Methane potential and degradation kinetics of fresh and excavated municipal solid waste from a tropical landfill in Colombia
La optimización de los procesos de degradación y la gestión de lixiviados y biogás producidos en los vertederos son aspectos clave para el establecimiento de una eliminación de residuos sólidos municipales (RSU) más sostenible en los países en desarrollo. En este estudio, se utilizaron pruebas de po...
- Autores:
-
Caicedo Concha, Diana Milena
Sandoval Cobo, John Jairo
Casallas Ojeda, Miguel R.
Carabalí Orejuela, Lina
Muñoz Chávez, Anyi
Marmolejo Rebellón, Luis Fernando
Torres Lozada, Patricia
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/17494
- Acceso en línea:
- https://doi.org/10.1186/s42834-020-00048-6
https://hdl.handle.net/20.500.12494/17494
- Palabra clave:
- Potencial bioquímico de metano
Residuos sólidos urbano
Biogas
Vertedero tropical
Biochemical methane potential
Municipal solid waste
Biogas
Tropical landfill
Sustainable development
Desarrollo sostenible
- Rights
- openAccess
- License
- Atribución
id |
COOPER2_2a9b8c163bba7866594fb549c8277475 |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/17494 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Methane potential and degradation kinetics of fresh and excavated municipal solid waste from a tropical landfill in Colombia |
title |
Methane potential and degradation kinetics of fresh and excavated municipal solid waste from a tropical landfill in Colombia |
spellingShingle |
Methane potential and degradation kinetics of fresh and excavated municipal solid waste from a tropical landfill in Colombia Potencial bioquímico de metano Residuos sólidos urbano Biogas Vertedero tropical Biochemical methane potential Municipal solid waste Biogas Tropical landfill Sustainable development Desarrollo sostenible |
title_short |
Methane potential and degradation kinetics of fresh and excavated municipal solid waste from a tropical landfill in Colombia |
title_full |
Methane potential and degradation kinetics of fresh and excavated municipal solid waste from a tropical landfill in Colombia |
title_fullStr |
Methane potential and degradation kinetics of fresh and excavated municipal solid waste from a tropical landfill in Colombia |
title_full_unstemmed |
Methane potential and degradation kinetics of fresh and excavated municipal solid waste from a tropical landfill in Colombia |
title_sort |
Methane potential and degradation kinetics of fresh and excavated municipal solid waste from a tropical landfill in Colombia |
dc.creator.fl_str_mv |
Caicedo Concha, Diana Milena Sandoval Cobo, John Jairo Casallas Ojeda, Miguel R. Carabalí Orejuela, Lina Muñoz Chávez, Anyi Marmolejo Rebellón, Luis Fernando Torres Lozada, Patricia |
dc.contributor.author.none.fl_str_mv |
Caicedo Concha, Diana Milena Sandoval Cobo, John Jairo Casallas Ojeda, Miguel R. Carabalí Orejuela, Lina Muñoz Chávez, Anyi Marmolejo Rebellón, Luis Fernando Torres Lozada, Patricia |
dc.subject.spa.fl_str_mv |
Potencial bioquímico de metano Residuos sólidos urbano Biogas Vertedero tropical |
topic |
Potencial bioquímico de metano Residuos sólidos urbano Biogas Vertedero tropical Biochemical methane potential Municipal solid waste Biogas Tropical landfill Sustainable development Desarrollo sostenible |
dc.subject.other.spa.fl_str_mv |
Biochemical methane potential Municipal solid waste Biogas Tropical landfill Sustainable development Desarrollo sostenible |
description |
La optimización de los procesos de degradación y la gestión de lixiviados y biogás producidos en los vertederos son aspectos clave para el establecimiento de una eliminación de residuos sólidos municipales (RSU) más sostenible en los países en desarrollo. En este estudio, se utilizaron pruebas de potencial bioquímico de metano (BMP) para evaluar el potencial de producción de CH4 y la cinética de degradación de los residuos frescos (FW) y muestras de residuos excavados (EW) de cinco años de un vertedero controlado tropical con características de composición de los países en desarrollo. Las pruebas BMP con muestras reconstituidas de la fracción biodegradable de ambos tipos de RSU se realizaron a tres relaciones sustrato / inóculo (S / I) (0.3, 0.5 y 1.0 g VS sustrato g-1 VS inóculo), y los parámetros de generación de CH4 se determinaron utilizando Modelos cinéticos de Gompertz de primer orden y modificados. Después de 30 días, se alcanzaron los mejores resultados de BMP a relaciones S / I de 0,5 y 1,0, con producciones acumulativas de CH4 de 528 y 433 ml de CH4 g-1 VS para FW, respectivamente; y 151 y 135 ml de CH4 g-1 VS para EW, respectivamente. El modelo cinético de primer orden proporcionó un buen ajuste a los resultados de BMP para FW, mientras que el modelo modificado de Gompertz mostró un mejor ajuste a los datos de BMP para EW. Las tasas calculadas de generación de CH4 de primer orden para FW y EW estuvieron en el rango de 0.19–0.36 y 0.23–0.25 d− 1, respectivamente. Estos resultados evidencian la alta biodegradabilidad y el potencial de CH4 de FW eliminados en un vertedero tropical en Colombia y la reducción de BMP de EW a pesar de un período relativamente corto después de la eliminación en condiciones convencionales de operación de vertederos. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-04-30T16:01:35Z |
dc.date.available.none.fl_str_mv |
2020-04-30T16:01:35Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.type.none.fl_str_mv |
Artículo |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
2468-2039 |
dc.identifier.uri.spa.fl_str_mv |
https://doi.org/10.1186/s42834-020-00048-6 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/17494 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Sandoval Cobo, J. J., Casallas Ojeda, M. R., Carabalí Orejuela, L., Muñoz Chávez, A., Caicedo Concha, D. M., Marmolejo Rebellón, L. F. & Torres Lozada, P. (2020). Methane potential and degradation kinetics of fresh and excavated municipal solid waste from a tropical landfill in Colombia. Sustain Environ Res 30, (7). https://doi.org/10.1186/s42834-020-00048-6 |
identifier_str_mv |
2468-2039 Sandoval Cobo, J. J., Casallas Ojeda, M. R., Carabalí Orejuela, L., Muñoz Chávez, A., Caicedo Concha, D. M., Marmolejo Rebellón, L. F. & Torres Lozada, P. (2020). Methane potential and degradation kinetics of fresh and excavated municipal solid waste from a tropical landfill in Colombia. Sustain Environ Res 30, (7). https://doi.org/10.1186/s42834-020-00048-6 |
url |
https://doi.org/10.1186/s42834-020-00048-6 https://hdl.handle.net/20.500.12494/17494 |
dc.relation.isversionof.spa.fl_str_mv |
https://sustainenvironres.biomedcentral.com/articles/10.1186/s42834-020-00048-6 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Sustainable Environment Research |
dc.relation.references.spa.fl_str_mv |
Themelis NJ, Elena MED, Barriga D, Estevez P, Velasco MG. Guidebook for the application of waste to energy technologies in Latin America and the Caribbean. New York: Columbia University; 2013. Kaza S, Yao LC, Bhada-Tata P, Van Woerden F. What a waste 2.0: a global snapshot of solid waste management to 2050. Washington, DC: World Bank; 2018. Un-Habitat. Solid Waste Management in the World’s Cities: Water and Sanitation in the World’s Cities 2010. London: United Nations Human Settlements Programme; 2010. DNP. CONPES 3874 Pólítica Nacional para la Gestión Integral de Residuos Sólidos. Bogotá, DC: Departamento Nacional de Planeación; 2016 [in Spanish] Oviedo-Ocana R, Marmolejo-Rebellon L, Torres-Lozada P. Perspective of application of biowaste composting from municipal solid wastes: an approach from global to local. Rev Ing Univ Medellín. 2012;11:67–76 [in Spanish]. GMI. International Best Practices Guide for Landfill Gas Energy Projects. Washington, DC: Global Methane Initiative; 2012. Zheng W, Lu F, Bolyard SC, Shao LM, Reinhart DR, He PJ. Evaluation of monitoring indicators for the post-closure care of a landfill for MSW characterized with low lignin content. Waste Manag. 2015;36:222–9. Cossu R, Raga R. Test methods for assessing the biological stability of biodegradable waste. Waste Manag. 2008;28:381–8. Wagland ST, Tyrrel SF. Test methods to aid in the evaluation of the diversion of biodegradable municipal waste (BMW) from landfill. Waste Manag. 2010;30:934–5. Raposo F, De la Rubia MA, Fernandez-Cegri V, Borja R. Anaerobic digestion of solid organic substrates in batch mode: an overview relating to methane yields and experimental procedures. Renew Sust Energ Rev. 2012;16:861–77 Pearse LF, Hettiaratchi JP, Kumar S. Towards developing a representative biochemical methane potential (BMP) assay for landfilled municipal solid waste – a review. Bioresour Technol. 2018;254:312–24. Angelidaki I, Alves M, Bolzonella D, Borzacconi L, Campos JL, Guwy AJ, et al. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci Technol. 2009;59:927–34. Parra-Orobio BA, Angulo-Mosquera LS, Loaiza-Gualtero JS, Torres-Lopez WA, Torres-Lozada P. Inoculum mixture optimization as strategy for to improve the anaerobic digestion of food waste for the methane production. J Environ Chem Eng. 2018;6:1529–35. Holliger C, Alves M, Andrade D, Angelidaki I, Astals S, Baier U, et al. Towards a standardization of biomethane potential tests. Water Sci Technol. 2016;74: 2515–22. Bilgili MS, Demir A, Varank G. Evaluation and modeling of biochemical methane potential (BMP) of landfilled solid waste: a pilot scale study. Bioresour Technol. 2009;100:4976–80. Schirmer WN, Juca JFT, Schuler ARP, Holanda S, Jesus LL. Methane production in anaerobic digestion of organic waste from Recife (Brazil) landfill: evaluation in refuse of different ages. Braz J Chem Eng. 2014;31:373–84. Raposo F, Fernandez-Cegri V, De la Rubia MA, Borja R, Beline F, Cavinato C, et al. Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international interlaboratory study. J Chem Technol Biot. 2011;86:1088–98. Boulanger A, Pinet E, Bouix M, Bouchez T, Mansour AA. Effect of inoculum to substrate ratio (I/S) on municipal solid waste anaerobic degradation kinetics and potential. Waste Manag. 2012;32:2258–65. Swati M, Karthikeyan OP, Joseph K, Visvanathan C, Nagendran R. Pilot-scale simulation of landfill bioreactor and controlled dumping of fresh and partially stabilized municipal solid waste in a tropical developing country. J Hazard Toxic Radioact Waste. 2011;15:321–30. Machado SL, Carvalho MF, Gourc JP, Vilar OM, JCF DN. Methane generation in tropical landfills: simplified methods and field results. Waste Manage. 2009;29:153–61 Kim H, Townsend TG. Wet landfill decomposition rate determination using methane yield results for excavated waste samples. Waste Manag. 2012;32: 1427–33 SSPD. Informe de Disposición Final de Residuos Sólidos 2017 (Solid Waste Final Disposal Report 2017). Bogotá, DC: Super Intendencia de Servicios Públicos Domiciliario; 2018 [in Spanish]. Orozco OLP, Escobar YC, Angel MQ. Study of monthly rainfall trends in the upper and middle Cauca river basin, Colombia. Dyna-Colombia. 2011;78: 112–20 [in Spanish]. Campuzano R, Gonzalez-Martinez S. Characteristics of the organic fraction of municipal solid waste and methane production: a review. Waste Manag. 2016;54:3–12. Knox K, Braithwaite P, Caine M, Croft B. Brogborough landfill test cells: the final chapter. In: A study of landfill completion in relation to final storage quality (FSQ) criteria. Cagliari: 10th International Waste Management and Landfill Symposium; 2005. p. 3–7. Zheng W, Phoungthong K, Lu F, Shao LM, He PJ. Evaluation of a classification method for biodegradable solid wastes using anaerobic degradation parameters. Waste Manag. 2013;33:2632–40. Caicedo-Concha DM, Sandoval-Cobo JJ, Whiting K. An experimental study on the impact of two dimensional materials in waste disposal sites: what are the implications for engineered landfills? Sustain Environ Res. 2016;26: 255–61 APHA, AWWA, WEF. Standard methods for the examination of water and wastewater. 22nd ed. Washington, DC: American Public Health Association, American Water Works Association, Water Environment Federation; 2012. Parra-Orobio BA, Torres P, Torres WA, Marmolejo LF, Vásquez C, Cárdenas LM. Effect of substrate-inoculum ratio on the biochemical methane potential of municipal biowastes. Ing Investig Tecnol. 2015;16:515–26 [in Spanish] Torres P, Perez A. Actividad Metanogénica Específica: una herramienta de control y optimización de sistemas de tratamiento anaerobio de aguas residuales. Ing Recur Nat Y Del Ambient. 2010;(9):5-14 Parra-Orobio BA, Donoso-Bravo A, Ruiz-Sanchez JC, Valencia-Molina KJ, Torres-Lozada P. Effect of inoculum on the anaerobic digestion of food waste accounting for the concentration of trace elements. Waste Manag. 2018;71:342–9 IGES. 2006 IPCC guidelines for National Greenhouse gas Inventories Volume 5 waste. In: Buendia L, Miwa K, Ngara T, Tanabe K, editors. Eggleston HS. Institute for Global Environmental Strategies: Hayama; 2006. Lay JJ, Li YY, Noike T. Effect of moisture content and chemical nature on methane fermentation characteristics of municipal solid wastes. J Environ Syst Eng. 1996;1996:101–8. Stromberg S, Nistor M, Liu J. Towards eliminating systematic errors caused by the experimental conditions in biochemical methane potential (BMP) tests. Waste Manag. 2014;34:1939–48 Yang N, Damgaard A, Scheutz C, Shao LM, He PJ. A comparison of chemical MSW compositional data between China and Denmark. J Environ Sci-China. 2018;74:1–10. Francois V, Feuillade G, Skhiri N, Lagier T, Matejka G. Indicating the parameters of the state of degradation of municipal solid waste. J Hazard Mater. 2006;137:1008–15 Bolyard SC, Reinhart DR. Application of landfill treatment approaches for stabilization of municipal solid waste. Waste Manag. 2016;55:22–30. Kelly RJ, Shearer BD, Kim J, Goldsmith CD, Hater GR, Novak JT. Relationships between analytical methods utilized as tools in the evaluation of landfill waste stability. Waste Manag. 2006;26:1349–56. Cardenas-Cleves LM, Marmolejo-Rebellon LF, Torres-Lozada P. Anaerobic codigestion of sugarcane press mud with food waste: effects on hydrolysis stage, methane yield, and synergistic effects. Int J Chem Eng. 2018;2018: 9351848 Dong J, Zhao YS, Hong M, Zhang WH. Influence of alkalinity on the stabilization of municipal solid waste in anaerobic simulated bioreactor. J Hazard Mater. 2009;163:717–22 Ehrig HJ. Water and element balances of landfills. In: Baccini P, editor. The landfill. Berlin/Heidelberg: Springer; 1989. p. 83–115 Berthe C, Redon E, Feuillade G. Fractionation of the organic matter contained in leachate resulting from two modes of landfilling: an indicator of waste degradation. J Hazard Mater. 2008;154:262–71. Ritzkowski M, Stegmann R. Landfill aeration within the scope of post-closure care and its completion. Waste Manag. 2013;33:2074–82. Park JK, Chong YG, Tameda K, Lee NH. Methods for determining the methane generation potential and methane generation rate constant for the FOD model: a review. Waste Manage Res. 2018;36:200–20. |
dc.rights.license.none.fl_str_mv |
Atribución |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
11 p. |
dc.coverage.temporal.spa.fl_str_mv |
30 (7) |
dc.publisher.spa.fl_str_mv |
Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, Cali |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Industrial |
dc.publisher.place.spa.fl_str_mv |
Cali |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/22250b1c-54bd-47eb-8c7a-c8ba0a68d3c3/download https://repository.ucc.edu.co/bitstreams/b91c2854-dc00-4ad0-a049-74be11191662/download https://repository.ucc.edu.co/bitstreams/82101366-2107-4a89-a4a0-7b0caeba993d/download https://repository.ucc.edu.co/bitstreams/8212a06a-cf2a-48e5-b967-140f79c0cfe8/download |
bitstream.checksum.fl_str_mv |
3bce4f7ab09dfc588f126e1e36e98a45 e23eb97fdfe6fa1ebcc3d56e33161ebe d0119d6aae7e2ef2d8be274584d4dceb 03e1af09f89ab676abdc42e204788b5a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814246891131502592 |
spelling |
Caicedo Concha, Diana MilenaSandoval Cobo, John JairoCasallas Ojeda, Miguel R.Carabalí Orejuela, LinaMuñoz Chávez, AnyiMarmolejo Rebellón, Luis FernandoTorres Lozada, Patricia30 (7)2020-04-30T16:01:35Z2020-04-30T16:01:35Z20202468-2039https://doi.org/10.1186/s42834-020-00048-6https://hdl.handle.net/20.500.12494/17494Sandoval Cobo, J. J., Casallas Ojeda, M. R., Carabalí Orejuela, L., Muñoz Chávez, A., Caicedo Concha, D. M., Marmolejo Rebellón, L. F. & Torres Lozada, P. (2020). Methane potential and degradation kinetics of fresh and excavated municipal solid waste from a tropical landfill in Colombia. Sustain Environ Res 30, (7). https://doi.org/10.1186/s42834-020-00048-6La optimización de los procesos de degradación y la gestión de lixiviados y biogás producidos en los vertederos son aspectos clave para el establecimiento de una eliminación de residuos sólidos municipales (RSU) más sostenible en los países en desarrollo. En este estudio, se utilizaron pruebas de potencial bioquímico de metano (BMP) para evaluar el potencial de producción de CH4 y la cinética de degradación de los residuos frescos (FW) y muestras de residuos excavados (EW) de cinco años de un vertedero controlado tropical con características de composición de los países en desarrollo. Las pruebas BMP con muestras reconstituidas de la fracción biodegradable de ambos tipos de RSU se realizaron a tres relaciones sustrato / inóculo (S / I) (0.3, 0.5 y 1.0 g VS sustrato g-1 VS inóculo), y los parámetros de generación de CH4 se determinaron utilizando Modelos cinéticos de Gompertz de primer orden y modificados. Después de 30 días, se alcanzaron los mejores resultados de BMP a relaciones S / I de 0,5 y 1,0, con producciones acumulativas de CH4 de 528 y 433 ml de CH4 g-1 VS para FW, respectivamente; y 151 y 135 ml de CH4 g-1 VS para EW, respectivamente. El modelo cinético de primer orden proporcionó un buen ajuste a los resultados de BMP para FW, mientras que el modelo modificado de Gompertz mostró un mejor ajuste a los datos de BMP para EW. Las tasas calculadas de generación de CH4 de primer orden para FW y EW estuvieron en el rango de 0.19–0.36 y 0.23–0.25 d− 1, respectivamente. Estos resultados evidencian la alta biodegradabilidad y el potencial de CH4 de FW eliminados en un vertedero tropical en Colombia y la reducción de BMP de EW a pesar de un período relativamente corto después de la eliminación en condiciones convencionales de operación de vertederos.The optimization of degradation processes and the management of leachate and biogas produced in landfills are key aspects for the establishment of more sustainable municipal solid waste (MSW) disposal in developing countries. In this study, biochemical methane potential (BMP) tests were used to evaluate CH4 production potential and degradation kinetics of fresh waste (FW) and five-year aged excavated waste (EW) samples from a tropical controlled landfill with compositional characteristics of developing countries. BMP tests with reconstituted samples of the biodegradable fraction of both MSW types were performed at three substrate/inoculum (S/I) ratios (0.3, 0.5 and 1.0 g VS substrate g− 1 VS inoculum), and CH4 generation parameters were determined using the first-order and modified Gompertz kinetic models. After 30-d, the best BMP results were reached at S/I ratios of 0.5 and 1.0, with cumulative CH4 productions of 528 and 433 mL CH4 g− 1 VS for FW, respectively; and 151 and 135 mL CH4 g− 1 VS for EW, respectively. The first-order kinetic model provided a good fit to BMP results for FW, whereas the modified Gompertz model showed a better adjustment to the BMP data for EW. Calculated first-order CH4 generation rates for FW and EW were in the range 0.19–0.36 and 0.23–0.25 d− 1, respectively. These results evidence the high biodegradability and CH4 potential of FW disposed of in a tropical landfill in Colombia and the reduced BMP of EW despite a relatively short period after disposal under conventional landfill operation conditions.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001434849https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000192503https://orcid.org/0000-0003-4031-4568https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000002878diana.caicedoc@campusucc.edu.cosandoval.john@correounivalle.edu.coluis.marmolejo@correounivalle.edu.cohttps://scholar.google.com/citations?hl=es&user=wqyYGWAAAAAJ&view_op=list_works&gmla=AJsN-F7c3C8yvZxsKJpSjjRqX4WCFRXA_1437sB6Jbg5i0wkTtjgdvFfOhhmc9TXltl0H0K_m0OanqOI0e5WNZmq3F855Xl4BJy74Ghbn5ey5BZAh_AFw5GP4V84jHOs2jz1EsgWT2UQRE2WDjQ9rpy46hvQEgJhrn4Gpf5309lXf-d4G_vx8EfgiI0Q4EbQyA71LHzJOBUbsXqH8n1IYzENnvC3XzlJN0ZDBdySpMN12RFH3A8QiXwhttps://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000005961http://orcid.org/0000-0003-1166-198211 p.Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, CaliIngeniería IndustrialCalihttps://sustainenvironres.biomedcentral.com/articles/10.1186/s42834-020-00048-6Sustainable Environment ResearchThemelis NJ, Elena MED, Barriga D, Estevez P, Velasco MG. Guidebook for the application of waste to energy technologies in Latin America and the Caribbean. New York: Columbia University; 2013.Kaza S, Yao LC, Bhada-Tata P, Van Woerden F. What a waste 2.0: a global snapshot of solid waste management to 2050. Washington, DC: World Bank; 2018.Un-Habitat. Solid Waste Management in the World’s Cities: Water and Sanitation in the World’s Cities 2010. London: United Nations Human Settlements Programme; 2010.DNP. CONPES 3874 Pólítica Nacional para la Gestión Integral de Residuos Sólidos. Bogotá, DC: Departamento Nacional de Planeación; 2016 [in Spanish]Oviedo-Ocana R, Marmolejo-Rebellon L, Torres-Lozada P. Perspective of application of biowaste composting from municipal solid wastes: an approach from global to local. Rev Ing Univ Medellín. 2012;11:67–76 [in Spanish].GMI. International Best Practices Guide for Landfill Gas Energy Projects. Washington, DC: Global Methane Initiative; 2012.Zheng W, Lu F, Bolyard SC, Shao LM, Reinhart DR, He PJ. Evaluation of monitoring indicators for the post-closure care of a landfill for MSW characterized with low lignin content. Waste Manag. 2015;36:222–9.Cossu R, Raga R. Test methods for assessing the biological stability of biodegradable waste. Waste Manag. 2008;28:381–8.Wagland ST, Tyrrel SF. Test methods to aid in the evaluation of the diversion of biodegradable municipal waste (BMW) from landfill. Waste Manag. 2010;30:934–5.Raposo F, De la Rubia MA, Fernandez-Cegri V, Borja R. Anaerobic digestion of solid organic substrates in batch mode: an overview relating to methane yields and experimental procedures. Renew Sust Energ Rev. 2012;16:861–77Pearse LF, Hettiaratchi JP, Kumar S. Towards developing a representative biochemical methane potential (BMP) assay for landfilled municipal solid waste – a review. Bioresour Technol. 2018;254:312–24.Angelidaki I, Alves M, Bolzonella D, Borzacconi L, Campos JL, Guwy AJ, et al. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci Technol. 2009;59:927–34.Parra-Orobio BA, Angulo-Mosquera LS, Loaiza-Gualtero JS, Torres-Lopez WA, Torres-Lozada P. Inoculum mixture optimization as strategy for to improve the anaerobic digestion of food waste for the methane production. J Environ Chem Eng. 2018;6:1529–35.Holliger C, Alves M, Andrade D, Angelidaki I, Astals S, Baier U, et al. Towards a standardization of biomethane potential tests. Water Sci Technol. 2016;74: 2515–22.Bilgili MS, Demir A, Varank G. Evaluation and modeling of biochemical methane potential (BMP) of landfilled solid waste: a pilot scale study. Bioresour Technol. 2009;100:4976–80.Schirmer WN, Juca JFT, Schuler ARP, Holanda S, Jesus LL. Methane production in anaerobic digestion of organic waste from Recife (Brazil) landfill: evaluation in refuse of different ages. Braz J Chem Eng. 2014;31:373–84.Raposo F, Fernandez-Cegri V, De la Rubia MA, Borja R, Beline F, Cavinato C, et al. Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international interlaboratory study. J Chem Technol Biot. 2011;86:1088–98.Boulanger A, Pinet E, Bouix M, Bouchez T, Mansour AA. Effect of inoculum to substrate ratio (I/S) on municipal solid waste anaerobic degradation kinetics and potential. Waste Manag. 2012;32:2258–65.Swati M, Karthikeyan OP, Joseph K, Visvanathan C, Nagendran R. Pilot-scale simulation of landfill bioreactor and controlled dumping of fresh and partially stabilized municipal solid waste in a tropical developing country. J Hazard Toxic Radioact Waste. 2011;15:321–30.Machado SL, Carvalho MF, Gourc JP, Vilar OM, JCF DN. Methane generation in tropical landfills: simplified methods and field results. Waste Manage. 2009;29:153–61Kim H, Townsend TG. Wet landfill decomposition rate determination using methane yield results for excavated waste samples. Waste Manag. 2012;32: 1427–33SSPD. Informe de Disposición Final de Residuos Sólidos 2017 (Solid Waste Final Disposal Report 2017). Bogotá, DC: Super Intendencia de Servicios Públicos Domiciliario; 2018 [in Spanish].Orozco OLP, Escobar YC, Angel MQ. Study of monthly rainfall trends in the upper and middle Cauca river basin, Colombia. Dyna-Colombia. 2011;78: 112–20 [in Spanish].Campuzano R, Gonzalez-Martinez S. Characteristics of the organic fraction of municipal solid waste and methane production: a review. Waste Manag. 2016;54:3–12.Knox K, Braithwaite P, Caine M, Croft B. Brogborough landfill test cells: the final chapter. In: A study of landfill completion in relation to final storage quality (FSQ) criteria. Cagliari: 10th International Waste Management and Landfill Symposium; 2005. p. 3–7.Zheng W, Phoungthong K, Lu F, Shao LM, He PJ. Evaluation of a classification method for biodegradable solid wastes using anaerobic degradation parameters. Waste Manag. 2013;33:2632–40.Caicedo-Concha DM, Sandoval-Cobo JJ, Whiting K. An experimental study on the impact of two dimensional materials in waste disposal sites: what are the implications for engineered landfills? Sustain Environ Res. 2016;26: 255–61APHA, AWWA, WEF. Standard methods for the examination of water and wastewater. 22nd ed. Washington, DC: American Public Health Association, American Water Works Association, Water Environment Federation; 2012.Parra-Orobio BA, Torres P, Torres WA, Marmolejo LF, Vásquez C, Cárdenas LM. Effect of substrate-inoculum ratio on the biochemical methane potential of municipal biowastes. Ing Investig Tecnol. 2015;16:515–26 [in Spanish]Torres P, Perez A. Actividad Metanogénica Específica: una herramienta de control y optimización de sistemas de tratamiento anaerobio de aguas residuales. Ing Recur Nat Y Del Ambient. 2010;(9):5-14Parra-Orobio BA, Donoso-Bravo A, Ruiz-Sanchez JC, Valencia-Molina KJ, Torres-Lozada P. Effect of inoculum on the anaerobic digestion of food waste accounting for the concentration of trace elements. Waste Manag. 2018;71:342–9IGES. 2006 IPCC guidelines for National Greenhouse gas Inventories Volume 5 waste. In: Buendia L, Miwa K, Ngara T, Tanabe K, editors. Eggleston HS. Institute for Global Environmental Strategies: Hayama; 2006.Lay JJ, Li YY, Noike T. Effect of moisture content and chemical nature on methane fermentation characteristics of municipal solid wastes. J Environ Syst Eng. 1996;1996:101–8.Stromberg S, Nistor M, Liu J. Towards eliminating systematic errors caused by the experimental conditions in biochemical methane potential (BMP) tests. Waste Manag. 2014;34:1939–48Yang N, Damgaard A, Scheutz C, Shao LM, He PJ. A comparison of chemical MSW compositional data between China and Denmark. J Environ Sci-China. 2018;74:1–10.Francois V, Feuillade G, Skhiri N, Lagier T, Matejka G. Indicating the parameters of the state of degradation of municipal solid waste. J Hazard Mater. 2006;137:1008–15Bolyard SC, Reinhart DR. Application of landfill treatment approaches for stabilization of municipal solid waste. Waste Manag. 2016;55:22–30.Kelly RJ, Shearer BD, Kim J, Goldsmith CD, Hater GR, Novak JT. Relationships between analytical methods utilized as tools in the evaluation of landfill waste stability. Waste Manag. 2006;26:1349–56.Cardenas-Cleves LM, Marmolejo-Rebellon LF, Torres-Lozada P. Anaerobic codigestion of sugarcane press mud with food waste: effects on hydrolysis stage, methane yield, and synergistic effects. Int J Chem Eng. 2018;2018: 9351848Dong J, Zhao YS, Hong M, Zhang WH. Influence of alkalinity on the stabilization of municipal solid waste in anaerobic simulated bioreactor. J Hazard Mater. 2009;163:717–22Ehrig HJ. Water and element balances of landfills. In: Baccini P, editor. The landfill. Berlin/Heidelberg: Springer; 1989. p. 83–115Berthe C, Redon E, Feuillade G. Fractionation of the organic matter contained in leachate resulting from two modes of landfilling: an indicator of waste degradation. J Hazard Mater. 2008;154:262–71.Ritzkowski M, Stegmann R. Landfill aeration within the scope of post-closure care and its completion. Waste Manag. 2013;33:2074–82.Park JK, Chong YG, Tameda K, Lee NH. Methods for determining the methane generation potential and methane generation rate constant for the FOD model: a review. Waste Manage Res. 2018;36:200–20.Potencial bioquímico de metanoResiduos sólidos urbanoBiogasVertedero tropicalBiochemical methane potentialMunicipal solid wasteBiogasTropical landfillSustainable developmentDesarrollo sostenibleMethane potential and degradation kinetics of fresh and excavated municipal solid waste from a tropical landfill in ColombiaArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/22250b1c-54bd-47eb-8c7a-c8ba0a68d3c3/download3bce4f7ab09dfc588f126e1e36e98a45MD52ORIGINAL2020_methane_potential_degradation.pdf2020_methane_potential_degradation.pdfapplication/pdf1176790https://repository.ucc.edu.co/bitstreams/b91c2854-dc00-4ad0-a049-74be11191662/downloade23eb97fdfe6fa1ebcc3d56e33161ebeMD51THUMBNAIL2020_methane_potential_degradation.pdf.jpg2020_methane_potential_degradation.pdf.jpgGenerated Thumbnailimage/jpeg6002https://repository.ucc.edu.co/bitstreams/82101366-2107-4a89-a4a0-7b0caeba993d/downloadd0119d6aae7e2ef2d8be274584d4dcebMD53TEXT2020_methane_potential_degradation.pdf.txt2020_methane_potential_degradation.pdf.txtExtracted texttext/plain49148https://repository.ucc.edu.co/bitstreams/8212a06a-cf2a-48e5-b967-140f79c0cfe8/download03e1af09f89ab676abdc42e204788b5aMD5420.500.12494/17494oai:repository.ucc.edu.co:20.500.12494/174942024-08-10 21:01:56.95restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo= |