Thermodynamic analysis and preferential solvation of sulfamethazine in acetonitrile+ water cosolvent mixtures

This paper presents the solubility of sulfamethazine (SMT) in the acetonitrile (MeCN) + water (W) cosolvent system at nine temperatures. From the solubility experimental data, the thermodynamic functions of solution, mixing, and transfers are calculated and analyzed using the Perlovich graphical met...

Full description

Autores:
Blanco Márquez, Joaquín H
Caviedes Rubio, Diego Iván
Ortiz, Claudia Patricia
Cerquera, Néstor Enrique
Martínez, Fleming
Delgado, Daniel Ricardo
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/15545
Acceso en línea:
https://doi.org/10.1016/j.fluid.2019.112361
https://hdl.handle.net/20.500.12494/15545
Palabra clave:
Sulfamethazine
Solubility
Cosolvence
Acetonitrile
IKB
Sulfamethazine
Solubility
Cosolvence
Acetonitrile
IKB
Rights
closedAccess
License
Atribución – No comercial – Sin Derivar
id COOPER2_2b9266d1fa47d8f487b0ce5845447c8c
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/15545
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Thermodynamic analysis and preferential solvation of sulfamethazine in acetonitrile+ water cosolvent mixtures
title Thermodynamic analysis and preferential solvation of sulfamethazine in acetonitrile+ water cosolvent mixtures
spellingShingle Thermodynamic analysis and preferential solvation of sulfamethazine in acetonitrile+ water cosolvent mixtures
Sulfamethazine
Solubility
Cosolvence
Acetonitrile
IKB
Sulfamethazine
Solubility
Cosolvence
Acetonitrile
IKB
title_short Thermodynamic analysis and preferential solvation of sulfamethazine in acetonitrile+ water cosolvent mixtures
title_full Thermodynamic analysis and preferential solvation of sulfamethazine in acetonitrile+ water cosolvent mixtures
title_fullStr Thermodynamic analysis and preferential solvation of sulfamethazine in acetonitrile+ water cosolvent mixtures
title_full_unstemmed Thermodynamic analysis and preferential solvation of sulfamethazine in acetonitrile+ water cosolvent mixtures
title_sort Thermodynamic analysis and preferential solvation of sulfamethazine in acetonitrile+ water cosolvent mixtures
dc.creator.fl_str_mv Blanco Márquez, Joaquín H
Caviedes Rubio, Diego Iván
Ortiz, Claudia Patricia
Cerquera, Néstor Enrique
Martínez, Fleming
Delgado, Daniel Ricardo
dc.contributor.author.none.fl_str_mv Blanco Márquez, Joaquín H
Caviedes Rubio, Diego Iván
Ortiz, Claudia Patricia
Cerquera, Néstor Enrique
Martínez, Fleming
Delgado, Daniel Ricardo
dc.subject.spa.fl_str_mv Sulfamethazine
Solubility
Cosolvence
Acetonitrile
IKB
topic Sulfamethazine
Solubility
Cosolvence
Acetonitrile
IKB
Sulfamethazine
Solubility
Cosolvence
Acetonitrile
IKB
dc.subject.other.spa.fl_str_mv Sulfamethazine
Solubility
Cosolvence
Acetonitrile
IKB
description This paper presents the solubility of sulfamethazine (SMT) in the acetonitrile (MeCN) + water (W) cosolvent system at nine temperatures. From the solubility experimental data, the thermodynamic functions of solution, mixing, and transfers are calculated and analyzed using the Perlovich graphical method. On the other hand, an enthalpy−entropy compensation analysis is performed and the preferential solvation parameters are calculated using the Kirkwood-Buff (IKBI) inverse integral method. The result of the performed calculations indicates that the SMT solution process is endothermic with entropic favor, where the addition of MeCN has a positive cosolvent effect between pure water and the mixture with w1 = 0.90. As for the preferential solvation, the SMT molecule is preferentially surrounded by water in water- and MeCN-rich mixtures, and in intermediate mixtures, the SMT molecule tends to be surrounded by MeCN.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-12-11T14:12:37Z
dc.date.available.none.fl_str_mv 2019-12-11T14:12:37Z
dc.date.issued.none.fl_str_mv 2020-02-01
dc.type.none.fl_str_mv Artículo
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 03783812
dc.identifier.uri.spa.fl_str_mv https://doi.org/10.1016/j.fluid.2019.112361
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/15545
dc.identifier.bibliographicCitation.spa.fl_str_mv Blanco-Márquez. J. H., Caviedes Rubio, D. I., Ortiz, C. P., Cequera, N. E., Martínez, F. y Delgado, D. R. (2020). Thermodynamic analysis and preferential solvation of sulfamethazine in acetonitrile + water cosolvent mixtures. Fluid Phase Equilibria Volume 505, 1 February 2020, 112361.
identifier_str_mv 03783812
Blanco-Márquez. J. H., Caviedes Rubio, D. I., Ortiz, C. P., Cequera, N. E., Martínez, F. y Delgado, D. R. (2020). Thermodynamic analysis and preferential solvation of sulfamethazine in acetonitrile + water cosolvent mixtures. Fluid Phase Equilibria Volume 505, 1 February 2020, 112361.
url https://doi.org/10.1016/j.fluid.2019.112361
https://hdl.handle.net/20.500.12494/15545
dc.relation.isversionof.spa.fl_str_mv https://www.sciencedirect.com/science/article/abs/pii/S0378381219304224
dc.relation.ispartofjournal.spa.fl_str_mv Fluid Phase Equilibria
dc.relation.references.spa.fl_str_mv D.R. Delgado, O.A. Almanza, F. Martínez, M.A. Peña, A. Jouyban, W.E. Acree Solution thermodynamics and preferential solvation of sulfamethazine in (methanol + water) mixtures J. Chem. Thermodyn., 97 (2016), pp. 264-276, 10.1016/J.JCT.2016.02.002
S. Budavari, M.J. O'Neil, A. Smith, P.E. Heckelman, J.R. Obenchain Jr., J.A.R. Gallipeau, M.A. D'Arecea The Merck Index : an Encyclopedia of Chemicals, Drugs, and Biologicals (thirteenth ed.), Royal Society of Chemistry, Whitehouse Station NJ (2013)
M.G. Papich Saunders Handbook of Veterinary Drugs : Small and Large Animal (fourth ed.), United States of America (2016)
S. Park, K. Choi Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems Ecotoxicology, 17 (2008), pp. 526-538, 10.1007/s10646-008-0209-x
Y. Kim, K. Choi, J. Jung, S. Park, P.-G. Kim, J. Park Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea Environ. Int., 33 (2007), pp. 370-375, 10.1016/J.ENVINT.2006.11.017
R.A. Brain, D.J. Johnson, S.M. Richards, H. Sanderson, P.K. Sibley, K.R. Solomon Effects of 25 pharmaceutical compounds to Lemna gibba using a seven-day static-renewal test Environ. Toxicol. Chem., 23 (2004), p. 371, 10.1897/02-576
H.C. Davis, H. Hidu Effects of pesticides on embryonic development of clams and oysters and on survival and growth of the larvae Fish. Bull., 67 (1969), pp. 393-404
J. Jung, Y. Kim, J. Kim, D.-H. Jeong, K. Choi Environmental levels of ultraviolet light potentiate the toxicity of sulfonamide antibiotics in Daphnia magna Ecotoxicology, 17 (2008), pp. 37-45, 10.1007/s10646-007-0174-9
A.M. Romero-Nieto, N.E. Cerquera, F. Martínez, D.R. Delgado Thermodynamic study of the solubility of ethylparaben in acetonitrile + water cosolvent mixtures at different temperatures J. Mol. Liq., 287 (2019), p. 110894, 10.1016/J.MOLLIQ.2019.110894
D.R. Delgado, D.I. Caviedes-Rubio, C.P. Ortiz, Y.L. Parra-Pava, M.Á. Peña, A. Jouyban, S.N. Mirheydari, F. Martínez, W.E. Acree Solubility of sulphadiazine in (acetonitrile + water) mixtures: measurement, correlation, thermodynamics and preferential solvation Phys. Chem. Liq. (2019), pp. 1-16, 10.1080/00319104.2019.1594227
J.A. Oliveira, O.J. Oliveira, A.R. Ometto, A.S. Ferraudo, M.H. Salgado Environmental management system ISO 14001 factors for promoting the adoption of cleaner production practices J. Clean. Prod., 133 (2016), pp. 1384-1394, 10.1016/J.JCLEPRO.2016.06.013
D. Yue, W.E. Acree, M.H. Abraham Applications of Abraham solvation parameter model: estimation of the lethal median molar concentration of the antiepileptic drug levetiracetam towards aquatic organisms from measured solubility data Phys. Chem. Liq. (2019), pp. 1-7, 10.1080/00319104.2019.1584801
Y. Marcus On the preferential solvation of drugs and PAHs in binary solvent mixtures J. Mol. Liq., 140 (2008), pp. 61-67, 10.1016/J.MOLLIQ.2008.01.005
S.K. Samanta, O.V. Singh, R.K. Jain Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation Trends Biotechnol., 20 (2002), pp. 243-248, 10.1016/S0167-7799(02)01943-1
N.T. Edwards Polycyclic aromatic hydrocarbons (PAH's) in the terrestrial environment-A Review J. Environ. Qual., 12 (1983), p. 427, 10.2134/jeq1983.00472425001200040001x
W.E. Acree, J. Howard Rytting Solubility in binary solvent systems I: specific versus nonspecific interactions J. Pharm. Sci., 71 (1982), pp. 201-205, 10.1002/JPS.2600710216
A. Jouyban-Gharamaleki, L. Valaee, M. Barzegar-Jalali, B.J. Clark, W.E. Acree Comparison of various cosolvency models for calculating solute solubility in water–cosolvent mixtures Int. J. Pharm., 177 (1999), pp. 93-101, 10.1016/S0378-5173(98)00333-0
A. Jouyban Solubility prediction of drugs in water–polyethylene glycol 400 mixtures using Jouyban–Acree model Chem. Pharm. Bull., 54 (2006), pp. 1561-1566, 10.1248/cpb.54.1561
Z.J. Cárdenas, D.M. Jiménez, G.A. Rodríguez, D.R. Delgado, F. Martínez, M. Khoubnasabjafari, A. Jouyban Solubility of methocarbamol in some cosolvent + water mixtures at 298.15 K and correlation with the Jouyban–Acree model J. Mol. Liq., 188 (2013), pp. 162-166, 10.1016/J.MOLLIQ.2013.10.012
W.E. Acree, J.H. Rytting Solubility in binary solvent systems. IV. prediction of naphthalene solubilities using the UNIFAC group contribution model Int. J. Pharm., 13 (1983), pp. 197-204, 10.1016/0378-5173(83)90006-6
A. Martin, J. Newburger, A. Adjei Extended hildebrand solubility approach: solubility of theophylline in polar binary solvents Pharm. Sci., 69 (1980), pp. 487-491, 10.1002/jps.2600690503
W.E. Acree, S.A. Tucker, Thermochemical investigations of hydrogen-bonded solutions Part 6. Comparison of mobile order theory versus KretschmerWiebe association model for describing anthracene solubilities in binary hydrocarbon þ alcohol solvent mixtures, Fluid Phase Equilib. 102 (1994) 17e29, https://doi.org/10.1016/0378-3812(94)87089-6.
E. Ruckenstein, I. Shulgin, Solubility of drugs in aqueous solutions: Part 1. Ideal mixed solvent approximation, Int. J. Pharm. 258 (2003) 193e201, https://doi.org/10.1016/S0378-5173(03)00199-6.
A. Jouyban, Handbook of Solubility Data for Pharmaceuticals, CRC Press, Boca Raton, 2010
T. Higuchi, K. Connors, Phase-solubility techniques, in: Adv. Anal. Chem. Instrum, Wiley-Interscience, New York, 1965, pp. 117e212.
] J.H. Hildebrand, J.M. Prausnitz, R.L. Scott, Regular and Related Solutions, 1970. New York.
D.R. Delgado, F. Martínez, Solubility and solution thermodynamics of sulfamerazine and sulfamethazine in some ethanol þ water mixtures, Fluid Phase Equilib. 360 (2013) 88e96, https://doi.org/10.1016/J.FLUID.2013.09.018.
A.F.M. Barton, CRC Handbook of Solubility Parameters and Other Cohesion Parameters, second ed., CRC Press, New York, 1991.
D.M. Jimenez, Z.J. C ardenas, D.R. Delgado, A. Jouyban, F. Martínez, Solubility and solution thermodynamics of meloxicam in 1,4-dioxane and water mixtures, Ind. Eng. Chem. Res. 53 (2014) 16550e16558, https://doi.org/10.1021/ ie503101h.
] A.C. Gaviria-Castillo, J.D. Artunduaga-Tole, J.D. Rodríguez-Rubiano, J.A. Zuniga- ~ Andrade, D.R. Delgado, A. Jouyban, F. Martínez, Solution thermodynamics and preferential solvation of triclocarban in {1,4-dioxane (1) þ water (2)} mixtures at 298.15 K, Phys. Chem. Liq. 57 (2019) 55e66, https://doi.org/10.1080/ 00319104.2017.1416613.
D.R. Delgado, A.R. Holguín, O.A. Almanza, F. Martínez, Y. Marcus, Solubility and preferential solvation of meloxicam in ethanol þ water mixtures, Fluid Phase Equilib. 305 (2011) 88e95, https://doi.org/10.1016/J.FLUID.2011. 03.012.
D.R. Delgado, F. Martínez, Solution thermodynamics of sulfadiazine in some ethanol þ water mixtures, J. Mol. Liq. 187 (2013) 99e105, https://doi.org/ 10.1016/J.MOLLIQ.2013.06.011.
J.L.H. Johnson, S.H. Yalkowsky, V. Ed, A three-dimensional model for water, J. Chem. Educ 79 (2002) 1088e1091, https://doi.org/10.1021/ed079p1088.
Y. Marcus, Y. Migron, Polarity, hydrogen bonding, and structure of mixtures of water and cyanomethane, J. Phys. Chem. 95 (1991) 400e406, https://doi.org/ 10.1021/j100154a070.
D.R. Delgado, F. Martínez, Solubility and preferential solvation of sulfadiazine in methanol þ water mixtures at several temperatures, Fluid Phase Equilib. 379 (2014) 128e138, https://doi.org/10.1016/J.FLUID.2014.07.013.
D.R. Delgado, F. Martínez, Solution thermodynamics and preferential solvation of sulfamerazine in methanol þ water mixtures, J. Solut. Chem. 44 (2015) 360e377, https://doi.org/10.1007/s10953-015-0317-1.
D.R. Delgado, F. Martínez, Preferential solvation of some structurally related sulfonamides in 1-propanol þ water co-solvent mixtures, Phys. Chem. Liq. 53 (2015) 293e306, https://doi.org/10.1080/00319104.2014.961191.
L. Maury, J. Rambaud, B. Pauvert, Y. Lasserre, G. Berge, M. Audran, Physico- chemical and structural study of sulfamethazine, J. Pharm. Sci. 74 (1985) 422e426, https://doi.org/10.1002/JPS.2600740411.
M. Sorrenti, G.P. Bettinetti, A. Negri, Thermoanalytical characterization of pseudopolymorphs of sulphadimidine and sulphadimidineetrimethoprim molecular complexes, Thermochim. Acta 321 (1998) 67e72, https://doi.org/ 10.1016/S0040-6031(98)00441-9.
X. Zhang, L. Zhou, C. Wang, Y. Li, Y. Wu, M. Zhang, Q. Yin, Insight into the role of hydrogen bonding in the molecular self-assembly process of sulfamethazine solvates, Cryst. Growth Des. 17 (2017) 6151e6157, https://doi.org/ 10.1021/acs.cgd.7b00717.
Y. Hamada, M. Ono, M. Ohara, E. Yonemochi, The effect of structurally related impurities on crystallinity reduction of sulfamethazine by grinding, Int. J. Pharm. 515 (2016) 416e421, https://doi.org/10.1016/J.IJPHARM.2016.09.069.
P. BustamanteE, R. Ochoa, A. Reillo, J.-B. Escalera, Chameleonic effect of sulfanilamide and sulfamethazine in solvent mixtures. Solubility curves with two maxima, Chem. Pharm. Bull. 42 (1994) 1129e1133, https://doi.org/10.1248/ cpb.42.1129.
F.I. Khattab, Thermal analysis of pharmaceutical compounds. V. The use of differential scanning calorimetry in the analysis of certain pharmaceuticals, Thermochim. Acta 61 (1983) 253e268, https://doi.org/10.1016/0040- 6031(83)80280-9.
A. Kristl, Thermodynamic investigation of the effect of the mutual miscibility of some higher alkanols and water on the partitioning and solubility of some guanine derivatives, J. Chem. Soc. 92 (1996) 1721, https://doi.org/10.1039/ ft9969201721.
R.R. Krug, W.G. Hunter, R.A. Grieger, Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van't Hoff and Arrhenius data, J. Phys. Chem. 80 (1976) 2335e2341, https://doi.org/ 10.1021/j100562a006.
R.R. Krug, W.G. Hunter, R.A. Grieger, Enthalpy-entropy compensation. 2. Separation of the chemical from the statistical effect, J. Phys. Chem. 80 (1976) 2341e2351, https://doi.org/10.1021/j100562a007.
G.L. Perlovich, N.N. Strakhova, V.P. Kazachenko, T.V. Volkova, V.V. Tkachev, K.- J. Schaper, O.A. Raevsky, Sulfonamides as a subject to study molecular interactions in crystals and solutions: sublimation, solubility, solvation, distribution and crystal structure, Int. J. Pharm. 349 (2008) 300e313, https:// doi.org/10.1016/J.IJPHARM.2007.07.034.
D.R. Delgado, E.M. Mogollon-Waltero, C.P. Ortiz, M.A. Pe na, O.A. Almanza, ~ F. Martínez, A. Jouyban, Enthalpy-entropy compensation analysis of the triclocarban dissolution process in some {1,4-dioxane (1) þ water (2)} mixtures, J. Mol. Liq. 271 (2018) 522e529, https://doi.org/10.1016/J.MOLLIQ.2018. 09.026.
G.L. Perlovich, V.V. Tkachev, N.N. Strakhova, V.P. Kazachenko, T.V. Volkova, O.V. Surov, K.-J. Schaper, O.A. Raevsky, Thermodynamic and structural aspects of sulfonamide crystals and solutions, J. Pharm. Sci. 98 (2009) 4738e4755, https://doi.org/10.1002/jps.21784.
G.L. Perlovich, A.M. Ryzhakov, N.N. Strakhova, V.P. Kazachenko, K.-J. Schaper, O.A. Raevsky, Thermodynamic aspects of solubility and partitioning processes of some sulfonamides in the solvents modeling biological media, J. Chem. Thermodyn. 69 (2014) 56e65, https://doi.org/10.1016/J.JCT.2013.09.027.
] D.R. Delgado, A. Romdhani, F. Martínez, Thermodynamics of sulfanilamide solubility in propylene glycol þ water mixtures, Lat. Am. J. Pharm. 30 (2011) 2024e2054
P. Bustamante, S. Romero, A. Pena, B. Escalera, A. Reillo, Enthalpy ~ eentropy compensation for the solubility of drugs in solvent mixtures: paracetamol, acetanilide, and nalidixic acid in dioxaneewater, J. Pharm. Sci. 87 (1998) 1590e1596, https://doi.org/10.1021/JS980149X.
G.A.del M. Areiza Aldana, A. Cuellar Lozano, N.A. Penea Carmona, D.I. Caviedes Rubio, A. Mehrdad, A. Hossein Miri, G.A. Rodríguez Rodríguez, D.R. Delgado, Solution thermodynamics and preferential solvation of 3- chloro-N-phenyl-phthalimide in acetone þ methanol mixtures, Rev. Colomb. Cienc. Quím. Farm. 45 (2016) 256e274, https://doi.org/10.15446/ rcciquifa.v45n2.59941.
A. Ben-Naim, Theory of preferential solvation of nonelectrolytes, Cell Biophys. 12 (1988) 255e269, https://doi.org/10.1007/BF02918361.
J.J. Sandoval-Castro, C.P. Ortiz, J. Diego Rodríguez-Rubiano, G. Andres Rodrí- guez-Rodríguez, D.R. Delgado, Preferential solvation of tricin in {ethanol (1) þ water (2)} mixtures at several temperatures, Rev. Colomb. Cienc. Quím. Farm. 47 (2018) 135e148, https://doi.org/10.15446/rcciquifa.v47n2.73933.
Y. Marcus, G.T. Hefter, The compressibility of liquids at ambient temperature and pressure, J. Mol. Liq. 73e74 (1997) 61e74, https://doi.org/10.1016/S0167- 7322(97)00057-3.
J.A. Riddick, W.B. Bunger, T. Sakano, Organic Solvents : Physical Properties and Methods of Purification, fourth ed., Wiley, New York, 1986.
D.R. Delgado, F. Martínez, Preferential solvation of sulfadiazine, sulfamerazine and sulfamethazine in ethanol þ water solvent mixtures according to the IKBI method, J. Mol. Liq. 193 (2014) 152e159, https://doi.org/10.1016/J.MOLLIQ. 2013.12.021.
dc.rights.license.none.fl_str_mv Atribución – No comercial – Sin Derivar
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_14cb
rights_invalid_str_mv Atribución – No comercial – Sin Derivar
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.extent.spa.fl_str_mv 11 p.
dc.coverage.temporal.spa.fl_str_mv Vol. 505
dc.publisher.spa.fl_str_mv Elsevier
Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, Neiva
dc.publisher.program.spa.fl_str_mv Ingeniería Industrial
dc.publisher.place.spa.fl_str_mv Neiva
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/9065c92a-cf69-43c7-8c8f-7a5ae709e508/download
https://repository.ucc.edu.co/bitstreams/fa0bb581-c38b-4513-a699-1a722a751c7f/download
https://repository.ucc.edu.co/bitstreams/714d5368-1748-406a-8d27-c59b9e76df3d/download
https://repository.ucc.edu.co/bitstreams/39247198-3d38-457f-a00a-66900e2a8209/download
bitstream.checksum.fl_str_mv 178f84cab362f4062f69111da86bdcfa
3bce4f7ab09dfc588f126e1e36e98a45
25c9b654e1e0622db5d4d930f8d62c20
936c5f5faaa0d234932f66594dc38e2a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814246769374003200
spelling Blanco Márquez, Joaquín HCaviedes Rubio, Diego IvánOrtiz, Claudia PatriciaCerquera, Néstor EnriqueMartínez, FlemingDelgado, Daniel RicardoVol. 5052019-12-11T14:12:37Z2019-12-11T14:12:37Z2020-02-0103783812https://doi.org/10.1016/j.fluid.2019.112361https://hdl.handle.net/20.500.12494/15545Blanco-Márquez. J. H., Caviedes Rubio, D. I., Ortiz, C. P., Cequera, N. E., Martínez, F. y Delgado, D. R. (2020). Thermodynamic analysis and preferential solvation of sulfamethazine in acetonitrile + water cosolvent mixtures. Fluid Phase Equilibria Volume 505, 1 February 2020, 112361.This paper presents the solubility of sulfamethazine (SMT) in the acetonitrile (MeCN) + water (W) cosolvent system at nine temperatures. From the solubility experimental data, the thermodynamic functions of solution, mixing, and transfers are calculated and analyzed using the Perlovich graphical method. On the other hand, an enthalpy−entropy compensation analysis is performed and the preferential solvation parameters are calculated using the Kirkwood-Buff (IKBI) inverse integral method. The result of the performed calculations indicates that the SMT solution process is endothermic with entropic favor, where the addition of MeCN has a positive cosolvent effect between pure water and the mixture with w1 = 0.90. As for the preferential solvation, the SMT molecule is preferentially surrounded by water in water- and MeCN-rich mixtures, and in intermediate mixtures, the SMT molecule tends to be surrounded by MeCN.This paper presents the solubility of sulfamethazine (SMT) in the acetonitrile (MeCN) + water (W) cosolvent system at nine temperatures. From the solubility experimental data, the thermodynamic functions of solution, mixing, and transfers are calculated and analyzed using the Perlovich graphical method. On the other hand, an enthalpy−entropy compensation analysis is performed and the preferential solvation parameters are calculated using the Kirkwood-Buff (IKBI) inverse integral method. The result of the performed calculations indicates that the SMT solution process is endothermic with entropic favor, where the addition of MeCN has a positive cosolvent effect between pure water and the mixture with w1 = 0.90. As for the preferential solvation, the SMT molecule is preferentially surrounded by water in water- and MeCN-rich mixtures, and in intermediate mixtures, the SMT molecule tends to be surrounded by MeCN.Abstract. -- Keywords. -- 1. Introduction. -- 2. Experimental. -- 3. Results and discussion. -- 4. Conclusions. -- Declaration of competing interest. -- Acknowledgment. -- References. --http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001402116https://orcid.org/0000-0002-4835-9739https://scienti.colciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000004151danielr.delgado@campusucc.edu.cohttps://scholar.google.com/citations?hl=es&user=OW0mejcAAAAJ&view_op=list_works11 p.ElsevierUniversidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, NeivaIngeniería IndustrialNeivahttps://www.sciencedirect.com/science/article/abs/pii/S0378381219304224Fluid Phase EquilibriaD.R. Delgado, O.A. Almanza, F. Martínez, M.A. Peña, A. Jouyban, W.E. Acree Solution thermodynamics and preferential solvation of sulfamethazine in (methanol + water) mixtures J. Chem. Thermodyn., 97 (2016), pp. 264-276, 10.1016/J.JCT.2016.02.002S. Budavari, M.J. O'Neil, A. Smith, P.E. Heckelman, J.R. Obenchain Jr., J.A.R. Gallipeau, M.A. D'Arecea The Merck Index : an Encyclopedia of Chemicals, Drugs, and Biologicals (thirteenth ed.), Royal Society of Chemistry, Whitehouse Station NJ (2013)M.G. Papich Saunders Handbook of Veterinary Drugs : Small and Large Animal (fourth ed.), United States of America (2016)S. Park, K. Choi Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems Ecotoxicology, 17 (2008), pp. 526-538, 10.1007/s10646-008-0209-xY. Kim, K. Choi, J. Jung, S. Park, P.-G. Kim, J. Park Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea Environ. Int., 33 (2007), pp. 370-375, 10.1016/J.ENVINT.2006.11.017R.A. Brain, D.J. Johnson, S.M. Richards, H. Sanderson, P.K. Sibley, K.R. Solomon Effects of 25 pharmaceutical compounds to Lemna gibba using a seven-day static-renewal test Environ. Toxicol. Chem., 23 (2004), p. 371, 10.1897/02-576H.C. Davis, H. Hidu Effects of pesticides on embryonic development of clams and oysters and on survival and growth of the larvae Fish. Bull., 67 (1969), pp. 393-404J. Jung, Y. Kim, J. Kim, D.-H. Jeong, K. Choi Environmental levels of ultraviolet light potentiate the toxicity of sulfonamide antibiotics in Daphnia magna Ecotoxicology, 17 (2008), pp. 37-45, 10.1007/s10646-007-0174-9A.M. Romero-Nieto, N.E. Cerquera, F. Martínez, D.R. Delgado Thermodynamic study of the solubility of ethylparaben in acetonitrile + water cosolvent mixtures at different temperatures J. Mol. Liq., 287 (2019), p. 110894, 10.1016/J.MOLLIQ.2019.110894D.R. Delgado, D.I. Caviedes-Rubio, C.P. Ortiz, Y.L. Parra-Pava, M.Á. Peña, A. Jouyban, S.N. Mirheydari, F. Martínez, W.E. Acree Solubility of sulphadiazine in (acetonitrile + water) mixtures: measurement, correlation, thermodynamics and preferential solvation Phys. Chem. Liq. (2019), pp. 1-16, 10.1080/00319104.2019.1594227J.A. Oliveira, O.J. Oliveira, A.R. Ometto, A.S. Ferraudo, M.H. Salgado Environmental management system ISO 14001 factors for promoting the adoption of cleaner production practices J. Clean. Prod., 133 (2016), pp. 1384-1394, 10.1016/J.JCLEPRO.2016.06.013D. Yue, W.E. Acree, M.H. Abraham Applications of Abraham solvation parameter model: estimation of the lethal median molar concentration of the antiepileptic drug levetiracetam towards aquatic organisms from measured solubility data Phys. Chem. Liq. (2019), pp. 1-7, 10.1080/00319104.2019.1584801Y. Marcus On the preferential solvation of drugs and PAHs in binary solvent mixtures J. Mol. Liq., 140 (2008), pp. 61-67, 10.1016/J.MOLLIQ.2008.01.005S.K. Samanta, O.V. Singh, R.K. Jain Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation Trends Biotechnol., 20 (2002), pp. 243-248, 10.1016/S0167-7799(02)01943-1N.T. Edwards Polycyclic aromatic hydrocarbons (PAH's) in the terrestrial environment-A Review J. Environ. Qual., 12 (1983), p. 427, 10.2134/jeq1983.00472425001200040001xW.E. Acree, J. Howard Rytting Solubility in binary solvent systems I: specific versus nonspecific interactions J. Pharm. Sci., 71 (1982), pp. 201-205, 10.1002/JPS.2600710216A. Jouyban-Gharamaleki, L. Valaee, M. Barzegar-Jalali, B.J. Clark, W.E. Acree Comparison of various cosolvency models for calculating solute solubility in water–cosolvent mixtures Int. J. Pharm., 177 (1999), pp. 93-101, 10.1016/S0378-5173(98)00333-0A. Jouyban Solubility prediction of drugs in water–polyethylene glycol 400 mixtures using Jouyban–Acree model Chem. Pharm. Bull., 54 (2006), pp. 1561-1566, 10.1248/cpb.54.1561Z.J. Cárdenas, D.M. Jiménez, G.A. Rodríguez, D.R. Delgado, F. Martínez, M. Khoubnasabjafari, A. Jouyban Solubility of methocarbamol in some cosolvent + water mixtures at 298.15 K and correlation with the Jouyban–Acree model J. Mol. Liq., 188 (2013), pp. 162-166, 10.1016/J.MOLLIQ.2013.10.012W.E. Acree, J.H. Rytting Solubility in binary solvent systems. IV. prediction of naphthalene solubilities using the UNIFAC group contribution model Int. J. Pharm., 13 (1983), pp. 197-204, 10.1016/0378-5173(83)90006-6A. Martin, J. Newburger, A. Adjei Extended hildebrand solubility approach: solubility of theophylline in polar binary solvents Pharm. Sci., 69 (1980), pp. 487-491, 10.1002/jps.2600690503W.E. Acree, S.A. Tucker, Thermochemical investigations of hydrogen-bonded solutions Part 6. Comparison of mobile order theory versus KretschmerWiebe association model for describing anthracene solubilities in binary hydrocarbon þ alcohol solvent mixtures, Fluid Phase Equilib. 102 (1994) 17e29, https://doi.org/10.1016/0378-3812(94)87089-6.E. Ruckenstein, I. Shulgin, Solubility of drugs in aqueous solutions: Part 1. Ideal mixed solvent approximation, Int. J. Pharm. 258 (2003) 193e201, https://doi.org/10.1016/S0378-5173(03)00199-6.A. Jouyban, Handbook of Solubility Data for Pharmaceuticals, CRC Press, Boca Raton, 2010T. Higuchi, K. Connors, Phase-solubility techniques, in: Adv. Anal. Chem. Instrum, Wiley-Interscience, New York, 1965, pp. 117e212.] J.H. Hildebrand, J.M. Prausnitz, R.L. Scott, Regular and Related Solutions, 1970. New York.D.R. Delgado, F. Martínez, Solubility and solution thermodynamics of sulfamerazine and sulfamethazine in some ethanol þ water mixtures, Fluid Phase Equilib. 360 (2013) 88e96, https://doi.org/10.1016/J.FLUID.2013.09.018.A.F.M. Barton, CRC Handbook of Solubility Parameters and Other Cohesion Parameters, second ed., CRC Press, New York, 1991.D.M. Jimenez, Z.J. C ardenas, D.R. Delgado, A. Jouyban, F. Martínez, Solubility and solution thermodynamics of meloxicam in 1,4-dioxane and water mixtures, Ind. Eng. Chem. Res. 53 (2014) 16550e16558, https://doi.org/10.1021/ ie503101h.] A.C. Gaviria-Castillo, J.D. Artunduaga-Tole, J.D. Rodríguez-Rubiano, J.A. Zuniga- ~ Andrade, D.R. Delgado, A. Jouyban, F. Martínez, Solution thermodynamics and preferential solvation of triclocarban in {1,4-dioxane (1) þ water (2)} mixtures at 298.15 K, Phys. Chem. Liq. 57 (2019) 55e66, https://doi.org/10.1080/ 00319104.2017.1416613.D.R. Delgado, A.R. Holguín, O.A. Almanza, F. Martínez, Y. Marcus, Solubility and preferential solvation of meloxicam in ethanol þ water mixtures, Fluid Phase Equilib. 305 (2011) 88e95, https://doi.org/10.1016/J.FLUID.2011. 03.012.D.R. Delgado, F. Martínez, Solution thermodynamics of sulfadiazine in some ethanol þ water mixtures, J. Mol. Liq. 187 (2013) 99e105, https://doi.org/ 10.1016/J.MOLLIQ.2013.06.011.J.L.H. Johnson, S.H. Yalkowsky, V. Ed, A three-dimensional model for water, J. Chem. Educ 79 (2002) 1088e1091, https://doi.org/10.1021/ed079p1088.Y. Marcus, Y. Migron, Polarity, hydrogen bonding, and structure of mixtures of water and cyanomethane, J. Phys. Chem. 95 (1991) 400e406, https://doi.org/ 10.1021/j100154a070.D.R. Delgado, F. Martínez, Solubility and preferential solvation of sulfadiazine in methanol þ water mixtures at several temperatures, Fluid Phase Equilib. 379 (2014) 128e138, https://doi.org/10.1016/J.FLUID.2014.07.013.D.R. Delgado, F. Martínez, Solution thermodynamics and preferential solvation of sulfamerazine in methanol þ water mixtures, J. Solut. Chem. 44 (2015) 360e377, https://doi.org/10.1007/s10953-015-0317-1.D.R. Delgado, F. Martínez, Preferential solvation of some structurally related sulfonamides in 1-propanol þ water co-solvent mixtures, Phys. Chem. Liq. 53 (2015) 293e306, https://doi.org/10.1080/00319104.2014.961191.L. Maury, J. Rambaud, B. Pauvert, Y. Lasserre, G. Berge, M. Audran, Physico- chemical and structural study of sulfamethazine, J. Pharm. Sci. 74 (1985) 422e426, https://doi.org/10.1002/JPS.2600740411.M. Sorrenti, G.P. Bettinetti, A. Negri, Thermoanalytical characterization of pseudopolymorphs of sulphadimidine and sulphadimidineetrimethoprim molecular complexes, Thermochim. Acta 321 (1998) 67e72, https://doi.org/ 10.1016/S0040-6031(98)00441-9.X. Zhang, L. Zhou, C. Wang, Y. Li, Y. Wu, M. Zhang, Q. Yin, Insight into the role of hydrogen bonding in the molecular self-assembly process of sulfamethazine solvates, Cryst. Growth Des. 17 (2017) 6151e6157, https://doi.org/ 10.1021/acs.cgd.7b00717.Y. Hamada, M. Ono, M. Ohara, E. Yonemochi, The effect of structurally related impurities on crystallinity reduction of sulfamethazine by grinding, Int. J. Pharm. 515 (2016) 416e421, https://doi.org/10.1016/J.IJPHARM.2016.09.069.P. BustamanteE, R. Ochoa, A. Reillo, J.-B. Escalera, Chameleonic effect of sulfanilamide and sulfamethazine in solvent mixtures. Solubility curves with two maxima, Chem. Pharm. Bull. 42 (1994) 1129e1133, https://doi.org/10.1248/ cpb.42.1129.F.I. Khattab, Thermal analysis of pharmaceutical compounds. V. The use of differential scanning calorimetry in the analysis of certain pharmaceuticals, Thermochim. Acta 61 (1983) 253e268, https://doi.org/10.1016/0040- 6031(83)80280-9.A. Kristl, Thermodynamic investigation of the effect of the mutual miscibility of some higher alkanols and water on the partitioning and solubility of some guanine derivatives, J. Chem. Soc. 92 (1996) 1721, https://doi.org/10.1039/ ft9969201721.R.R. Krug, W.G. Hunter, R.A. Grieger, Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van't Hoff and Arrhenius data, J. Phys. Chem. 80 (1976) 2335e2341, https://doi.org/ 10.1021/j100562a006.R.R. Krug, W.G. Hunter, R.A. Grieger, Enthalpy-entropy compensation. 2. Separation of the chemical from the statistical effect, J. Phys. Chem. 80 (1976) 2341e2351, https://doi.org/10.1021/j100562a007.G.L. Perlovich, N.N. Strakhova, V.P. Kazachenko, T.V. Volkova, V.V. Tkachev, K.- J. Schaper, O.A. Raevsky, Sulfonamides as a subject to study molecular interactions in crystals and solutions: sublimation, solubility, solvation, distribution and crystal structure, Int. J. Pharm. 349 (2008) 300e313, https:// doi.org/10.1016/J.IJPHARM.2007.07.034.D.R. Delgado, E.M. Mogollon-Waltero, C.P. Ortiz, M.A. Pe na, O.A. Almanza, ~ F. Martínez, A. Jouyban, Enthalpy-entropy compensation analysis of the triclocarban dissolution process in some {1,4-dioxane (1) þ water (2)} mixtures, J. Mol. Liq. 271 (2018) 522e529, https://doi.org/10.1016/J.MOLLIQ.2018. 09.026.G.L. Perlovich, V.V. Tkachev, N.N. Strakhova, V.P. Kazachenko, T.V. Volkova, O.V. Surov, K.-J. Schaper, O.A. Raevsky, Thermodynamic and structural aspects of sulfonamide crystals and solutions, J. Pharm. Sci. 98 (2009) 4738e4755, https://doi.org/10.1002/jps.21784.G.L. Perlovich, A.M. Ryzhakov, N.N. Strakhova, V.P. Kazachenko, K.-J. Schaper, O.A. Raevsky, Thermodynamic aspects of solubility and partitioning processes of some sulfonamides in the solvents modeling biological media, J. Chem. Thermodyn. 69 (2014) 56e65, https://doi.org/10.1016/J.JCT.2013.09.027.] D.R. Delgado, A. Romdhani, F. Martínez, Thermodynamics of sulfanilamide solubility in propylene glycol þ water mixtures, Lat. Am. J. Pharm. 30 (2011) 2024e2054P. Bustamante, S. Romero, A. Pena, B. Escalera, A. Reillo, Enthalpy ~ eentropy compensation for the solubility of drugs in solvent mixtures: paracetamol, acetanilide, and nalidixic acid in dioxaneewater, J. Pharm. Sci. 87 (1998) 1590e1596, https://doi.org/10.1021/JS980149X.G.A.del M. Areiza Aldana, A. Cuellar Lozano, N.A. Penea Carmona, D.I. Caviedes Rubio, A. Mehrdad, A. Hossein Miri, G.A. Rodríguez Rodríguez, D.R. Delgado, Solution thermodynamics and preferential solvation of 3- chloro-N-phenyl-phthalimide in acetone þ methanol mixtures, Rev. Colomb. Cienc. Quím. Farm. 45 (2016) 256e274, https://doi.org/10.15446/ rcciquifa.v45n2.59941.A. Ben-Naim, Theory of preferential solvation of nonelectrolytes, Cell Biophys. 12 (1988) 255e269, https://doi.org/10.1007/BF02918361.J.J. Sandoval-Castro, C.P. Ortiz, J. Diego Rodríguez-Rubiano, G. Andres Rodrí- guez-Rodríguez, D.R. Delgado, Preferential solvation of tricin in {ethanol (1) þ water (2)} mixtures at several temperatures, Rev. Colomb. Cienc. Quím. Farm. 47 (2018) 135e148, https://doi.org/10.15446/rcciquifa.v47n2.73933.Y. Marcus, G.T. Hefter, The compressibility of liquids at ambient temperature and pressure, J. Mol. Liq. 73e74 (1997) 61e74, https://doi.org/10.1016/S0167- 7322(97)00057-3.J.A. Riddick, W.B. Bunger, T. Sakano, Organic Solvents : Physical Properties and Methods of Purification, fourth ed., Wiley, New York, 1986.D.R. Delgado, F. Martínez, Preferential solvation of sulfadiazine, sulfamerazine and sulfamethazine in ethanol þ water solvent mixtures according to the IKBI method, J. Mol. Liq. 193 (2014) 152e159, https://doi.org/10.1016/J.MOLLIQ. 2013.12.021.SulfamethazineSolubilityCosolvenceAcetonitrileIKBSulfamethazineSolubilityCosolvenceAcetonitrileIKBThermodynamic analysis and preferential solvation of sulfamethazine in acetonitrile+ water cosolvent mixturesArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribución – No comercial – Sin Derivarinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbPublicationORIGINALThermodynamic analysis and preferential solvation of sulfamethazine in acetonitrile + water cosolvent mixtures.pdfThermodynamic analysis and preferential solvation of sulfamethazine in acetonitrile + water cosolvent mixtures.pdfArtículo Científicoapplication/pdf1239274https://repository.ucc.edu.co/bitstreams/9065c92a-cf69-43c7-8c8f-7a5ae709e508/download178f84cab362f4062f69111da86bdcfaMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/fa0bb581-c38b-4513-a699-1a722a751c7f/download3bce4f7ab09dfc588f126e1e36e98a45MD52TEXTThermodynamic analysis and preferential solvation of sulfamethazine in acetonitrile + water cosolvent mixtures.pdf.txtThermodynamic analysis and preferential solvation of sulfamethazine in acetonitrile + water cosolvent mixtures.pdf.txtExtracted texttext/plain61644https://repository.ucc.edu.co/bitstreams/714d5368-1748-406a-8d27-c59b9e76df3d/download25c9b654e1e0622db5d4d930f8d62c20MD53THUMBNAILThermodynamic analysis and preferential solvation of sulfamethazine in acetonitrile + water cosolvent mixtures.pdf.jpgThermodynamic analysis and preferential solvation of sulfamethazine in acetonitrile + water cosolvent mixtures.pdf.jpgGenerated Thumbnailimage/jpeg5943https://repository.ucc.edu.co/bitstreams/39247198-3d38-457f-a00a-66900e2a8209/download936c5f5faaa0d234932f66594dc38e2aMD5420.500.12494/15545oai:repository.ucc.edu.co:20.500.12494/155452024-08-10 20:59:22.343restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=