Genetic Algorithm and Simulated Annealing in EE Transmission Expansion Planning

En el presente artículo se muestra la evaluación de dos métodos de optimización heurística, denominados algoritmos genéticos AG y temperado simulado AS (Simulated Annealing), aplicados con el fin de encontrar la mejor solución con el menor costo en la planificación de la expansión de una red de tran...

Full description

Autores:
Martínez Campo, Sergio Daniel
Burgos Rodríguez, Arthur José
Valdez Cervantes, Libis
Rodríguez Arias, Harold
Tipo de recurso:
Investigation report
Fecha de publicación:
2022
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/47628
Acceso en línea:
http://dx.doi.org/10.18687/LACCEI2022.1.1.826
https://hdl.handle.net/20.500.12494/47628
Palabra clave:
AG genetic algorithms
Simulated Annealing AS
Heuristic Optimization
Planning
Network expansion
Electric power transmission
Rights
openAccess
License
NINGUNA
id COOPER2_275258c916af3a77827df9fa54f4891d
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/47628
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Genetic Algorithm and Simulated Annealing in EE Transmission Expansion Planning
title Genetic Algorithm and Simulated Annealing in EE Transmission Expansion Planning
spellingShingle Genetic Algorithm and Simulated Annealing in EE Transmission Expansion Planning
AG genetic algorithms
Simulated Annealing AS
Heuristic Optimization
Planning
Network expansion
Electric power transmission
title_short Genetic Algorithm and Simulated Annealing in EE Transmission Expansion Planning
title_full Genetic Algorithm and Simulated Annealing in EE Transmission Expansion Planning
title_fullStr Genetic Algorithm and Simulated Annealing in EE Transmission Expansion Planning
title_full_unstemmed Genetic Algorithm and Simulated Annealing in EE Transmission Expansion Planning
title_sort Genetic Algorithm and Simulated Annealing in EE Transmission Expansion Planning
dc.creator.fl_str_mv Martínez Campo, Sergio Daniel
Burgos Rodríguez, Arthur José
Valdez Cervantes, Libis
Rodríguez Arias, Harold
dc.contributor.author.none.fl_str_mv Martínez Campo, Sergio Daniel
Burgos Rodríguez, Arthur José
Valdez Cervantes, Libis
Rodríguez Arias, Harold
dc.subject.spa.fl_str_mv AG genetic algorithms
Simulated Annealing AS
Heuristic Optimization
Planning
Network expansion
Electric power transmission
topic AG genetic algorithms
Simulated Annealing AS
Heuristic Optimization
Planning
Network expansion
Electric power transmission
description En el presente artículo se muestra la evaluación de dos métodos de optimización heurística, denominados algoritmos genéticos AG y temperado simulado AS (Simulated Annealing), aplicados con el fin de encontrar la mejor solución con el menor costo en la planificación de la expansión de una red de transmisión. de energía eléctrica, que además de atender la demanda esperada, considera una lista de alternativas candidatas con costo y capacidad de transporte conocidos. Con el desarrollo de los algoritmos AG y AS es posible garantizar la mejor solución de optimización, midiendo el costo computacional de los algoritmos. Se verificó que el método de optimización del Algoritmo Genético es capaz de encontrar la mejor solución óptima a un menor costo computacional, en comparación con el algoritmo de Quenching Simulado.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-12-21T11:49:12Z
dc.date.available.none.fl_str_mv 2022-12-21T11:49:12Z
dc.date.issued.none.fl_str_mv 2022-08-28
dc.type.none.fl_str_mv Avance de investigación no financiada
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_93fc
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_18ws
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/report
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_18ws
status_str acceptedVersion
dc.identifier.isbn.spa.fl_str_mv 978-628-95207-0-5
dc.identifier.issn.spa.fl_str_mv 2414-6390
dc.identifier.uri.spa.fl_str_mv http://dx.doi.org/10.18687/LACCEI2022.1.1.826
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/47628
dc.identifier.bibliographicCitation.spa.fl_str_mv Martínez Campo, S. D., Valdez Cervantes, L., Burgos Rodríguez, A. J., y Rodríguez Arias, H. (2022). Genetic Algorithm and Simulated Annealing in EE Transmission Expansion Planning. "Education, Research and Leadership in Post-pandemic Engineering: Resilient, Inclusive and Sustainable Actions", 1-8. http://dx.doi.org/10.18687/LACCEI2022.1.1.826
identifier_str_mv 978-628-95207-0-5
2414-6390
Martínez Campo, S. D., Valdez Cervantes, L., Burgos Rodríguez, A. J., y Rodríguez Arias, H. (2022). Genetic Algorithm and Simulated Annealing in EE Transmission Expansion Planning. "Education, Research and Leadership in Post-pandemic Engineering: Resilient, Inclusive and Sustainable Actions", 1-8. http://dx.doi.org/10.18687/LACCEI2022.1.1.826
url http://dx.doi.org/10.18687/LACCEI2022.1.1.826
https://hdl.handle.net/20.500.12494/47628
dc.relation.isversionof.spa.fl_str_mv https://laccei.org/LACCEI2022-BocaRaton/full_papers/FP826.pdf
dc.relation.conferenceplace.spa.fl_str_mv Hybrid Event, Boca Raton, Florida- USA
dc.relation.ispartofconference.spa.fl_str_mv 20th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Education, Research and Leadership in Post-pandemic Engineering: Resilient, Inclusive and Sustainable Actions”
dc.relation.ispartofjournal.spa.fl_str_mv Education, Research and Leadership in Post-Pandemic Engineering: Resilient Inclusive and Sustainable Actions
dc.relation.references.spa.fl_str_mv J. H. Holland, “Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence”. The University of Michigan Press, 1975.
H.A.Romero, “Optimización de flujo de carga en los sitemas eléctricos de potencia utilizando algoritmos geneticos” Univerzidad de los Andes Venezuela, 2008.
Algoritmos genéticos UFRJ.
S.Haffner, Otimização Heurística-Recozimento simulado, UFRGS, 2020.
Maneiro, N. (2001). Algoritmos genéticos aplicados a problemas de localización de facilidades. Ph.d. thesis, Universidad de Carabobo.
DE OLIVEIRA, S.A.; DE ALMEIDA, C.R.T.; MONTICELLI, A. Times assíncronos aplicados a métodos heurísticos construtivos de planejamento da expansão da transmissão. In: CONGRESSO BRASILEIRO DE AUTOMATICA - CBA, 12., 1998, Uberlândia. Proceedins... Uberlândia: SBA/UFU, v.III, 1998. p.1029- 1034.
Henderson, S. G., & Nelson, B. L. (2006). Stochastic computer simulation. Handbooks in operations research and management science: simulation, 1-18
DE OLIVEIRA, S.A.; DE ALMEIDA, C.R.T.; MONTICELLI, A. Time assíncrono inicializador de métodos combinatoriais para planejamento da expansão da transmissão. In: SEMINARIO NACIONAL DE PRODUC ´ ¸AO ˜ E TRANSMISSAO DE ENERGIA EL ˜ ETRICA - SNPTEE, 15., 1999, Foz do Iguaçu. Anais... Foz do Iguaçu: CIGRE - Itaipu Binacional, 1999. Grupo VII-GPL/04.
dc.rights.license.none.fl_str_mv NINGUNA
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv NINGUNA
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 1-8 p.
dc.coverage.temporal.spa.fl_str_mv 2022-July
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Electrónica, Santa Marta
Latin American and Caribbean Consortium of Engineering Institutions
dc.publisher.program.spa.fl_str_mv Ingeniería Electrónica
dc.publisher.place.spa.fl_str_mv Santa Marta
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/47df53f6-351a-433a-88fb-16e4e4c22d7d/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814246874313392128
spelling Martínez Campo, Sergio DanielBurgos Rodríguez, Arthur JoséValdez Cervantes, LibisRodríguez Arias, Harold2022-July2022-12-21T11:49:12Z2022-12-21T11:49:12Z2022-08-28978-628-95207-0-52414-6390http://dx.doi.org/10.18687/LACCEI2022.1.1.826https://hdl.handle.net/20.500.12494/47628Martínez Campo, S. D., Valdez Cervantes, L., Burgos Rodríguez, A. J., y Rodríguez Arias, H. (2022). Genetic Algorithm and Simulated Annealing in EE Transmission Expansion Planning. "Education, Research and Leadership in Post-pandemic Engineering: Resilient, Inclusive and Sustainable Actions", 1-8. http://dx.doi.org/10.18687/LACCEI2022.1.1.826En el presente artículo se muestra la evaluación de dos métodos de optimización heurística, denominados algoritmos genéticos AG y temperado simulado AS (Simulated Annealing), aplicados con el fin de encontrar la mejor solución con el menor costo en la planificación de la expansión de una red de transmisión. de energía eléctrica, que además de atender la demanda esperada, considera una lista de alternativas candidatas con costo y capacidad de transporte conocidos. Con el desarrollo de los algoritmos AG y AS es posible garantizar la mejor solución de optimización, midiendo el costo computacional de los algoritmos. Se verificó que el método de optimización del Algoritmo Genético es capaz de encontrar la mejor solución óptima a un menor costo computacional, en comparación con el algoritmo de Quenching Simulado.In the present article, it shows the evaluation of two heuristic optimization methods, called genetic algorithms AG and simulated tempering AS (Simulated Annealing), applied to find the best solution with the lowest cost in planning the expansion of a network transmission system, which, in addition to meeting the expected demand, considers a list of candidate alternatives with known cost and transport capacity. With the development of the AG and AS algorithms, it is possible to guarantee the best optimization solution, measuring the computational cost of the algorithms. It was verified that the Genetic Algorithm optimization method can find the best optimal solution at a lower computational cost, compared to the Simulated Annealing algorithm. All results obtained in this work for the expansion of the system in an optimal way are satisfactory as they also meet all restrictions.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001554748https://orcid.org/0000-0001-9537-0650sergio.martinezc@campusucc.edu.co1-8 p.Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Electrónica, Santa MartaLatin American and Caribbean Consortium of Engineering InstitutionsIngeniería ElectrónicaSanta Martahttps://laccei.org/LACCEI2022-BocaRaton/full_papers/FP826.pdfHybrid Event, Boca Raton, Florida- USA20th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Education, Research and Leadership in Post-pandemic Engineering: Resilient, Inclusive and Sustainable Actions”Education, Research and Leadership in Post-Pandemic Engineering: Resilient Inclusive and Sustainable ActionsJ. H. Holland, “Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence”. The University of Michigan Press, 1975.H.A.Romero, “Optimización de flujo de carga en los sitemas eléctricos de potencia utilizando algoritmos geneticos” Univerzidad de los Andes Venezuela, 2008.Algoritmos genéticos UFRJ.S.Haffner, Otimização Heurística-Recozimento simulado, UFRGS, 2020.Maneiro, N. (2001). Algoritmos genéticos aplicados a problemas de localización de facilidades. Ph.d. thesis, Universidad de Carabobo.DE OLIVEIRA, S.A.; DE ALMEIDA, C.R.T.; MONTICELLI, A. Times assíncronos aplicados a métodos heurísticos construtivos de planejamento da expansão da transmissão. In: CONGRESSO BRASILEIRO DE AUTOMATICA - CBA, 12., 1998, Uberlândia. Proceedins... Uberlândia: SBA/UFU, v.III, 1998. p.1029- 1034.Henderson, S. G., & Nelson, B. L. (2006). Stochastic computer simulation. Handbooks in operations research and management science: simulation, 1-18DE OLIVEIRA, S.A.; DE ALMEIDA, C.R.T.; MONTICELLI, A. Time assíncrono inicializador de métodos combinatoriais para planejamento da expansão da transmissão. In: SEMINARIO NACIONAL DE PRODUC ´ ¸AO ˜ E TRANSMISSAO DE ENERGIA EL ˜ ETRICA - SNPTEE, 15., 1999, Foz do Iguaçu. Anais... Foz do Iguaçu: CIGRE - Itaipu Binacional, 1999. Grupo VII-GPL/04.AG genetic algorithmsSimulated Annealing ASHeuristic OptimizationPlanningNetwork expansionElectric power transmissionGenetic Algorithm and Simulated Annealing in EE Transmission Expansion PlanningAvance de investigación no financiadahttp://purl.org/coar/resource_type/c_18wshttp://purl.org/coar/resource_type/c_93fcinfo:eu-repo/semantics/reportinfo:eu-repo/semantics/acceptedVersionNINGUNAinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.ucc.edu.co/bitstreams/47df53f6-351a-433a-88fb-16e4e4c22d7d/download8a4605be74aa9ea9d79846c1fba20a33MD5120.500.12494/47628oai:repository.ucc.edu.co:20.500.12494/476282024-08-10 21:03:23.753metadata.onlyhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=