derivar
id |
COOPER2_2cea809097c7ac0f02070e3804a674c9 |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/52514 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.none.fl_str_mv |
Facial thermal and blood perfusion patterns of human emotions: Proof-of-Concept |
title |
Facial thermal and blood perfusion patterns of human emotions: Proof-of-Concept |
spellingShingle |
Facial thermal and blood perfusion patterns of human emotions: Proof-of-Concept Imagen térmica infrarroja Psicofisiología Arousal Valencia emocional Prueba de concepto Thermal infrared imaging Psychophysiology Arousal Emotional valence Proof of concept |
title_short |
Facial thermal and blood perfusion patterns of human emotions: Proof-of-Concept |
title_full |
Facial thermal and blood perfusion patterns of human emotions: Proof-of-Concept |
title_fullStr |
Facial thermal and blood perfusion patterns of human emotions: Proof-of-Concept |
title_full_unstemmed |
Facial thermal and blood perfusion patterns of human emotions: Proof-of-Concept |
title_sort |
Facial thermal and blood perfusion patterns of human emotions: Proof-of-Concept |
dc.creator.fl_str_mv |
Aristizábal Tique, Víctor Hugo Henao Pérez, Marcela López Medina, Diana Carolina Zambrano Cruz, Renato Díaz Londoño, Gloria |
dc.contributor.advisor.none.fl_str_mv |
Journal of Thermal Biology |
dc.contributor.author.none.fl_str_mv |
Aristizábal Tique, Víctor Hugo Henao Pérez, Marcela López Medina, Diana Carolina Zambrano Cruz, Renato Díaz Londoño, Gloria |
dc.subject.none.fl_str_mv |
Imagen térmica infrarroja Psicofisiología Arousal Valencia emocional Prueba de concepto |
topic |
Imagen térmica infrarroja Psicofisiología Arousal Valencia emocional Prueba de concepto Thermal infrared imaging Psychophysiology Arousal Emotional valence Proof of concept |
dc.subject.other.none.fl_str_mv |
Thermal infrared imaging Psychophysiology Arousal Emotional valence Proof of concept |
description |
El objetivo del trabajo fue realizar un estudio preliminar de prueba de concepto para evaluar emociones mediante imágenes termográficas y algoritmo de perfusión sanguínea; las imágenes se obtuvieron para la línea de base y valencia positiva y negativa según el protocolo de la base de datos de imágenes afectivas de Ginebra. El El algoritmo de perfusión sanguínea se basa en la ecuación de transporte de calor. La temperatura media y la sangre. Se determinó perfusión en frente, ojos periorbitarios, mejillas, nariz y labio superior. Absoluto y se calcularon las diferencias porcentuales entre las valencias y la línea de base. Para valencia negativa, un disminución de la temperatura y la perfusión sanguínea se observó en los ROI, y el efecto fue mayor en el lado izquierdo que en el lado derecho. En valencia positiva, la temperatura y la perfusión sanguínea aumentaron en algunos casos, mostrando un patrón complejo. La temperatura y perfusión de la nariz se redujo para ambas valencias, lo cual es indicativo de la dimensión de excitación. Se encontró que las imágenes de perfusión sanguínea tenían un mayor contraste; las diferencias porcentuales en las imágenes de perfusión sanguínea son mayores que las obtenidas en termografía imágenes Además, las imágenes de perfusión sanguínea y la respuesta vasomotora son consistentes, por lo tanto, pueden ser un mejor biomarcador que el análisis termográfico en la identificación de emociones. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-08-22T20:17:07Z |
dc.date.available.none.fl_str_mv |
2023-08-22T20:17:07Z |
dc.date.issued.none.fl_str_mv |
2023-01-10 |
dc.type.none.fl_str_mv |
Artículos Científicos |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
03064565 |
dc.identifier.uri.none.fl_str_mv |
https://doi.org/10.1016/j.jtherbio.2023.103464 https://hdl.handle.net/20.500.12494/52514 |
dc.identifier.bibliographicCitation.none.fl_str_mv |
Aristizabal-Tique, V. H., Henao-Pérez, M., López-Medina, D. C., Zambrano-Cruz, R., & Díaz-Londoño, G. (2023). Facial thermal and blood perfusion patterns of human emotions: Proof-of-Concept. Journal of Thermal Biology, 112, 103464. |
identifier_str_mv |
03064565 Aristizabal-Tique, V. H., Henao-Pérez, M., López-Medina, D. C., Zambrano-Cruz, R., & Díaz-Londoño, G. (2023). Facial thermal and blood perfusion patterns of human emotions: Proof-of-Concept. Journal of Thermal Biology, 112, 103464. |
url |
https://doi.org/10.1016/j.jtherbio.2023.103464 https://hdl.handle.net/20.500.12494/52514 |
dc.relation.isversionof.none.fl_str_mv |
https://www.sciencedirect.com/science/article/abs/pii/S0306456523000050 |
dc.relation.ispartofjournal.none.fl_str_mv |
Journal of Thermal Biology |
dc.relation.references.none.fl_str_mv |
[1] P. J. Lang, “The emotion probe: Studies of motivation and attention.,” Am. Psychol., vol. 50, no. 5, pp. 372–385, 1995. [2] V. Kosonogov et al., “Facial thermal variations: A new marker of emotional arousal.,” PLoS One, vol. 12, no. 9, p. e0183592, 2017. [3] D. Redolar Ripoll, Neurociencia cognitiva. Quintanapalla, España: Editorial Médica Panamericana, 2013. [4] F. Palmero and F. Martinez Sánchez, Motivación y Emoción. España: McGraw-Hill Interamericana de España S.L., 2008. [5] J. T. Cacioppo, G. G. Berntson, J. T. Larsen, K. M. Poehlmann, and T. A. Ito, “The psychophysiology of Emotion,” in Handbook of emotion, 2nd ed., New York: Guilford Press, 2000, pp. 173–191. [6] P. Ekman, “What Scientists Who Study Emotion Agree About.,” Perspect. Psychol. Sci., vol. 11, no. 1, pp. 31–4, Jan. 2016. [7] J. Posner, J. A. Russell, and B. S. Peterson, “The circumplex model of affect: An integrative approach to affective neuroscience, cognitive development, and psychopathology,” Dev. Psychopathol., vol. 17, no. 03, pp. 715–734, Sep. 2005. [8] H. L. Meiselman, Emotion Measurement. Elsevier Inc., 2016. [9] P. Ekman and W. V. Friesen, “Measuring facial movement,” Environ. Psychol. Nonverbal Behav., vol. 1, no. 1, pp. 56–75, 1976. [10] M. Lewis, J. M. Haviland-Jones, and L. F. Barrett, “Facial expressions of emotion,” in Handbook of Emotions, New York, USA: The Guilford Press, 2008, p. 864. [11] X. Navarro Acebes, “Fisiología del sistema nervioso autónomo,” Rev. Neurol., vol. 35, no. 06, p. 553, Sep. 2002. [12] G. Kearney, “Machine interpretation of emotion: Design of a memory-based expert system for interpreting facial expressions in terms of signaled emotions,” Cogn. Sci., vol. 17, no. 4, pp. 589–622, Dec. 1993. [13] N. Zeng, H. Zhang, B. Song, W. Liu, Y. Li, and A. M. Dobaie, “Facial expression recognition via learning deep sparse autoencoders,” Neurocomputing, vol. 273, pp. 643–649, Jan. 2018. [14] E. Salazar-López et al., “The mental and subjective skin: Emotion, empathy, feelings and thermography,” Conscious. Cogn., vol. 34, pp. 149–162, 2015. [15] S. Ioannou, V. Gallese, and A. Merla, “Thermal infrared imaging in psychophysiology: Potentialities and limits,” Psychophysiology, vol. 51, no. 10, pp. 951–963, Oct. 2014. [16] S. Jarlier et al., “Thermal analysis of facial muscles contractions,” IEEE Trans. Affect. Comput., vol. 2, no. 1, pp. 2–9, Jan. 2011. [17] J. Clay-Warner and D. T. Robinson, “Infrared Thermography as a Measure of Emotion Response,” Emot. Rev., vol. 7, no. 2, pp. 157–162, Apr. 2015. [18] D. T. Robinson et al., “Toward an Unobtrusive Measure of Emotion During Interaction: Thermal Imaging Techniques,” 2012, pp. 225–266. [19] P. Marqués-Sánchez, C. Liébana-Presa, J. A. Benítez-Andrades, R. Gundín-Gallego, L. Álvarez-Barrio, and P. Rodríguez-Gonzálvez, “Thermal infrared imaging to evaluate emotional competences in nursing students: A first approach through a case study,” Sensors (Switzerland), vol. 20, no. 9, May 2020. [20] K. Kuraoka and K. Nakamura, “The use of nasal skin temperature measurements in studying emotion in macaque monkeys,” Physiol. Behav., vol. 102, no. 3–4, pp. 347–355, Mar. 2011. [21] R. Nakanishi and K. Imai-Matsumura, “Facial skin temperature decreases in infants with joyful expression,” Infant Behav. Dev., vol. 31, no. 1, pp. 137–144, Jan. 2008. [22] B. R. Nhan and T. Chau, “Classifying affective states using thermal infrared imaging of the human face,” IEEE Trans. Biomed. Eng., vol. 57, no. 4, pp. 979–987, 2010. [23] I. A. Cruz-Albarran, J. P. Benitez-Rangel, R. A. Osornio-Rios, and L. A. Morales-Hernandez, “Human emotions detection based on a smart-thermal system of thermographic images,” Infrared Phys. Technol., vol. 81, no. 81, pp. 250–261, Mar. 2017. [24] M. M. Khan, R. D. Ward, and M. Ingleby, “Classifying pretended and evoked facial expressions of positive and negative affective states using infrared measurement of skin temperature,” ACM Trans. Appl. Percept., vol. 6, no. 1, Feb. 2009. [25] P. Shen, S. Wang, and Z. Liu, “Facial expression recognition from infrared thermal videos,” in Advances in Intelligent Systems and Computing, 2013, vol. 194 AISC, no. VOL. 2, pp. 323–333. [26] K. Matsukawa, K. Endo, R. Asahara, M. Yoshikawa, S. Kusunoki, and T. Ishida, “Prefrontal oxygenation correlates to the responses in facial skin blood flows during exposure to pleasantly charged movie,” Physiol. Rep., vol. 5, no. 21, Nov. 2017. [27] S. Wu, W. Lin, and S. Xie, “Skin heat transfer model of facial thermograms and its application in face recognition,” Pattern Recognit., vol. 41, no. 8, pp. 2718–2729, Aug. 2008. [28] Z. H. Xie, S. Q. Wu, C. Q. He, Z. J. Fang, and J. Yang, “Infrared face recognition based on blood perfusion using bio-heat transfer model,” in 2010 Chinese Conference on Pattern Recognition, CCPR 2010 - Proceedings, 2010, pp. 239–242. [29] Z. Xie and G. Liu, “Blood perfusion construction for infrared face recognition based on bio-heat transfer,” in Bio-Medical Materials and Engineering, 2014, vol. 24, no. 6, pp. 2733–2742. [30] A. Sancen-Plaza, L. M. Contreras-Medina, A. I. Barranco-Gutiérrez, C. Villaseñor-Mora, J. J. Martínez-Nolasco, and J. A. Padilla-Medina, “Facial Recognition for Drunk People Using Thermal Imaging,” 2020. [31] S. Wu, Z. Gu, A. C. Kia, and H. O. Sim, “Infrared facial recognition using modified blood perfusion,” in 2007 6th International Conference on Information, Communications and Signal Processing, ICICS, 2007. [32] M. H. Abd Latif, H. Md. Yusof, S. . Sidek, and N. Rusli, “Thermal imaging based affective state recognition,” 2015 IEEE Int. Symp. Robot. Intell. Sensors, pp. 214–219, 2016. [33] C. Puri, L. Olson, I. Pavlidis, J. Levine, and J. Starren, “Stresscam: Non-contact measurement of users’ emotional states through thermal imaging,” Conf. Hum. Factors Comput. Syst. - Proc., pp. 1725–1728, 2005. [34] A. Cardone, D., Pinti, P., & Merla, “Thermal infrared imaging-based computational psychophysiology for psychometrics.,” Comput. Math. Methods Med., no. 2015, p. 8, 2015. [35] A. Merla and G. L. Romani, “Functional infrared imaging in medicine: a quantitative diagnostic approach,” in Engineering in Medicine and Biology Society, 2006. EMBS’06. 28th Annual International Conference of the IEEE, 2006, pp. 224–227. [36] A. Basu, A. Dasgupta, A. Thyagharajan, A. Routray, R. Guha, and P. Mitra, “A Portable Personality Recognizer Based on Affective State Classification Using Spectral Fusion of Features,” IEEE Trans. Affect. Comput., vol. 9, no. 3, pp. 330–342, 2018. [37] A. Filippini, C., Perpetuini, D., Cardone, D., Chiarelli, A. M., & Merla, “Thermal infrared imaging-based affective computing and its application to facilitate human robot interaction: a review.,” Appl. Sci., vol. 10(8), no. 2924, p. 23, 2020. [38] E. S. Dan-Glauser and K. R. Scherer, “The Geneva affective picture database (GAPED): a new 730-picture database focusing on valence and normative significance,” Behav. Res. Methods, vol. 43, no. 2, pp. 468–477, Jun. 2011. [39] J. C. B. Marins, D. Formenti, C. M. A. Costa, A. de Andrade Fernandes, and M. Sillero-Quintana, “Circadian and gender differences in skin temperature in militaries by thermography,” Infrared Phys. Technol., vol. 71, pp. 322–328, 2015. [40] I. Fernández-Cuevas et al., “Classification of factors influencing the use of infrared thermography in humans: A review,” Infrared Phys. Technol., vol. 71, pp. 28–55, 2015. [41] M. C. Henao-Higuita, A. Benítez-Mesa, H. Fandiño-Toro, A. Guerrero-Peña, and G. Díaz-Londoño, “Establishing the thermal patterns of healthy people from Medellín, Colombia ☆,” Infrared Phys. Technol., vol. 95, pp. 203–2012, 2018. [42] A. C. Guyton and E. H. Hall, Tratado de Fisiología médica, 12th ed. Elsevier, 2012. [43] Y. Houdas and E. F. J. Ring, “Principles of Heat Transfer,” in Human Body Temperature, Springer US, 1982, pp. 9–32. [44] H. H. Pennes, “Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm,” J. Appl. Physiol., vol. 1, no. 2, pp. 93–122, Aug. 1948. [45] R. Zajonc, “Emotion and facial efference: a theory reclaimed,” Science (80-. )., vol. 228, no. 4695, pp. 15–21, Apr. 1985. [46] D. N. McIntosh R. B. Zajonc Peter S. V, “Facial Movement, Breathing, Temperature, and Affect: Implications of the Vascular Theory of Emotional Efference,” Cogn. Emot., vol. 11, no. 2, pp. 171–196, Mar. 1997. [47] P. M. Niedenthal, M. Augustinova, and M. Rychlowska, “Body and Mind: Zajonc’s (Re)introduction of the Motor System to Emotion and Cognition,” Emot. Rev., vol. 2, no. 4, pp. 340–347, Oct. 2010. [48] M. Deckert, M. Schmoeger, E. Auff, and U. Willinger, “Subjective emotional arousal: an explorative study on the role of gender, age, intensity, emotion regulation difficulties, depression and anxiety symptoms, and meta-emotion,” Psychol. Res., vol. 84, no. 7, pp. 1857–1876, Oct. 2020. [49] R. Adolphs, J. A. Russell, and D. Tranel, “A Role for the Human Amygdala in Recognizing Emotional Arousal From Unpleasant Stimuli,” Psychol. Sci., vol. 10, no. 2, pp. 167–171, Mar. 1999. [50] L. L. Carstensen and M. DeLiema, “The positivity effect: a negativity bias in youth fades with age,” Curr. Opin. Behav. Sci., vol. 19, pp. 7–12, Feb. 2018. [51] A. E. Reed, L. Chan, and J. A. Mikels, “Meta-analysis of the age-related positivity effect: Age differences in preferences for positive over negative information.,” Psychol. Aging, vol. 29, no. 1, pp. 1–15, Mar. 2014. [52] R. D. Ghafur, G. Suri, and J. J. Gross, “Emotion regulation choice: the role of orienting attention and action readiness,” Curr. Opin. Behav. Sci., vol. 19, pp. 31–35, Feb. 2018. [53] T. Gruber, “Oscillatory Brain Activity Dissociates between Associative Stimulus Content in a Repetition Priming Task in the Human EEG,” Cereb. Cortex, vol. 15, no. 1, pp. 109–116, Jul. 2004. [54] A. Lindell, “Chapter 9 - Lateralization of the expression of facial emotion in humans,” in Cerebral Lateralization and Cognition: Evolutionary and Developmental Investigations of Behavioral Biases, Progress in brain research: Vol. 238, Elsevier Academic Press., 2018, pp. 249–270. [55] M. Benedičič, A. Bernjak, A. Stefanovska, and R. Bošnjak, “Continuous wavelet transform of laser-Doppler signals from facial microcirculation reveals vasomotion asymmetry,” Microvasc. Res., vol. 74, no. 1, pp. 45–50, Jul. 2007. [56] K. Matsukawa, K. Endo, K. Ishii, M. Ito, and N. Liang, “Facial skin blood flow responses during exposures to emotionally charged movies,” J. Physiol. Sci., vol. 68, no. 2, pp. 175–190, Mar. 2018. [57] S. Cotofana et al., “Can smiling influence the blood flow in the facial vein?—An experimental study,” J. Cosmet. Dermatol., vol. 19, no. 2, pp. 321–327, Feb. 2020. [58] J. A. Coan and J. J. . Allen, “Frontal EEG asymmetry as a moderator and mediator of emotion,” Biol. Psychol., vol. 67, no. 1–2, pp. 7–50, Oct. 2004. [59] S. J. Reznik and J. J. B. Allen, “Frontal asymmetry as a mediator and moderator of emotion: An updated review,” Psychophysiology, vol. 55, no. 1, p. e12965, Jan. 2018. [60] J. J. B. Allen, P. M. Keune, M. Schönenberg, and R. Nusslock, “Frontal EEG alpha asymmetry and emotion: From neural underpinnings and methodological considerations to psychopathology and social cognition,” Psychophysiology, vol. 55, no. 1, p. e13028, Jan. 2018. [61] E. D. Klonsky, S. E. Victor, A. S. Hibbert, and G. Hajcak, “The Multidimensional Emotion Questionnaire (MEQ): Rationale and Initial Psychometric Properties,” J. Psychopathol. Behav. Assess., vol. 41, no. 3, pp. 409–424, Sep. 2019. [62] G. Sarısoy-Aksüt and T. Gençöz, “Psychometric properties of the Interpersonal Emotion Regulation Questionnaire (IERQ) in Turkish samples,” Curr. Psychol., Jan. 2020. [63] C. Salavera Bordás and P. Usán Supervía, “Exploración de la dimensionalidad y las propiedades psicométricas de la Escala de Inteligencia Emocional -EIS-,” CES Psicol., vol. 12, no. 3, pp. 50–66, Dec. 2019. [64] S. Urbina, Essentials of Psychological Testing, 2nd ed. John Wiley & Sons, Ltd, 2014. [65] L. S. F. Israel and F. D. Schonbrodt, “Emotion Prediction with Weighted Appraisal Models - Validating a Psychological Theory of Affect,” IEEE Trans. Affect. Comput., pp. 1–1, 2019. [66] L. S. F. Israel and F. D. Schönbrodt, “Predicting affective appraisals from facial expressions and physiology using machine learning,” Behav. Res. Methods, Aug. 2020. [67] Y. Suzuki, M. Kobayashi, K. Kuwabara, M. Kawabe, C. Kikuchi, and M. Fukuda, “Skin temperature responses to cold stress in patients with severe motor and intellectual disabilities,” Brain Dev., vol. 35, no. 3, pp. 265–269, Mar. 2013. [68] K. N. Anderson, C. Di Maria, and J. Allen, “Novel assessment of microvascular changes in idiopathic restless legs syndrome (Willis-Ekbom disease),” J. Sleep Res., vol. 22, no. 3, pp. 315–321, Jun. 2013. [69] M. Chudecka and A. Lubkowska, “Thermal Imaging of Body Surface Temperature Distribution in Women with Anorexia Nervosa,” Eur. Eat. Disord. Rev., vol. 24, no. 1, pp. 57–61, Jan. 2016. [70] J. J. Maller, S. S. George, R. P. Viswanathan, P. B. Fitzgerald, and P. Junor, “Using thermographic cameras to investigate eye temperature and clinical severity in depression,” J. Biomed. Opt., vol. 21, no. 2, p. 026001, Feb. 2016. [71] M. Kopaczka, J. Schock, J. Nestler, K. Kielholz, and D. Merhof, “A combined modular system for face detection, head pose estimation, face tracking and emotion recognition in thermal infrared images,” in IEEE International Conference on Imaging Systems and Techniques (IST)., 2018, p. 6. [72] S. Sonkusare et al., “Detecting changes in facial temperature induced by a sudden auditory stimulus based on deep learning-assisted face tracking,” Sci. Rep., vol. 9, no. 4729, p. 11, Dec. 2019. |
dc.rights.license.none.fl_str_mv |
Atribución – No comercial – Sin Derivar |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución – No comercial – Sin Derivar http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
103464 |
dc.coverage.temporal.none.fl_str_mv |
112 |
dc.publisher.none.fl_str_mv |
Universidad Cooperativa de Colombia |
dc.publisher.program.none.fl_str_mv |
Desarrollo de sofware |
dc.publisher.place.none.fl_str_mv |
Medellín |
publisher.none.fl_str_mv |
Universidad Cooperativa de Colombia |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/8555e6e6-2bef-41d9-b1eb-4400ca12dd1d/download https://repository.ucc.edu.co/bitstreams/7bd53eae-c73d-4b5e-bc44-4e2cdf6097e4/download https://repository.ucc.edu.co/bitstreams/98f2a8e8-5aad-41a4-acd4-67893f8c9155/download https://repository.ucc.edu.co/bitstreams/34d16d0b-0123-4cad-b95a-9b019765bd90/download |
bitstream.checksum.fl_str_mv |
120d6a09874d5671ef4a06dbfcea7300 3bce4f7ab09dfc588f126e1e36e98a45 2d3df035c737b95cecd9e6647d0a2388 17a4b00dc0184b20da2dfd1350f97b5d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1811565128355676160 |
spelling |
Journal of Thermal BiologyAristizábal Tique, Víctor HugoHenao Pérez, MarcelaLópez Medina, Diana CarolinaZambrano Cruz, RenatoDíaz Londoño, Gloria1122023-08-22T20:17:07Z2023-08-22T20:17:07Z2023-01-1003064565https://doi.org/10.1016/j.jtherbio.2023.103464https://hdl.handle.net/20.500.12494/52514Aristizabal-Tique, V. H., Henao-Pérez, M., López-Medina, D. C., Zambrano-Cruz, R., & Díaz-Londoño, G. (2023). Facial thermal and blood perfusion patterns of human emotions: Proof-of-Concept. Journal of Thermal Biology, 112, 103464.El objetivo del trabajo fue realizar un estudio preliminar de prueba de concepto para evaluar emociones mediante imágenes termográficas y algoritmo de perfusión sanguínea; las imágenes se obtuvieron para la línea de base y valencia positiva y negativa según el protocolo de la base de datos de imágenes afectivas de Ginebra. El El algoritmo de perfusión sanguínea se basa en la ecuación de transporte de calor. La temperatura media y la sangre. Se determinó perfusión en frente, ojos periorbitarios, mejillas, nariz y labio superior. Absoluto y se calcularon las diferencias porcentuales entre las valencias y la línea de base. Para valencia negativa, un disminución de la temperatura y la perfusión sanguínea se observó en los ROI, y el efecto fue mayor en el lado izquierdo que en el lado derecho. En valencia positiva, la temperatura y la perfusión sanguínea aumentaron en algunos casos, mostrando un patrón complejo. La temperatura y perfusión de la nariz se redujo para ambas valencias, lo cual es indicativo de la dimensión de excitación. Se encontró que las imágenes de perfusión sanguínea tenían un mayor contraste; las diferencias porcentuales en las imágenes de perfusión sanguínea son mayores que las obtenidas en termografía imágenes Además, las imágenes de perfusión sanguínea y la respuesta vasomotora son consistentes, por lo tanto, pueden ser un mejor biomarcador que el análisis termográfico en la identificación de emociones.The objective of the work was to realize a preliminary study of proof-of-concept to evaluate emotions using thermographic images and blood perfusion algorithm; the images were obtained for baseline and positive and negative valence according to the protocol of the Geneva Affective Picture Database. The blood perfusion algorithm is based on the heat transport equation. The average temperature and blood perfusion in forehead, periorbital eyes, cheeks, nose and upper lips were determined. Absolute and percentage differences between the valences and the baseline were calculated. For negative valence, a decrease in temperature and blood perfusion was observed in the ROIs, and the effect was greater on the left side than on the right side. In positive valence, the temperature and blood perfusion increased in some cases, showing a complex pattern. The temperature and perfusion of the nose was reduced for both valences, which is indicative of the arousal dimension. The blood perfusion images were found to be greater contrast; the percentage differences in the blood perfusion images are greater than those obtained in thermographic images. Moreover, the blood perfusion images, and vasomotor answer are consistent, therefore, they can be a better biomarker than thermographic analysis in identifying emotions.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000448249https://orcid.org/0000-0002-7880-5883https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000005961victor.aristizabalt@campusucc.edu.cohttps://scholar.google.es/citations?user=EbGraxIAAAAJ&hl=es103464Universidad Cooperativa de ColombiaDesarrollo de sofwareMedellínhttps://www.sciencedirect.com/science/article/abs/pii/S0306456523000050Journal of Thermal Biology[1] P. J. Lang, “The emotion probe: Studies of motivation and attention.,” Am. Psychol., vol. 50, no. 5, pp. 372–385, 1995. [2] V. Kosonogov et al., “Facial thermal variations: A new marker of emotional arousal.,” PLoS One, vol. 12, no. 9, p. e0183592, 2017. [3] D. Redolar Ripoll, Neurociencia cognitiva. Quintanapalla, España: Editorial Médica Panamericana, 2013. [4] F. Palmero and F. Martinez Sánchez, Motivación y Emoción. España: McGraw-Hill Interamericana de España S.L., 2008. [5] J. T. Cacioppo, G. G. Berntson, J. T. Larsen, K. M. Poehlmann, and T. A. Ito, “The psychophysiology of Emotion,” in Handbook of emotion, 2nd ed., New York: Guilford Press, 2000, pp. 173–191. [6] P. Ekman, “What Scientists Who Study Emotion Agree About.,” Perspect. Psychol. Sci., vol. 11, no. 1, pp. 31–4, Jan. 2016. [7] J. Posner, J. A. Russell, and B. S. Peterson, “The circumplex model of affect: An integrative approach to affective neuroscience, cognitive development, and psychopathology,” Dev. Psychopathol., vol. 17, no. 03, pp. 715–734, Sep. 2005. [8] H. L. Meiselman, Emotion Measurement. Elsevier Inc., 2016. [9] P. Ekman and W. V. Friesen, “Measuring facial movement,” Environ. Psychol. Nonverbal Behav., vol. 1, no. 1, pp. 56–75, 1976. [10] M. Lewis, J. M. Haviland-Jones, and L. F. Barrett, “Facial expressions of emotion,” in Handbook of Emotions, New York, USA: The Guilford Press, 2008, p. 864. [11] X. Navarro Acebes, “Fisiología del sistema nervioso autónomo,” Rev. Neurol., vol. 35, no. 06, p. 553, Sep. 2002. [12] G. Kearney, “Machine interpretation of emotion: Design of a memory-based expert system for interpreting facial expressions in terms of signaled emotions,” Cogn. Sci., vol. 17, no. 4, pp. 589–622, Dec. 1993. [13] N. Zeng, H. Zhang, B. Song, W. Liu, Y. Li, and A. M. Dobaie, “Facial expression recognition via learning deep sparse autoencoders,” Neurocomputing, vol. 273, pp. 643–649, Jan. 2018. [14] E. Salazar-López et al., “The mental and subjective skin: Emotion, empathy, feelings and thermography,” Conscious. Cogn., vol. 34, pp. 149–162, 2015. [15] S. Ioannou, V. Gallese, and A. Merla, “Thermal infrared imaging in psychophysiology: Potentialities and limits,” Psychophysiology, vol. 51, no. 10, pp. 951–963, Oct. 2014. [16] S. Jarlier et al., “Thermal analysis of facial muscles contractions,” IEEE Trans. Affect. Comput., vol. 2, no. 1, pp. 2–9, Jan. 2011. [17] J. Clay-Warner and D. T. Robinson, “Infrared Thermography as a Measure of Emotion Response,” Emot. Rev., vol. 7, no. 2, pp. 157–162, Apr. 2015. [18] D. T. Robinson et al., “Toward an Unobtrusive Measure of Emotion During Interaction: Thermal Imaging Techniques,” 2012, pp. 225–266. [19] P. Marqués-Sánchez, C. Liébana-Presa, J. A. Benítez-Andrades, R. Gundín-Gallego, L. Álvarez-Barrio, and P. Rodríguez-Gonzálvez, “Thermal infrared imaging to evaluate emotional competences in nursing students: A first approach through a case study,” Sensors (Switzerland), vol. 20, no. 9, May 2020. [20] K. Kuraoka and K. Nakamura, “The use of nasal skin temperature measurements in studying emotion in macaque monkeys,” Physiol. Behav., vol. 102, no. 3–4, pp. 347–355, Mar. 2011. [21] R. Nakanishi and K. Imai-Matsumura, “Facial skin temperature decreases in infants with joyful expression,” Infant Behav. Dev., vol. 31, no. 1, pp. 137–144, Jan. 2008. [22] B. R. Nhan and T. Chau, “Classifying affective states using thermal infrared imaging of the human face,” IEEE Trans. Biomed. Eng., vol. 57, no. 4, pp. 979–987, 2010. [23] I. A. Cruz-Albarran, J. P. Benitez-Rangel, R. A. Osornio-Rios, and L. A. Morales-Hernandez, “Human emotions detection based on a smart-thermal system of thermographic images,” Infrared Phys. Technol., vol. 81, no. 81, pp. 250–261, Mar. 2017. [24] M. M. Khan, R. D. Ward, and M. Ingleby, “Classifying pretended and evoked facial expressions of positive and negative affective states using infrared measurement of skin temperature,” ACM Trans. Appl. Percept., vol. 6, no. 1, Feb. 2009. [25] P. Shen, S. Wang, and Z. Liu, “Facial expression recognition from infrared thermal videos,” in Advances in Intelligent Systems and Computing, 2013, vol. 194 AISC, no. VOL. 2, pp. 323–333. [26] K. Matsukawa, K. Endo, R. Asahara, M. Yoshikawa, S. Kusunoki, and T. Ishida, “Prefrontal oxygenation correlates to the responses in facial skin blood flows during exposure to pleasantly charged movie,” Physiol. Rep., vol. 5, no. 21, Nov. 2017. [27] S. Wu, W. Lin, and S. Xie, “Skin heat transfer model of facial thermograms and its application in face recognition,” Pattern Recognit., vol. 41, no. 8, pp. 2718–2729, Aug. 2008. [28] Z. H. Xie, S. Q. Wu, C. Q. He, Z. J. Fang, and J. Yang, “Infrared face recognition based on blood perfusion using bio-heat transfer model,” in 2010 Chinese Conference on Pattern Recognition, CCPR 2010 - Proceedings, 2010, pp. 239–242. [29] Z. Xie and G. Liu, “Blood perfusion construction for infrared face recognition based on bio-heat transfer,” in Bio-Medical Materials and Engineering, 2014, vol. 24, no. 6, pp. 2733–2742. [30] A. Sancen-Plaza, L. M. Contreras-Medina, A. I. Barranco-Gutiérrez, C. Villaseñor-Mora, J. J. Martínez-Nolasco, and J. A. Padilla-Medina, “Facial Recognition for Drunk People Using Thermal Imaging,” 2020. [31] S. Wu, Z. Gu, A. C. Kia, and H. O. Sim, “Infrared facial recognition using modified blood perfusion,” in 2007 6th International Conference on Information, Communications and Signal Processing, ICICS, 2007. [32] M. H. Abd Latif, H. Md. Yusof, S. . Sidek, and N. Rusli, “Thermal imaging based affective state recognition,” 2015 IEEE Int. Symp. Robot. Intell. Sensors, pp. 214–219, 2016. [33] C. Puri, L. Olson, I. Pavlidis, J. Levine, and J. Starren, “Stresscam: Non-contact measurement of users’ emotional states through thermal imaging,” Conf. Hum. Factors Comput. Syst. - Proc., pp. 1725–1728, 2005. [34] A. Cardone, D., Pinti, P., & Merla, “Thermal infrared imaging-based computational psychophysiology for psychometrics.,” Comput. Math. Methods Med., no. 2015, p. 8, 2015. [35] A. Merla and G. L. Romani, “Functional infrared imaging in medicine: a quantitative diagnostic approach,” in Engineering in Medicine and Biology Society, 2006. EMBS’06. 28th Annual International Conference of the IEEE, 2006, pp. 224–227. [36] A. Basu, A. Dasgupta, A. Thyagharajan, A. Routray, R. Guha, and P. Mitra, “A Portable Personality Recognizer Based on Affective State Classification Using Spectral Fusion of Features,” IEEE Trans. Affect. Comput., vol. 9, no. 3, pp. 330–342, 2018. [37] A. Filippini, C., Perpetuini, D., Cardone, D., Chiarelli, A. M., & Merla, “Thermal infrared imaging-based affective computing and its application to facilitate human robot interaction: a review.,” Appl. Sci., vol. 10(8), no. 2924, p. 23, 2020. [38] E. S. Dan-Glauser and K. R. Scherer, “The Geneva affective picture database (GAPED): a new 730-picture database focusing on valence and normative significance,” Behav. Res. Methods, vol. 43, no. 2, pp. 468–477, Jun. 2011. [39] J. C. B. Marins, D. Formenti, C. M. A. Costa, A. de Andrade Fernandes, and M. Sillero-Quintana, “Circadian and gender differences in skin temperature in militaries by thermography,” Infrared Phys. Technol., vol. 71, pp. 322–328, 2015. [40] I. Fernández-Cuevas et al., “Classification of factors influencing the use of infrared thermography in humans: A review,” Infrared Phys. Technol., vol. 71, pp. 28–55, 2015. [41] M. C. Henao-Higuita, A. Benítez-Mesa, H. Fandiño-Toro, A. Guerrero-Peña, and G. Díaz-Londoño, “Establishing the thermal patterns of healthy people from Medellín, Colombia ☆,” Infrared Phys. Technol., vol. 95, pp. 203–2012, 2018. [42] A. C. Guyton and E. H. Hall, Tratado de Fisiología médica, 12th ed. Elsevier, 2012. [43] Y. Houdas and E. F. J. Ring, “Principles of Heat Transfer,” in Human Body Temperature, Springer US, 1982, pp. 9–32. [44] H. H. Pennes, “Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm,” J. Appl. Physiol., vol. 1, no. 2, pp. 93–122, Aug. 1948. [45] R. Zajonc, “Emotion and facial efference: a theory reclaimed,” Science (80-. )., vol. 228, no. 4695, pp. 15–21, Apr. 1985. [46] D. N. McIntosh R. B. Zajonc Peter S. V, “Facial Movement, Breathing, Temperature, and Affect: Implications of the Vascular Theory of Emotional Efference,” Cogn. Emot., vol. 11, no. 2, pp. 171–196, Mar. 1997. [47] P. M. Niedenthal, M. Augustinova, and M. Rychlowska, “Body and Mind: Zajonc’s (Re)introduction of the Motor System to Emotion and Cognition,” Emot. Rev., vol. 2, no. 4, pp. 340–347, Oct. 2010. [48] M. Deckert, M. Schmoeger, E. Auff, and U. Willinger, “Subjective emotional arousal: an explorative study on the role of gender, age, intensity, emotion regulation difficulties, depression and anxiety symptoms, and meta-emotion,” Psychol. Res., vol. 84, no. 7, pp. 1857–1876, Oct. 2020. [49] R. Adolphs, J. A. Russell, and D. Tranel, “A Role for the Human Amygdala in Recognizing Emotional Arousal From Unpleasant Stimuli,” Psychol. Sci., vol. 10, no. 2, pp. 167–171, Mar. 1999. [50] L. L. Carstensen and M. DeLiema, “The positivity effect: a negativity bias in youth fades with age,” Curr. Opin. Behav. Sci., vol. 19, pp. 7–12, Feb. 2018. [51] A. E. Reed, L. Chan, and J. A. Mikels, “Meta-analysis of the age-related positivity effect: Age differences in preferences for positive over negative information.,” Psychol. Aging, vol. 29, no. 1, pp. 1–15, Mar. 2014. [52] R. D. Ghafur, G. Suri, and J. J. Gross, “Emotion regulation choice: the role of orienting attention and action readiness,” Curr. Opin. Behav. Sci., vol. 19, pp. 31–35, Feb. 2018. [53] T. Gruber, “Oscillatory Brain Activity Dissociates between Associative Stimulus Content in a Repetition Priming Task in the Human EEG,” Cereb. Cortex, vol. 15, no. 1, pp. 109–116, Jul. 2004. [54] A. Lindell, “Chapter 9 - Lateralization of the expression of facial emotion in humans,” in Cerebral Lateralization and Cognition: Evolutionary and Developmental Investigations of Behavioral Biases, Progress in brain research: Vol. 238, Elsevier Academic Press., 2018, pp. 249–270. [55] M. Benedičič, A. Bernjak, A. Stefanovska, and R. Bošnjak, “Continuous wavelet transform of laser-Doppler signals from facial microcirculation reveals vasomotion asymmetry,” Microvasc. Res., vol. 74, no. 1, pp. 45–50, Jul. 2007. [56] K. Matsukawa, K. Endo, K. Ishii, M. Ito, and N. Liang, “Facial skin blood flow responses during exposures to emotionally charged movies,” J. Physiol. Sci., vol. 68, no. 2, pp. 175–190, Mar. 2018. [57] S. Cotofana et al., “Can smiling influence the blood flow in the facial vein?—An experimental study,” J. Cosmet. Dermatol., vol. 19, no. 2, pp. 321–327, Feb. 2020. [58] J. A. Coan and J. J. . Allen, “Frontal EEG asymmetry as a moderator and mediator of emotion,” Biol. Psychol., vol. 67, no. 1–2, pp. 7–50, Oct. 2004. [59] S. J. Reznik and J. J. B. Allen, “Frontal asymmetry as a mediator and moderator of emotion: An updated review,” Psychophysiology, vol. 55, no. 1, p. e12965, Jan. 2018. [60] J. J. B. Allen, P. M. Keune, M. Schönenberg, and R. Nusslock, “Frontal EEG alpha asymmetry and emotion: From neural underpinnings and methodological considerations to psychopathology and social cognition,” Psychophysiology, vol. 55, no. 1, p. e13028, Jan. 2018. [61] E. D. Klonsky, S. E. Victor, A. S. Hibbert, and G. Hajcak, “The Multidimensional Emotion Questionnaire (MEQ): Rationale and Initial Psychometric Properties,” J. Psychopathol. Behav. Assess., vol. 41, no. 3, pp. 409–424, Sep. 2019. [62] G. Sarısoy-Aksüt and T. Gençöz, “Psychometric properties of the Interpersonal Emotion Regulation Questionnaire (IERQ) in Turkish samples,” Curr. Psychol., Jan. 2020. [63] C. Salavera Bordás and P. Usán Supervía, “Exploración de la dimensionalidad y las propiedades psicométricas de la Escala de Inteligencia Emocional -EIS-,” CES Psicol., vol. 12, no. 3, pp. 50–66, Dec. 2019. [64] S. Urbina, Essentials of Psychological Testing, 2nd ed. John Wiley & Sons, Ltd, 2014. [65] L. S. F. Israel and F. D. Schonbrodt, “Emotion Prediction with Weighted Appraisal Models - Validating a Psychological Theory of Affect,” IEEE Trans. Affect. Comput., pp. 1–1, 2019. [66] L. S. F. Israel and F. D. Schönbrodt, “Predicting affective appraisals from facial expressions and physiology using machine learning,” Behav. Res. Methods, Aug. 2020. [67] Y. Suzuki, M. Kobayashi, K. Kuwabara, M. Kawabe, C. Kikuchi, and M. Fukuda, “Skin temperature responses to cold stress in patients with severe motor and intellectual disabilities,” Brain Dev., vol. 35, no. 3, pp. 265–269, Mar. 2013. [68] K. N. Anderson, C. Di Maria, and J. Allen, “Novel assessment of microvascular changes in idiopathic restless legs syndrome (Willis-Ekbom disease),” J. Sleep Res., vol. 22, no. 3, pp. 315–321, Jun. 2013. [69] M. Chudecka and A. Lubkowska, “Thermal Imaging of Body Surface Temperature Distribution in Women with Anorexia Nervosa,” Eur. Eat. Disord. Rev., vol. 24, no. 1, pp. 57–61, Jan. 2016. [70] J. J. Maller, S. S. George, R. P. Viswanathan, P. B. Fitzgerald, and P. Junor, “Using thermographic cameras to investigate eye temperature and clinical severity in depression,” J. Biomed. Opt., vol. 21, no. 2, p. 026001, Feb. 2016. [71] M. Kopaczka, J. Schock, J. Nestler, K. Kielholz, and D. Merhof, “A combined modular system for face detection, head pose estimation, face tracking and emotion recognition in thermal infrared images,” in IEEE International Conference on Imaging Systems and Techniques (IST)., 2018, p. 6. [72] S. Sonkusare et al., “Detecting changes in facial temperature induced by a sudden auditory stimulus based on deep learning-assisted face tracking,” Sci. Rep., vol. 9, no. 4729, p. 11, Dec. 2019.Imagen térmica infrarrojaPsicofisiologíaArousalValencia emocionalPrueba de conceptoThermal infrared imagingPsychophysiologyArousalEmotional valenceProof of conceptFacial thermal and blood perfusion patterns of human emotions: Proof-of-ConceptArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribución – No comercial – Sin Derivarinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINAL2023-Preprint_Facial_Thermal.pdf2023-Preprint_Facial_Thermal.pdfapplication/pdf1431403https://repository.ucc.edu.co/bitstreams/8555e6e6-2bef-41d9-b1eb-4400ca12dd1d/download120d6a09874d5671ef4a06dbfcea7300MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/7bd53eae-c73d-4b5e-bc44-4e2cdf6097e4/download3bce4f7ab09dfc588f126e1e36e98a45MD52TEXT2023-Preprint_Facial_Thermal.pdf.txt2023-Preprint_Facial_Thermal.pdf.txtExtracted texttext/plain76471https://repository.ucc.edu.co/bitstreams/98f2a8e8-5aad-41a4-acd4-67893f8c9155/download2d3df035c737b95cecd9e6647d0a2388MD53THUMBNAIL2023-Preprint_Facial_Thermal.pdf.jpg2023-Preprint_Facial_Thermal.pdf.jpgGenerated Thumbnailimage/jpeg13837https://repository.ucc.edu.co/bitstreams/34d16d0b-0123-4cad-b95a-9b019765bd90/download17a4b00dc0184b20da2dfd1350f97b5dMD5420.500.12494/52514oai:repository.ucc.edu.co:20.500.12494/525142024-08-10 21:02:49.368restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo= |