Effect of estrous cycle phases on gene expression in bovine oviduct epithelial cells
Antecedentes y Objetivo: El ambiente del oviducto es de particular importancia porque es el sitio de fertilización y desarrollo del embrión. El oviducto, como componente del sistema reproductivo, responde a la hormona ovárica (estradiol [E2] y progesterona [P4]) dependiendo de la fase del ciclo estr...
- Autores:
-
Lopera Vásquez, Ricaurte
Uribe García, Fabián
Rondón Barragán, Iang
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/49022
- Acceso en línea:
- https://hdl.handle.net/20.500.12494/49022
- Palabra clave:
- Celulas epiteliales del oviducto Bovino
Fase del Ciclo estral
Folicular
Expresión genica
Luteal
Oviducto
Bovine oviduct epithelial cells
Estrus phase
Follicular
Oviduct
Gene expression
Luteal
- Rights
- openAccess
- License
- Atribución – Sin Derivar
id |
COOPER2_26bd6c21d7aa9abf19381513621a499c |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/49022 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.none.fl_str_mv |
Effect of estrous cycle phases on gene expression in bovine oviduct epithelial cells |
title |
Effect of estrous cycle phases on gene expression in bovine oviduct epithelial cells |
spellingShingle |
Effect of estrous cycle phases on gene expression in bovine oviduct epithelial cells Celulas epiteliales del oviducto Bovino Fase del Ciclo estral Folicular Expresión genica Luteal Oviducto Bovine oviduct epithelial cells Estrus phase Follicular Oviduct Gene expression Luteal |
title_short |
Effect of estrous cycle phases on gene expression in bovine oviduct epithelial cells |
title_full |
Effect of estrous cycle phases on gene expression in bovine oviduct epithelial cells |
title_fullStr |
Effect of estrous cycle phases on gene expression in bovine oviduct epithelial cells |
title_full_unstemmed |
Effect of estrous cycle phases on gene expression in bovine oviduct epithelial cells |
title_sort |
Effect of estrous cycle phases on gene expression in bovine oviduct epithelial cells |
dc.creator.fl_str_mv |
Lopera Vásquez, Ricaurte Uribe García, Fabián Rondón Barragán, Iang |
dc.contributor.author.none.fl_str_mv |
Lopera Vásquez, Ricaurte Uribe García, Fabián Rondón Barragán, Iang |
dc.subject.none.fl_str_mv |
Celulas epiteliales del oviducto Bovino Fase del Ciclo estral Folicular Expresión genica Luteal Oviducto |
topic |
Celulas epiteliales del oviducto Bovino Fase del Ciclo estral Folicular Expresión genica Luteal Oviducto Bovine oviduct epithelial cells Estrus phase Follicular Oviduct Gene expression Luteal |
dc.subject.other.none.fl_str_mv |
Bovine oviduct epithelial cells Estrus phase Follicular Oviduct Gene expression Luteal |
description |
Antecedentes y Objetivo: El ambiente del oviducto es de particular importancia porque es el sitio de fertilización y desarrollo del embrión. El oviducto, como componente del sistema reproductivo, responde a la hormona ovárica (estradiol [E2] y progesterona [P4]) dependiendo de la fase del ciclo estral. Este estudio tuvo como objetivo dilucidar el efecto del ciclo estral (fases folicular y lútea temprana y tardía) en los patrones de expresión génica en células epiteliales del oviducto bovino (BOEC). Materiales y Métodos: Los oviductos se obtuvieron de animales de matadero sanos, correspondientes a ovarios con folículos dominantes o cuerpo lúteo durante las fases lúteas temprana y tardía. Los BOEC se recuperaron de la istmo (IST) y ampolla (AMP), y los patrones de expresión de genes relacionados con los mecanismos de citocinesis y mitosis (coil en espiral asociado a rho que contiene proteína quinasa y factor de red de comunicación celular 2 [CCN2]), factores de crecimiento (proteína 3 de unión al factor de crecimiento similar a la insulina, receptor del factor de crecimiento epidérmico [EGFR], factor de crecimiento endotelial vascular A y EGFR), mecanismos antioxidantes (glutatión peroxidasa 4 [GPX4]), apoptosis (linfoma de células B 2), complemento componente (C3), metabolismo energético (familia de genes de aldosa reductasa 1-miembro b1 [AKRIB1] y familia de transportadores de solutos 2), receptores de hormonas (receptor de estrógeno 1 y hormona luteinizante/receptor de coriogonadotropina) y glicoproteínas específicas (glucoproteína 1 oviductal). Resultados: Niveles elevados de P4 (fase lútea tardía) afectaron la expresión de genes importantes relacionados con mecanismos antioxidantes (GPX4), metabolismo energético (AKRIB1), factores de crecimiento (IGBP3 y EGFR) y regulación del crecimiento celular (CCN2) en el AMP. Los niveles bajos de P4 (fase lútea temprana) afectaron la expresión de AKR1B1, IGBP3 y CCN2. Además, el estrógeno probablemente tuvo un efecto sobre la expresión de OVPGP en el oviducto bovino. Conclusión: Patrones diferenciales de expresión génica de BOEC en el AMP durante la fase lútea (mecanismos antioxidantes, metabolismo energético, factores de crecimiento y reguladores inmunológicos) y en el IST durante la fase folicular (glucoproteínas) pueden influir en su renovación y proporciones poblacionales, modulando el ambiente del oviducto así como la fisiología de los gametos embriones. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-03-24T13:56:30Z |
dc.date.available.none.fl_str_mv |
2023-03-24T13:56:30Z |
dc.date.issued.none.fl_str_mv |
2023-03-24 |
dc.type.none.fl_str_mv |
Artículos Científicos |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
2231-0916 |
dc.identifier.uri.none.fl_str_mv |
www.doi.org/10.14202/vetworld.2022.1665-1675 https://hdl.handle.net/20.500.12494/49022 |
dc.identifier.bibliographicCitation.none.fl_str_mv |
Lopera-Vásquez, R., Uribe-García, F. y Rondón-Barragán, I. (2023). Effect of estrous cycle phases on gene expression in bovine oviduct epithelial cells. [Articulo, Universidad Cooperativa de Colombia]. Repositorio Institucional UCC. Vet World. 2022 Jul;15(7):1665-1675. doi: 10.14202/vetworld.2022.1665-1675. Epub 2022 Jul 14. PMID: 36185535; PMCID: PMC9394134. |
identifier_str_mv |
2231-0916 www.doi.org/10.14202/vetworld.2022.1665-1675 Lopera-Vásquez, R., Uribe-García, F. y Rondón-Barragán, I. (2023). Effect of estrous cycle phases on gene expression in bovine oviduct epithelial cells. [Articulo, Universidad Cooperativa de Colombia]. Repositorio Institucional UCC. Vet World. 2022 Jul;15(7):1665-1675. doi: 10.14202/vetworld.2022.1665-1675. Epub 2022 Jul 14. PMID: 36185535; PMCID: PMC9394134. |
url |
https://hdl.handle.net/20.500.12494/49022 |
dc.relation.isversionof.none.fl_str_mv |
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9394134/ http://www.veterinaryworld.org/Vol.15/July-2022/9.html |
dc.relation.ispartofjournal.none.fl_str_mv |
Veterinary World |
dc.relation.references.none.fl_str_mv |
Brüssow, K.P., Rátky, J. and Rodriguez-Martinez, H. (2008) Fertilization and early embryonic development in the porcine fallopian tube. Reprod. Domest. Anim., 43(Suppl 2): 245–251. Holt, W.V. and Fazeli, A. (2016) Sperm selection in the female mammalian reproductive tract. Focus on the oviduct: Hypotheses, mechanisms, and new opportunities. Theriogenology, 85(1): 105–112. Hunter, R, (2003) Reflections upon sperm-endosalpingeal and sperm-zona pellucida interactions in vivo and in vitro. Reprod. Domest. Anim., 38(2): 147–154. Leese, H.J., Tay, J.I., Reischl, J. and Downing, S.J. (2001) Formation of fallopian tubal fluid: Role of a neglected epithelium. Reproduction, 121(3): 339–346. Sidrat, T., Khan, A.A., Joo, M.D., Wei, Y., Lee, K.L., Xu, L. and Kong, I.K. (2020) Bovine oviduct epithelial cell-derived culture media and exosomes improve mitochondrial health by restoring metabolic flux during pre-implantation development. Int. J. Mol. Sci., 21(20): 7589. Sostaric, E., Dieleman, S.J., van de Lest, C.H.A., Colenbrander, B., Vos Nuria Garcia-Gil P.L.A. and Gadella, B.M. (2008) Sperm binding properties and secretory activity of the bovine oviduct immediately before and after ovulation. Mol. Reprod. Dev., 75(1): 60–74. Ardon, F., Markello, R.D., Hu, L., Deutsch, Z.I., Tung, C.K., Wu, M. and Suarez, S.S. (2016) Dynamics of bovine sperm interaction with epithelium differ between oviductal isthmus and ampulla1. Biol. Reprod., 95(4): 90. Hunter, R.H.F. (2012) Components of oviduct physiology in eutherian mammals. Biol. Rev., 87(1): 244–255. Barton, B., Herrera, G., Anamthathmakula, P., Rock, J., Willie, A., Harris, E., Takemaru, K.I. and Winuthayanon, W. (2020) Roles of steroid hormones in oviductal function. Reproduction, 159(3): R125–R137. Abe, H., Onodera, M., Sugawara, S., Satoh, T. and Hoshi, H. (1999) Ultrastructural features of goat oviductal secretory cells at follicular and luteal phases of the oestrous cycle. J. Anat., 195(Pt 4): 515–521. Yániz, J.L., Lopez-Gatius, F., Santolaria, P. and Mullins, K.J. (2000) Study of the functional anatomy of bovine oviductal mucosa. Anat. Rec., 260(3): 268–278. Buhi, W.C., Alvarez, I.M. and Kouba, A.J. (2000) Secreted proteins of the oviduct. Cells Tissues Organs, 166(2): 165–179. Ulbrich, S.E., Kettler, A. and Einspanier, R. (2003) Expression and localization of estrogen receptor α, estrogen receptor β and progesterone receptor in the bovine oviduct in vivo and in vitro. J. Steroid Biochem. Mol. Biol., 84(2): 279–289. Aviles, M., Coy, P. and Rizos, D. (2015) The oviduct: A key organ for the success of early reproductive events. Anim. Front., 5(1): 25–31. Maillo, V., Gaora, P.Ó., Forde, N., Besenfelder, U., Havlicek, V., Burns, G.W., Spencer, T.E., Gutierrez- Adan, A., Lonergan, P. and Rizos, D. (2015) Oviductembryo interactions in cattle: Two-way traffic or a one-way street? Biol. Reprod., 92(6): 144. Schmaltz-Panneau, B., Cordova, A., Dhorne-Pollet, S., Hennequet-Antier, C., Uzbekova, S., Martinot, E., Doret, S., Martin, P., Mermillod, P. and Locatelli, Y. (2014) Early bovine embryos regulate oviduct epithelial cell gene expression during in vitro co-culture. Anim. Reprod. Sci., 149(3–4): 103–116. Besenfelder, U., Brem, G. and Havlicek, V. (2020) Review: Environmental impact on early embryonic development in the bovine species. Animal, 14(S1): s103–s112. Gandolfi, F. and Moor, R.M. (1987) Stimulation of early embryonic development in the sheep by coculture with oviduct epithelial cells. J. Reprod. Fertil., 81(1): 23–28. Cordova, A., Perreau, C., Uzbekova, S., Ponsart, C., Locatelli, Y. and Mermillod, P. (2014) Development rate and gene expression of IVP bovine embryos cocultured with bovine oviduct epithelial cells atearly or late stage of preimplantation development. Theriogenology, 81(9): 1163–1173. Wolf, E., Arnold, G., Bauersachs, S., Beier, H., Blum, H., Einspanier, R., Fröhlich, T., Herrler, A., Hiendleder, S., Kölle, S., Prelle, K., Reichenbach, H.D., Stojkovic, M., Wenigerkind, H. and Sinowatz, F. (2003) Embryo-maternal communication in bovine strategies for deciphering a complex cross-talk. Reprod. Domest. Anim., 38(4): 276–289. Boice, M.L., McCarthy, T.J., Mavrogianis, P.A., Fazlebas, A.T. and Verhage, H.G. (1990) Localization of oviductal glycoproteins within the zona pellucida and perivitelline space of ovulated ova and early embryos in baboons (Papio anubis). Biol. Reprod., 43(2): 340–346. Buhi, W.C. (2002) Characterization and biological roles of oviduct-specific, estrogen-dependent glycoprotein. Reproduction, 123(3): 355–362. Cerny, K.L., Garrett, E., Walton, A.J., Anderson, L.H. and Bridges, P.J. (2015) A transcriptome analysis of bovine oviductal epithelial cells collected during the follicular phase versus the luteal phase of the estrous cycle. Reprod. Biol. Endocrinol., 13 : 84. Gonella-Diaza, A.M., da Andrade, S.C.S., Sponchiado, M., Pugliesi, G., Mesquita, F.S., Van Hoeck, V., de Francisco Strefezzi, R., Gasparin, G.R., Coutinho, L.L. and Binelli, M. (2015) Size of the ovulatory follicle dictates spatial differences in the oviductal transcriptome in cattle. PLoS One, 10(12): e0145321. Bauersachs, S., Blum, H., Mallok, S., Wenigerkind, H., Rief, S., Prelle, K. and Wolf, E. (2003) Regulation of ipsilateral and contralateral bovine oviduct epithelial cell function in the postovulation period: A transcriptomics approach. Biol Reprod., 68(4): 1170–1177. Ireland, J.J., Murphee, R.L. and Coulson, P.B. (1980) Accuracy of predicting stages of bovine estrous cycle by gross appearance of the corpus luteum1. J. Dairy Sci., 63(1): 155–160 Rottmayer, R., Ulbrich, S.E., Kölle, S., Prelle, K., Neumueller, C., Sinowatz, F., Meyer, H.H.D., Wolf, E. and Hiendleder, S. (2006) A bovine oviduct epithelial cell suspension culture system suitable for studying embryo-maternal interactions: Morphological and functional characterization. Reproduction, 132(4): 637–648. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P. and Drummond, A. (2012) Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12): 1647–1649. Livak, K.J. and Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25(4): 402–408. Maillo, V., de Frutos, C., O’Gaora, P., Forde, N., Burns, G.W., Spencer, T.E., Gutierrez-Adan, A., Lonergan, P. and Rizos, D. (2016) Spatial differences in gene expression in the bovine oviduct. Reprod. Camb. Engl., 152(1): 37–46. Swangchan-Uthai, T., Walsh, S.W., Alexander, S.L.H., Cheng, Z., Crowe, M.A., Evans, A.C.O. and Wathes, D.C. (2011) Comparison of mRNA for IGFs and their binding proteins in the oviduct during the peri-oestrous period between dairy heifers and lactating cows. Reprod. Camb. Engl., 142(3): 457–465. Bauersachs, S., Rehfeld, S., Ulbrich, S.E., Mallok, S., Prelle, K., Wenigerkind, H., Einspanier, R., Blum, H. and Wolf, E. (2004) Monitoring gene expression changes in bovine oviduct epithelial cells during the oestrous cycle. J. Mol. Endocrinol., 32(2): 449–466. Eriksen, T., Terkelsen, O., Hyttel, P. and Greve, T. (1994) Ultrastructural features of secretory cells in the bovine oviduct epithelium. Anat. Embryol. (Berl), 190(6): 583–590. Abe, H. and Hoshi, H. (1997) Bovine oviductal epithelial cells: Their cell culture and applications in studies for reproductive biology. Cytotechnology, 23(1–3): 171–183. Hunter, R.H. and Wilmut, I. (1984) Sperm transport in the cow: Peri-ovulatory redistribution of viable cells within the oviduct. Reprod. Nutr. Dev., 24(5A): 597–608. Shirley, B. and Reeder, R.L. (1996) Cyclic changes in the ampulla of the rat oviduct. J. Exp. Zool., 276(2): 164–173. Ayen, E., Shahrooz, R. and Kazemie, S. (2012) Histological and histomorphometrical changes of different regions of oviduct during follicular and luteal phases of estrus cycle in adult Azarbaijan buffalo. Iran. J. Vet. Res., 13(1): 42–48. Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D., Darnell, J. (2000) Molecular Cell Biology. 4th ed. WH Freeman, New York. Olsen, S.L., Li, S. and Winuthayanon, W. (2018) Embryo transport. In: Skinner, M.K., editor. Encyclopedia of Reproduction. 2nd ed. Academic Press, Oxford. p357– 363. Available from: https://www.sciencedirect.com/science/ article/pii/B9780128012383644896. Retrieved on 23-06-2021. Morris, D. and Diskin, M. (2008) Effect of progesterone on embryo survival. Anim. Int. J. Anim. Biosci., 2(8): 1112–1119. Julian, L. and Olson, M.F. (2014) Rho-associated coiledcoil containing kinases (ROCK). Small GTPases, 5(2 ): e29846. Li, J., Tang, J.X., Cheng, J.M., Hu, B., Wang, Y.Q., Aalia, B., Li, X.U., Jin, C., Wang, X.X., Deng, S.l., Zhang, Y., Chen, S.R., Qian, W.P., Sun, Q.Y., Huang, X.X. and Liu, YX. (2018) Cyclin B2 can compensate for cyclin B1 in oocyte meiosis I. J. Cell Biol., 217(11): 3901–3911. García, D.C., Valdecantos, P.A., Miceli, D.C. and Roldán- Olarte, M. (2017) Genistein affects proliferation and migration of bovine oviductal epithelial cells. Res. Vet. Sci., 114 : 59–63. Rageh, M.A., Moussad, E.E., Wilson, A.K. and Brigstock, D.R. (2001) Steroidal regulation of connective tissue growth factor (CCN2; CTGF) synthesis in the mouse uterus. Mol. Pathol., 54(5): 338–346. Stone, W.L., Leavitt, L. and Varacallo, M. (2021) Physiology, Growth Factor. StatPearls Publishing, Treasure Island, FL. Winger, Q.A., de los Rios, P., Han, V.K., Armstrong, D.T., Hill, D.J. and Watson, A.J. (1997) Bovine oviductal and embryonic insulin-like growth factor binding proteins: Possible regulators of “embryotrophic” insulin-like growth factor circuits. Biol. Reprod., 56(6): 1415–1423. Pushpakumara, P.G., Robinson, R.S., Demmers, K.J., Mann, G.E., Sinclair, K.D., Webb, R. and Wathes, D.C. (2002) Expression of the insulin-like growth factor (IGF) system in the bovine oviduct at oestrus and during early pregnancy. Reproduction, 123(6): 859–868. Stevenson, K.R. and Wathes, D.C. (1996) Insulin-like growth factors and their binding proteins in the ovine oviduct during the oestrous cycle. J. Reprod. Fertil., 108(1): 31–40. Hamdi, M., Sánchez-Calabuig, M.J., Rodríguez-Alonso, B., Arnal, S.B., Roussi, K., Sturmey, R., Gutiérrez-Adán, A., Lonergan, P. and Rizos, D. (2019) Gene expression and metabolic response of bovine oviduct epithelial cells to the early embryo. Reproduction, 158(1): 85–94. Herbst, R.S. (2004) Review of epidermal growth factor receptor biology. Int. J. Radiat. Oncol. Biol. Phys., 59(2 Suppl): 21–26. Zeng, F. and Harris, R.C. (2014) Epidermal growth factor, from gene organization to bedside. Semin. Cell Dev. Biol., 28 : 2–11. Wijayagunawardane, M.P.B., Hambruch, N., Haeger, J.D. and Pfarrer, C. (2015) Effect of epidermal growth factor (EGF) on the phosphorylation of mitogen-activated protein kinase (MAPK) in the bovine oviduct in vitro: Alteration by heat stress. J. Reprod. Dev., 61(5): 383–389. Knott, A.W., Juno, R.J., Jarboe, M.D., Zhang, Y., Profitt, S.A., Thoerner, J.C., Erwin, C.R. and Warner, B.W. (2003) EGF receptor signaling affects bcl-2 family gene expression and apoptosis after massive small bowel resection. J. Pediatr. Surg., 38(6): 875–880. Takatsu, K., Kuse, M., Yoshioka, S. and Acosta, T.J. (2015) Expression of epidermal growth factor (EGF) and its receptor in bovine endometrium throughout the luteal phase: Effects of EGF on prostaglandin production in endometrial cells. Anim. Reprod., 12(2): 328–335. Suzuki, T., Sasano, H., Takaya, R., Fukaya, T., Yajima, A. and Nagura, H. (1998) Cyclic changes of vasculature and vascular phenotypes in normal human ovaries. Hum. Reprod., 13(4): 953–959. Pillai, V.V., Weber, D.M., Phinney, B.S. and Selvaraj, V. (2017) Profiling of proteins secreted in the bovine oviduct reveals diverse functions of this luminal microenvironment. PLoS One, 12(11): e0188105. Melincovici, C.S., Boşca, A.B., Şuşman, S., Mărginean, M., Mihu, C., Istrate, M., Moldovan, I.M., Roman, A.L. and Mihu, C.M. (2018) Vascular endothelial growth factor (VEGF) key factor in normal and pathological angiogenesis. Rom. J. Morphol. Embryol., 59(2): 455–467. Fontes, P.K., Ereno, R.L., Peixoto, A.R., Carvalho, R.F., Scarano, W.R., Trinca, L.A., Barros, C.M. and de Souza Castilho, A.C. (2018) Can the antral follicular count modulate the gene expression of bovine oviducts in Aberdeen Angus and Nelore heifers? PLoS One, 13(8): e0202017. Lam, P.M., Briton-Jones, C., Cheung, C.K., Lok, I.H., Yuen, P.M., Cheung, L.P. and Haines, C. (2003) Vascular endothelial growth factor in the human oviduct: Localization and regulation of messenger RNA expression in vivo. Biol. Reprod., 68(5): 1870–1876. Kürüm, A., Karahan, S., Kocamiş, H., Çinar, M. and Ergün, E. (2019) Determination of antioxidants in bovine oviduct epithelial cell culture isolated at different periods of the estrous cycle. Turk. J. Vet. Anim. Sci., 43 : 448–455. Kurum, A., Deprem, T., Kocamis, H. and Karahan, S. (2016) Immunohistochemical expression of antioxidants in bovine oviduct epithelial cells of estral and luteal phases. Ankara Üniv. Vet. Fak. Derg., 63(2): 103–110. Margis, R., Dunand, C., Teixeira, F.K. and Margis- Pinheiro, M. (2008) Glutathione peroxidase family an evolutionary overview. FEBS J., 275(15): 3959–3970. Imai, H., Hakkaku, N., Iwamoto, R., Suzuki, J., Suzuki, T., Tajima, Y., Konishi, K., Minami, S., Ichinose, S., Ishizaka, K., Shioda, S., Arata, S., Nishimura, M., Naito, S. and Nakagawa, Y. (2009) Depletion of selenoprotein GPx4 in spermatocytes causes male infertility in mice. J. Biol. Chem., 284(47): 32522–32532. Lapointe, J., Kimmins, S., Maclaren, L.A. and Bilodeau, J.F. (2005) Estrogen selectively upregulates the phospholipid hydroperoxide glutathione peroxidase in the oviducts. Endocrinology, 146(6): 2583–2592. Adams, C.M., Clark-Garvey, S., Porcu, P. and Eischen, C.M. (2019) Targeting the Bcl-2 family in B cell lymphoma. Front. Oncol., 8 : 636. Urhausen, C., Beineke, A., Piechotta, M., Karre, I., Beyerbach, M. and Günzel-Apel, A.R. (2011) Apoptosis in the uterotubal junction and oviductal isthmus during the estrous cycle of the bitch. Anat. Rec. (Hoboken), 294(2): 342–348. Ricklin, D., Reis, E.S., Mastellos, D.C., Gros, P. and Lambris, J.D. (2016) Complement component C3 the “Swiss Army Knife” of innate immunity and host defense. Immunol. Rev., 274(1): 33–58. Anderson, D.J., Abbott, A.F. and Jack, R.M. (1993) The role of complement component C3b and its receptors in sperm-oocyte interaction. Proc. Natl. Acad. Sci. U. S. A., 90(21): 10051–10055. Lee, Y.L., Lee, K.F., Xu, J.S., He, Q.Y., Chiu, J.F., Lee, W.M., Luk, J.M. and Yeung, W.S.B. (2004) The embryotrophic activity of oviductal cell-derived complement C3b and iC3b, a novel function of complement protein in reproduction. J. Biol. Chem., 279(13): 12763–12768. Xu, J.S., Cheung, T.M., Chan, S.T.H., Ho, P.C. and Yeung, W.S.B. (2001) Temporal effect of human oviductal cell and its derived embryotrophic factors on mouse embryo development. Biol. Reprod., 65(5): 1481–1488. Tse, P.K., Lee, Y.L., Chow, W.N., Luk, J.M.C., Lee, K.F. and Yeung, W.S.B. (2008) Preimplantation embryos cooperate with oviductal cells to produce embryotrophic inactivated complement-3b. Endocrinology, 149(3): 1268–1276. Hugentobler, S.A., Humpherson, P.G., Leese, H.J., Sreenan, J.M. and Morris, D.G. (2008) Energy substrates in bovine oviduct and uterine fluid and blood plasma during the oestrous cycle. Mol. Reprod. Dev., 75(3): 496–503. Penning, T.M. (2015) The Aldo-Keto reductases (AKRs): Overview. Chem. Biol. Interact., 234 : 236–246 Jurisicova, A. and Acton, B.M. (2004) Deadly decisions: The role of genes regulating programmed cell death in human preimplantation embryo development. Reprod. Camb. Engl., 128(3): 281–291. El-Sayed, A., Hoelker, M., Rings, F., Salilew, D., Jennen, D., Tholen, E., Sirard, M.A., Schellander, K. and Tesfaye, D. (2007) Large-scale transcriptional analysis of bovine embryo biopsies in relation to pregnancy success after transfer to recipients. Physiol. Genom., 28(1): 84–96. Zhao, F.Q., Okine, E.K. and Kennelly, J.J. (1999) Glucose transporter gene expression in bovine mammary gland. J. Anim. Sci., 77(9): 2517–2522. Hocquette, J.F., Sauerwein, H., Higashiyama, Y., Picard, B. and Abe, H. (2006) Prenatal developmental changes in glucose transporters, intermediary metabolism and hormonal receptors related to the IGF/insulin-glucose axis in the heart and adipose tissue of bovines. Reprod. Nutr. Dev., 46(3): 257–272. Nishimoto, H., Matsutani, R., Yamamoto, S., Takahashi, T., Hayashi, K.G., Miyamoto, A., Hamano, S. and Tetsuka, M. (2006) Gene expression of glucose transporter (GLUT) 1, 3 and 4 in bovine follicle and corpus luteum. J. Endocrinol., 188(1): 111–1119. Nishizaki, T. and Matsuoka, T. (1998) Low glucose enhances Na+/glucose transport in bovine brain artery endothelial cells. Stroke, 29(4): 844–849. Arhin, S.K., Zhao, J., Ji, X., Shi, C., Tang, J., Gu, Y., Xi, H., Cheng, J., Qu, X., Shi, H., Jin, X. and Lv, J. (2019) Multiple facilitated glucose transporters SLC2As are required for normal mouse preimplantation embryo development. Am. J. Transl. Res., 11(6): 3412–3425. Lim, C.H., Jeong, W., Lim, W., Kim, J., Song, G. and Bazer, F.W. (2012) Differential expression of select members of the slc family of genes and regulation of expression by MicroRNAs in the chicken oviduct1. Biol. Reprod., 87(6): 145. Heldring, N., Pike, A., Andersson, S., Matthews, J., Cheng, G., Hartman, J., Tujague, M., Ström, A., Treuter, E., Warner, M. and Gustafsson, J.A. (2007) Estrogen receptors: How do they signal and what are their targets. Physiol. Rev., 87(3): 905–931. Wijayagunawardane, M.P.B., Miyamoto, A., Cerbito, W.A., Acosta, T.J., Takagi, M. and Sato, K. (1998) Local distributions of oviductal estradiol, progesterone, prostaglandins, oxytocin and endothelin-1 in the cyclic cow. Theriogenology, 49(3): 607–618. Schürks, M., Rist, P.M. and Kurth, T. (2010) Sex hormone receptor gene polymorphisms and migraine: A systematic review and meta-analysis. Cephalalgia, 30(11): 1306–1328 Kölle, S., Dubielzig, S., Reese, S., Wehrend, A., König, P. and Kummer, W. (2009) Ciliary transport, gamete interaction, and effects of the early embryo in the oviduct: Ex vivo analyses using a new digital videomicroscopic system in the cow. Biol. Reprod., 81(2): 267–274. Winuthayanon, W., Bernhardt, M.L., Padilla-Banks, E., Myers, P.H., Edin, M.L., Lih, F.B., Hewitt, S.C., Korach, K.S. and Williams, C.J. (2015) Oviductal estrogen receptor α signaling prevents protease-mediated embryo death. eLife, 4 : e10453. Li, D.Y., Zhang, L., Yang, M.Y., Xu, H.L., Yin, H.D., Li, Y. and Zhu, Q. (2013) Effect of luteinizing hormone/choriogonadotropin receptor (LHCGR) gene on chicken reproductive traits. Mol. Biol. Rep., 40(12): 7111–7116. Sun, T., Lei, Z.M. and Rao, C.V. (1997) A novel regulation of the oviductal glycoprotein gene expression by luteinizing hormone in bovine tubal epithelial cells. Mol. Cell Endocrinol., 131(1): 97–108. Palma-Vera, S., Einspanier, R. and Schoen, J. (2014) Bovine oviductal epithelial cells: Long term culture characterization and impact of insulin on cell morphology. Reprod. Biol., 14(3): 206–212. |
dc.rights.license.none.fl_str_mv |
Atribución – Sin Derivar |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución – Sin Derivar http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
1665–1675 p. |
dc.coverage.temporal.none.fl_str_mv |
15(7) |
dc.publisher.none.fl_str_mv |
Anjum V. Sherasiya Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina Veterinaría y Zootecnia, Ibagué |
dc.publisher.program.none.fl_str_mv |
Medicina veterinaria y zootecnia |
dc.publisher.place.none.fl_str_mv |
Ibagué |
publisher.none.fl_str_mv |
Anjum V. Sherasiya Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina Veterinaría y Zootecnia, Ibagué |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/b3602502-3b0d-43cf-80a6-905ae9ce5b7f/download https://repository.ucc.edu.co/bitstreams/5bfb9a78-0a18-4936-8832-ddd8f102fa89/download https://repository.ucc.edu.co/bitstreams/260b259d-fef7-430f-94bf-1bf3a03fc4c9/download https://repository.ucc.edu.co/bitstreams/31d2d08f-83bd-4b49-97c7-1568523a165b/download https://repository.ucc.edu.co/bitstreams/0af7e325-fc6c-493c-9033-a0da16ed527a/download https://repository.ucc.edu.co/bitstreams/f5be519f-42ea-4a38-80cd-ed97d32889cd/download https://repository.ucc.edu.co/bitstreams/d1805432-26d1-4523-9888-909b5da7bf6b/download |
bitstream.checksum.fl_str_mv |
a33abffe9f93ca96ae1b9ab703213614 a202afd7123eeec989ad59b200b453b7 3bce4f7ab09dfc588f126e1e36e98a45 b4bc1cdf51d42c5fc21e26a59fd3a7b9 06bc35b14050e1082ac618a9648b4e26 376cacb62c9a0caa5c03ffbf0a6d4072 8db353058e1714c14c273e94a197e27c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1811565569437073408 |
spelling |
Lopera Vásquez, RicaurteUribe García, FabiánRondón Barragán, Iang15(7)2023-03-24T13:56:30Z2023-03-24T13:56:30Z2023-03-242231-0916www.doi.org/10.14202/vetworld.2022.1665-1675https://hdl.handle.net/20.500.12494/49022Lopera-Vásquez, R., Uribe-García, F. y Rondón-Barragán, I. (2023). Effect of estrous cycle phases on gene expression in bovine oviduct epithelial cells. [Articulo, Universidad Cooperativa de Colombia]. Repositorio Institucional UCC. Vet World. 2022 Jul;15(7):1665-1675. doi: 10.14202/vetworld.2022.1665-1675. Epub 2022 Jul 14. PMID: 36185535; PMCID: PMC9394134.Antecedentes y Objetivo: El ambiente del oviducto es de particular importancia porque es el sitio de fertilización y desarrollo del embrión. El oviducto, como componente del sistema reproductivo, responde a la hormona ovárica (estradiol [E2] y progesterona [P4]) dependiendo de la fase del ciclo estral. Este estudio tuvo como objetivo dilucidar el efecto del ciclo estral (fases folicular y lútea temprana y tardía) en los patrones de expresión génica en células epiteliales del oviducto bovino (BOEC). Materiales y Métodos: Los oviductos se obtuvieron de animales de matadero sanos, correspondientes a ovarios con folículos dominantes o cuerpo lúteo durante las fases lúteas temprana y tardía. Los BOEC se recuperaron de la istmo (IST) y ampolla (AMP), y los patrones de expresión de genes relacionados con los mecanismos de citocinesis y mitosis (coil en espiral asociado a rho que contiene proteína quinasa y factor de red de comunicación celular 2 [CCN2]), factores de crecimiento (proteína 3 de unión al factor de crecimiento similar a la insulina, receptor del factor de crecimiento epidérmico [EGFR], factor de crecimiento endotelial vascular A y EGFR), mecanismos antioxidantes (glutatión peroxidasa 4 [GPX4]), apoptosis (linfoma de células B 2), complemento componente (C3), metabolismo energético (familia de genes de aldosa reductasa 1-miembro b1 [AKRIB1] y familia de transportadores de solutos 2), receptores de hormonas (receptor de estrógeno 1 y hormona luteinizante/receptor de coriogonadotropina) y glicoproteínas específicas (glucoproteína 1 oviductal). Resultados: Niveles elevados de P4 (fase lútea tardía) afectaron la expresión de genes importantes relacionados con mecanismos antioxidantes (GPX4), metabolismo energético (AKRIB1), factores de crecimiento (IGBP3 y EGFR) y regulación del crecimiento celular (CCN2) en el AMP. Los niveles bajos de P4 (fase lútea temprana) afectaron la expresión de AKR1B1, IGBP3 y CCN2. Además, el estrógeno probablemente tuvo un efecto sobre la expresión de OVPGP en el oviducto bovino. Conclusión: Patrones diferenciales de expresión génica de BOEC en el AMP durante la fase lútea (mecanismos antioxidantes, metabolismo energético, factores de crecimiento y reguladores inmunológicos) y en el IST durante la fase folicular (glucoproteínas) pueden influir en su renovación y proporciones poblacionales, modulando el ambiente del oviducto así como la fisiología de los gametos embriones.Background and Aim: The oviduct environment is of particular importance because it is the site of fertilization and early embryo development. The oviduct, as a component of the reproductive system, responds to ovarian hormone (estradiol [E2] and progesterone [P4]) stimuli depending on the estrous cycle phase. This study aimed to elucidate the effect of estrous cycle phases (follicular and early and late luteal phases) on gene expression patterns in bovine oviduct epithelial cells (BOECs). Materials and Methods: Oviducts were obtained from healthy slaughterhouse animals, corresponding to ipsilateral ovaries with dominant follicles or corpus luteum during early and late luteal phases. BOECs were recovered from the isthmus (IST) and ampulla (AMP), and the expression patterns of genes related to cytokinesis and mitosis mechanisms (rho-associated coiled-coil containing protein kinase and cellular communication network factor 2 [CCN2]), growth factors (insulin-like growth factor-binding protein 3, epidermal growth factor receptor [EGFR], vascular endothelial growth factor A, and EGFR), antioxidant mechanisms (glutathione peroxidase 4 [GPX4]), apoptosis (B-cell lymphoma 2), complement component (C3), energy metabolism (aldose reductase gene family 1-member b1 [AKRIB1] and solute carrier family 2), hormone receptors (estrogen receptor 1 and luteinizing hormone/choriogonadotropin receptor), and specific glycoproteins (oviductal glycoprotein 1) were analyzed. Results: High P4 levels (late luteal phase) affected the expression of important genes related to antioxidant mechanisms (GPX4), energy metabolism (AKRIB1), growth factors (IGBP3 and EGFR), and cell growth regulation (CCN2) in the AMP. Low P4 levels (early luteal phase) affected the expression of AKR1B1, IGBP3, and CCN2. In addition, estrogen likely had an effect on OVPGP expression in the cattle oviduct. Conclusion: Differential gene expression patterns of BOECs in the AMP during the luteal phase (antioxidant mechanisms, energy metabolism, growth factors, and immunological regulators) and in the IST during the follicular phase (glycoproteins) may influence their renewal and population proportions, modulating the oviduct environment as well as gamete and embryo physiology.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000948888https://orcid.org/0000-0001-6792-1961https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000003130ricaurte.lopera@campusucc.edu.cohttps://scholar.google.com/citations?user=arYjK3EAAAAJ&hl=es1665–1675 p.Anjum V. SherasiyaUniversidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina Veterinaría y Zootecnia, IbaguéMedicina veterinaria y zootecniaIbaguéhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9394134/http://www.veterinaryworld.org/Vol.15/July-2022/9.htmlVeterinary WorldBrüssow, K.P., Rátky, J. and Rodriguez-Martinez, H. (2008) Fertilization and early embryonic development in the porcine fallopian tube. Reprod. Domest. Anim., 43(Suppl 2): 245–251.Holt, W.V. and Fazeli, A. (2016) Sperm selection in the female mammalian reproductive tract. Focus on the oviduct: Hypotheses, mechanisms, and new opportunities. Theriogenology, 85(1): 105–112.Hunter, R, (2003) Reflections upon sperm-endosalpingeal and sperm-zona pellucida interactions in vivo and in vitro. Reprod. Domest. Anim., 38(2): 147–154.Leese, H.J., Tay, J.I., Reischl, J. and Downing, S.J. (2001) Formation of fallopian tubal fluid: Role of a neglected epithelium. Reproduction, 121(3): 339–346.Sidrat, T., Khan, A.A., Joo, M.D., Wei, Y., Lee, K.L., Xu, L. and Kong, I.K. (2020) Bovine oviduct epithelial cell-derived culture media and exosomes improve mitochondrial health by restoring metabolic flux during pre-implantation development. Int. J. Mol. Sci., 21(20): 7589.Sostaric, E., Dieleman, S.J., van de Lest, C.H.A., Colenbrander, B., Vos Nuria Garcia-Gil P.L.A. and Gadella, B.M. (2008) Sperm binding properties and secretory activity of the bovine oviduct immediately before and after ovulation. Mol. Reprod. Dev., 75(1): 60–74.Ardon, F., Markello, R.D., Hu, L., Deutsch, Z.I., Tung, C.K., Wu, M. and Suarez, S.S. (2016) Dynamics of bovine sperm interaction with epithelium differ between oviductal isthmus and ampulla1. Biol. Reprod., 95(4): 90.Hunter, R.H.F. (2012) Components of oviduct physiology in eutherian mammals. Biol. Rev., 87(1): 244–255.Barton, B., Herrera, G., Anamthathmakula, P., Rock, J., Willie, A., Harris, E., Takemaru, K.I. and Winuthayanon, W. (2020) Roles of steroid hormones in oviductal function. Reproduction, 159(3): R125–R137.Abe, H., Onodera, M., Sugawara, S., Satoh, T. and Hoshi, H. (1999) Ultrastructural features of goat oviductal secretory cells at follicular and luteal phases of the oestrous cycle. J. Anat., 195(Pt 4): 515–521.Yániz, J.L., Lopez-Gatius, F., Santolaria, P. and Mullins, K.J. (2000) Study of the functional anatomy of bovine oviductal mucosa. Anat. Rec., 260(3): 268–278.Buhi, W.C., Alvarez, I.M. and Kouba, A.J. (2000) Secreted proteins of the oviduct. Cells Tissues Organs, 166(2): 165–179.Ulbrich, S.E., Kettler, A. and Einspanier, R. (2003) Expression and localization of estrogen receptor α, estrogen receptor β and progesterone receptor in the bovine oviduct in vivo and in vitro. J. Steroid Biochem. Mol. Biol., 84(2): 279–289.Aviles, M., Coy, P. and Rizos, D. (2015) The oviduct: A key organ for the success of early reproductive events. Anim. Front., 5(1): 25–31.Maillo, V., Gaora, P.Ó., Forde, N., Besenfelder, U., Havlicek, V., Burns, G.W., Spencer, T.E., Gutierrez- Adan, A., Lonergan, P. and Rizos, D. (2015) Oviductembryo interactions in cattle: Two-way traffic or a one-way street? Biol. Reprod., 92(6): 144.Schmaltz-Panneau, B., Cordova, A., Dhorne-Pollet, S., Hennequet-Antier, C., Uzbekova, S., Martinot, E., Doret, S., Martin, P., Mermillod, P. and Locatelli, Y. (2014) Early bovine embryos regulate oviduct epithelial cell gene expression during in vitro co-culture. Anim. Reprod. Sci., 149(3–4): 103–116.Besenfelder, U., Brem, G. and Havlicek, V. (2020) Review: Environmental impact on early embryonic development in the bovine species. Animal, 14(S1): s103–s112.Gandolfi, F. and Moor, R.M. (1987) Stimulation of early embryonic development in the sheep by coculture with oviduct epithelial cells. J. Reprod. Fertil., 81(1): 23–28.Cordova, A., Perreau, C., Uzbekova, S., Ponsart, C., Locatelli, Y. and Mermillod, P. (2014) Development rate and gene expression of IVP bovine embryos cocultured with bovine oviduct epithelial cells atearly or late stage of preimplantation development. Theriogenology, 81(9): 1163–1173.Wolf, E., Arnold, G., Bauersachs, S., Beier, H., Blum, H., Einspanier, R., Fröhlich, T., Herrler, A., Hiendleder, S., Kölle, S., Prelle, K., Reichenbach, H.D., Stojkovic, M., Wenigerkind, H. and Sinowatz, F. (2003) Embryo-maternal communication in bovine strategies for deciphering a complex cross-talk. Reprod. Domest. Anim., 38(4): 276–289.Boice, M.L., McCarthy, T.J., Mavrogianis, P.A., Fazlebas, A.T. and Verhage, H.G. (1990) Localization of oviductal glycoproteins within the zona pellucida and perivitelline space of ovulated ova and early embryos in baboons (Papio anubis). Biol. Reprod., 43(2): 340–346.Buhi, W.C. (2002) Characterization and biological roles of oviduct-specific, estrogen-dependent glycoprotein. Reproduction, 123(3): 355–362.Cerny, K.L., Garrett, E., Walton, A.J., Anderson, L.H. and Bridges, P.J. (2015) A transcriptome analysis of bovine oviductal epithelial cells collected during the follicular phase versus the luteal phase of the estrous cycle. Reprod. Biol. Endocrinol., 13 : 84.Gonella-Diaza, A.M., da Andrade, S.C.S., Sponchiado, M., Pugliesi, G., Mesquita, F.S., Van Hoeck, V., de Francisco Strefezzi, R., Gasparin, G.R., Coutinho, L.L. and Binelli, M. (2015) Size of the ovulatory follicle dictates spatial differences in the oviductal transcriptome in cattle. PLoS One, 10(12): e0145321.Bauersachs, S., Blum, H., Mallok, S., Wenigerkind, H., Rief, S., Prelle, K. and Wolf, E. (2003) Regulation of ipsilateral and contralateral bovine oviduct epithelial cell function in the postovulation period: A transcriptomics approach. Biol Reprod., 68(4): 1170–1177.Ireland, J.J., Murphee, R.L. and Coulson, P.B. (1980) Accuracy of predicting stages of bovine estrous cycle by gross appearance of the corpus luteum1. J. Dairy Sci., 63(1): 155–160Rottmayer, R., Ulbrich, S.E., Kölle, S., Prelle, K., Neumueller, C., Sinowatz, F., Meyer, H.H.D., Wolf, E. and Hiendleder, S. (2006) A bovine oviduct epithelial cell suspension culture system suitable for studying embryo-maternal interactions: Morphological and functional characterization. Reproduction, 132(4): 637–648.Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P. and Drummond, A. (2012) Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12): 1647–1649.Livak, K.J. and Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25(4): 402–408.Maillo, V., de Frutos, C., O’Gaora, P., Forde, N., Burns, G.W., Spencer, T.E., Gutierrez-Adan, A., Lonergan, P. and Rizos, D. (2016) Spatial differences in gene expression in the bovine oviduct. Reprod. Camb. Engl., 152(1): 37–46.Swangchan-Uthai, T., Walsh, S.W., Alexander, S.L.H., Cheng, Z., Crowe, M.A., Evans, A.C.O. and Wathes, D.C. (2011) Comparison of mRNA for IGFs and their binding proteins in the oviduct during the peri-oestrous period between dairy heifers and lactating cows. Reprod. Camb. Engl., 142(3): 457–465.Bauersachs, S., Rehfeld, S., Ulbrich, S.E., Mallok, S., Prelle, K., Wenigerkind, H., Einspanier, R., Blum, H. and Wolf, E. (2004) Monitoring gene expression changes in bovine oviduct epithelial cells during the oestrous cycle. J. Mol. Endocrinol., 32(2): 449–466.Eriksen, T., Terkelsen, O., Hyttel, P. and Greve, T. (1994) Ultrastructural features of secretory cells in the bovine oviduct epithelium. Anat. Embryol. (Berl), 190(6): 583–590.Abe, H. and Hoshi, H. (1997) Bovine oviductal epithelial cells: Their cell culture and applications in studies for reproductive biology. Cytotechnology, 23(1–3): 171–183.Hunter, R.H. and Wilmut, I. (1984) Sperm transport in the cow: Peri-ovulatory redistribution of viable cells within the oviduct. Reprod. Nutr. Dev., 24(5A): 597–608.Shirley, B. and Reeder, R.L. (1996) Cyclic changes in the ampulla of the rat oviduct. J. Exp. Zool., 276(2): 164–173.Ayen, E., Shahrooz, R. and Kazemie, S. (2012) Histological and histomorphometrical changes of different regions of oviduct during follicular and luteal phases of estrus cycle in adult Azarbaijan buffalo. Iran. J. Vet. Res., 13(1): 42–48.Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D., Darnell, J. (2000) Molecular Cell Biology. 4th ed. WH Freeman, New York.Olsen, S.L., Li, S. and Winuthayanon, W. (2018) Embryo transport. In: Skinner, M.K., editor. Encyclopedia of Reproduction. 2nd ed. Academic Press, Oxford. p357– 363. Available from: https://www.sciencedirect.com/science/ article/pii/B9780128012383644896. Retrieved on 23-06-2021.Morris, D. and Diskin, M. (2008) Effect of progesterone on embryo survival. Anim. Int. J. Anim. Biosci., 2(8): 1112–1119.Julian, L. and Olson, M.F. (2014) Rho-associated coiledcoil containing kinases (ROCK). Small GTPases, 5(2 ): e29846.Li, J., Tang, J.X., Cheng, J.M., Hu, B., Wang, Y.Q., Aalia, B., Li, X.U., Jin, C., Wang, X.X., Deng, S.l., Zhang, Y., Chen, S.R., Qian, W.P., Sun, Q.Y., Huang, X.X. and Liu, YX. (2018) Cyclin B2 can compensate for cyclin B1 in oocyte meiosis I. J. Cell Biol., 217(11): 3901–3911.García, D.C., Valdecantos, P.A., Miceli, D.C. and Roldán- Olarte, M. (2017) Genistein affects proliferation and migration of bovine oviductal epithelial cells. Res. Vet. Sci., 114 : 59–63.Rageh, M.A., Moussad, E.E., Wilson, A.K. and Brigstock, D.R. (2001) Steroidal regulation of connective tissue growth factor (CCN2; CTGF) synthesis in the mouse uterus. Mol. Pathol., 54(5): 338–346.Stone, W.L., Leavitt, L. and Varacallo, M. (2021) Physiology, Growth Factor. StatPearls Publishing, Treasure Island, FL.Winger, Q.A., de los Rios, P., Han, V.K., Armstrong, D.T., Hill, D.J. and Watson, A.J. (1997) Bovine oviductal and embryonic insulin-like growth factor binding proteins: Possible regulators of “embryotrophic” insulin-like growth factor circuits. Biol. Reprod., 56(6): 1415–1423.Pushpakumara, P.G., Robinson, R.S., Demmers, K.J., Mann, G.E., Sinclair, K.D., Webb, R. and Wathes, D.C. (2002) Expression of the insulin-like growth factor (IGF) system in the bovine oviduct at oestrus and during early pregnancy. Reproduction, 123(6): 859–868.Stevenson, K.R. and Wathes, D.C. (1996) Insulin-like growth factors and their binding proteins in the ovine oviduct during the oestrous cycle. J. Reprod. Fertil., 108(1): 31–40.Hamdi, M., Sánchez-Calabuig, M.J., Rodríguez-Alonso, B., Arnal, S.B., Roussi, K., Sturmey, R., Gutiérrez-Adán, A., Lonergan, P. and Rizos, D. (2019) Gene expression and metabolic response of bovine oviduct epithelial cells to the early embryo. Reproduction, 158(1): 85–94.Herbst, R.S. (2004) Review of epidermal growth factor receptor biology. Int. J. Radiat. Oncol. Biol. Phys., 59(2 Suppl): 21–26.Zeng, F. and Harris, R.C. (2014) Epidermal growth factor, from gene organization to bedside. Semin. Cell Dev. Biol., 28 : 2–11.Wijayagunawardane, M.P.B., Hambruch, N., Haeger, J.D. and Pfarrer, C. (2015) Effect of epidermal growth factor (EGF) on the phosphorylation of mitogen-activated protein kinase (MAPK) in the bovine oviduct in vitro: Alteration by heat stress. J. Reprod. Dev., 61(5): 383–389.Knott, A.W., Juno, R.J., Jarboe, M.D., Zhang, Y., Profitt, S.A., Thoerner, J.C., Erwin, C.R. and Warner, B.W. (2003) EGF receptor signaling affects bcl-2 family gene expression and apoptosis after massive small bowel resection. J. Pediatr. Surg., 38(6): 875–880.Takatsu, K., Kuse, M., Yoshioka, S. and Acosta, T.J. (2015) Expression of epidermal growth factor (EGF) and its receptor in bovine endometrium throughout the luteal phase: Effects of EGF on prostaglandin production in endometrial cells. Anim. Reprod., 12(2): 328–335.Suzuki, T., Sasano, H., Takaya, R., Fukaya, T., Yajima, A. and Nagura, H. (1998) Cyclic changes of vasculature and vascular phenotypes in normal human ovaries. Hum. Reprod., 13(4): 953–959.Pillai, V.V., Weber, D.M., Phinney, B.S. and Selvaraj, V. (2017) Profiling of proteins secreted in the bovine oviduct reveals diverse functions of this luminal microenvironment. PLoS One, 12(11): e0188105.Melincovici, C.S., Boşca, A.B., Şuşman, S., Mărginean, M., Mihu, C., Istrate, M., Moldovan, I.M., Roman, A.L. and Mihu, C.M. (2018) Vascular endothelial growth factor (VEGF) key factor in normal and pathological angiogenesis. Rom. J. Morphol. Embryol., 59(2): 455–467.Fontes, P.K., Ereno, R.L., Peixoto, A.R., Carvalho, R.F., Scarano, W.R., Trinca, L.A., Barros, C.M. and de Souza Castilho, A.C. (2018) Can the antral follicular count modulate the gene expression of bovine oviducts in Aberdeen Angus and Nelore heifers? PLoS One, 13(8): e0202017.Lam, P.M., Briton-Jones, C., Cheung, C.K., Lok, I.H., Yuen, P.M., Cheung, L.P. and Haines, C. (2003) Vascular endothelial growth factor in the human oviduct: Localization and regulation of messenger RNA expression in vivo. Biol. Reprod., 68(5): 1870–1876.Kürüm, A., Karahan, S., Kocamiş, H., Çinar, M. and Ergün, E. (2019) Determination of antioxidants in bovine oviduct epithelial cell culture isolated at different periods of the estrous cycle. Turk. J. Vet. Anim. Sci., 43 : 448–455.Kurum, A., Deprem, T., Kocamis, H. and Karahan, S. (2016) Immunohistochemical expression of antioxidants in bovine oviduct epithelial cells of estral and luteal phases. Ankara Üniv. Vet. Fak. Derg., 63(2): 103–110.Margis, R., Dunand, C., Teixeira, F.K. and Margis- Pinheiro, M. (2008) Glutathione peroxidase family an evolutionary overview. FEBS J., 275(15): 3959–3970.Imai, H., Hakkaku, N., Iwamoto, R., Suzuki, J., Suzuki, T., Tajima, Y., Konishi, K., Minami, S., Ichinose, S., Ishizaka, K., Shioda, S., Arata, S., Nishimura, M., Naito, S. and Nakagawa, Y. (2009) Depletion of selenoprotein GPx4 in spermatocytes causes male infertility in mice. J. Biol. Chem., 284(47): 32522–32532.Lapointe, J., Kimmins, S., Maclaren, L.A. and Bilodeau, J.F. (2005) Estrogen selectively upregulates the phospholipid hydroperoxide glutathione peroxidase in the oviducts. Endocrinology, 146(6): 2583–2592.Adams, C.M., Clark-Garvey, S., Porcu, P. and Eischen, C.M. (2019) Targeting the Bcl-2 family in B cell lymphoma. Front. Oncol., 8 : 636.Urhausen, C., Beineke, A., Piechotta, M., Karre, I., Beyerbach, M. and Günzel-Apel, A.R. (2011) Apoptosis in the uterotubal junction and oviductal isthmus during the estrous cycle of the bitch. Anat. Rec. (Hoboken), 294(2): 342–348.Ricklin, D., Reis, E.S., Mastellos, D.C., Gros, P. and Lambris, J.D. (2016) Complement component C3 the “Swiss Army Knife” of innate immunity and host defense. Immunol. Rev., 274(1): 33–58.Anderson, D.J., Abbott, A.F. and Jack, R.M. (1993) The role of complement component C3b and its receptors in sperm-oocyte interaction. Proc. Natl. Acad. Sci. U. S. A., 90(21): 10051–10055.Lee, Y.L., Lee, K.F., Xu, J.S., He, Q.Y., Chiu, J.F., Lee, W.M., Luk, J.M. and Yeung, W.S.B. (2004) The embryotrophic activity of oviductal cell-derived complement C3b and iC3b, a novel function of complement protein in reproduction. J. Biol. Chem., 279(13): 12763–12768.Xu, J.S., Cheung, T.M., Chan, S.T.H., Ho, P.C. and Yeung, W.S.B. (2001) Temporal effect of human oviductal cell and its derived embryotrophic factors on mouse embryo development. Biol. Reprod., 65(5): 1481–1488.Tse, P.K., Lee, Y.L., Chow, W.N., Luk, J.M.C., Lee, K.F. and Yeung, W.S.B. (2008) Preimplantation embryos cooperate with oviductal cells to produce embryotrophic inactivated complement-3b. Endocrinology, 149(3): 1268–1276.Hugentobler, S.A., Humpherson, P.G., Leese, H.J., Sreenan, J.M. and Morris, D.G. (2008) Energy substrates in bovine oviduct and uterine fluid and blood plasma during the oestrous cycle. Mol. Reprod. Dev., 75(3): 496–503.Penning, T.M. (2015) The Aldo-Keto reductases (AKRs): Overview. Chem. Biol. Interact., 234 : 236–246Jurisicova, A. and Acton, B.M. (2004) Deadly decisions: The role of genes regulating programmed cell death in human preimplantation embryo development. Reprod. Camb. Engl., 128(3): 281–291.El-Sayed, A., Hoelker, M., Rings, F., Salilew, D., Jennen, D., Tholen, E., Sirard, M.A., Schellander, K. and Tesfaye, D. (2007) Large-scale transcriptional analysis of bovine embryo biopsies in relation to pregnancy success after transfer to recipients. Physiol. Genom., 28(1): 84–96.Zhao, F.Q., Okine, E.K. and Kennelly, J.J. (1999) Glucose transporter gene expression in bovine mammary gland. J. Anim. Sci., 77(9): 2517–2522.Hocquette, J.F., Sauerwein, H., Higashiyama, Y., Picard, B. and Abe, H. (2006) Prenatal developmental changes in glucose transporters, intermediary metabolism and hormonal receptors related to the IGF/insulin-glucose axis in the heart and adipose tissue of bovines. Reprod. Nutr. Dev., 46(3): 257–272.Nishimoto, H., Matsutani, R., Yamamoto, S., Takahashi, T., Hayashi, K.G., Miyamoto, A., Hamano, S. and Tetsuka, M. (2006) Gene expression of glucose transporter (GLUT) 1, 3 and 4 in bovine follicle and corpus luteum. J. Endocrinol., 188(1): 111–1119.Nishizaki, T. and Matsuoka, T. (1998) Low glucose enhances Na+/glucose transport in bovine brain artery endothelial cells. Stroke, 29(4): 844–849.Arhin, S.K., Zhao, J., Ji, X., Shi, C., Tang, J., Gu, Y., Xi, H., Cheng, J., Qu, X., Shi, H., Jin, X. and Lv, J. (2019) Multiple facilitated glucose transporters SLC2As are required for normal mouse preimplantation embryo development. Am. J. Transl. Res., 11(6): 3412–3425.Lim, C.H., Jeong, W., Lim, W., Kim, J., Song, G. and Bazer, F.W. (2012) Differential expression of select members of the slc family of genes and regulation of expression by MicroRNAs in the chicken oviduct1. Biol. Reprod., 87(6): 145.Heldring, N., Pike, A., Andersson, S., Matthews, J., Cheng, G., Hartman, J., Tujague, M., Ström, A., Treuter, E., Warner, M. and Gustafsson, J.A. (2007) Estrogen receptors: How do they signal and what are their targets. Physiol. Rev., 87(3): 905–931.Wijayagunawardane, M.P.B., Miyamoto, A., Cerbito, W.A., Acosta, T.J., Takagi, M. and Sato, K. (1998) Local distributions of oviductal estradiol, progesterone, prostaglandins, oxytocin and endothelin-1 in the cyclic cow. Theriogenology, 49(3): 607–618.Schürks, M., Rist, P.M. and Kurth, T. (2010) Sex hormone receptor gene polymorphisms and migraine: A systematic review and meta-analysis. Cephalalgia, 30(11): 1306–1328Kölle, S., Dubielzig, S., Reese, S., Wehrend, A., König, P. and Kummer, W. (2009) Ciliary transport, gamete interaction, and effects of the early embryo in the oviduct: Ex vivo analyses using a new digital videomicroscopic system in the cow. Biol. Reprod., 81(2): 267–274.Winuthayanon, W., Bernhardt, M.L., Padilla-Banks, E., Myers, P.H., Edin, M.L., Lih, F.B., Hewitt, S.C., Korach, K.S. and Williams, C.J. (2015) Oviductal estrogen receptor α signaling prevents protease-mediated embryo death. eLife, 4 : e10453.Li, D.Y., Zhang, L., Yang, M.Y., Xu, H.L., Yin, H.D., Li, Y. and Zhu, Q. (2013) Effect of luteinizing hormone/choriogonadotropin receptor (LHCGR) gene on chicken reproductive traits. Mol. Biol. Rep., 40(12): 7111–7116.Sun, T., Lei, Z.M. and Rao, C.V. (1997) A novel regulation of the oviductal glycoprotein gene expression by luteinizing hormone in bovine tubal epithelial cells. Mol. Cell Endocrinol., 131(1): 97–108.Palma-Vera, S., Einspanier, R. and Schoen, J. (2014) Bovine oviductal epithelial cells: Long term culture characterization and impact of insulin on cell morphology. Reprod. Biol., 14(3): 206–212.Celulas epiteliales del oviducto BovinoFase del Ciclo estralFolicularExpresión genicaLutealOviductoBovine oviduct epithelial cellsEstrus phaseFollicularOviductGene expressionLutealEffect of estrous cycle phases on gene expression in bovine oviduct epithelial cellsArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribución – Sin Derivarinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINAL2023_effect_estrous_cycle_phases.pdf2023_effect_estrous_cycle_phases.pdfArticulo cientificoapplication/pdf1047144https://repository.ucc.edu.co/bitstreams/b3602502-3b0d-43cf-80a6-905ae9ce5b7f/downloada33abffe9f93ca96ae1b9ab703213614MD522023_effect_estrous_cycle_phases-FormatoLicenciaUso.pdf2023_effect_estrous_cycle_phases-FormatoLicenciaUso.pdfLicencia de usoapplication/pdf720147https://repository.ucc.edu.co/bitstreams/5bfb9a78-0a18-4936-8832-ddd8f102fa89/downloada202afd7123eeec989ad59b200b453b7MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/260b259d-fef7-430f-94bf-1bf3a03fc4c9/download3bce4f7ab09dfc588f126e1e36e98a45MD51TEXT2023_effect_estrous_cycle_phases.pdf.txt2023_effect_estrous_cycle_phases.pdf.txtExtracted texttext/plain52644https://repository.ucc.edu.co/bitstreams/31d2d08f-83bd-4b49-97c7-1568523a165b/downloadb4bc1cdf51d42c5fc21e26a59fd3a7b9MD542023_effect_estrous_cycle_phases-FormatoLicenciaUso.pdf.txt2023_effect_estrous_cycle_phases-FormatoLicenciaUso.pdf.txtExtracted texttext/plain5907https://repository.ucc.edu.co/bitstreams/0af7e325-fc6c-493c-9033-a0da16ed527a/download06bc35b14050e1082ac618a9648b4e26MD56THUMBNAIL2023_effect_estrous_cycle_phases.pdf.jpg2023_effect_estrous_cycle_phases.pdf.jpgGenerated Thumbnailimage/jpeg17599https://repository.ucc.edu.co/bitstreams/f5be519f-42ea-4a38-80cd-ed97d32889cd/download376cacb62c9a0caa5c03ffbf0a6d4072MD552023_effect_estrous_cycle_phases-FormatoLicenciaUso.pdf.jpg2023_effect_estrous_cycle_phases-FormatoLicenciaUso.pdf.jpgGenerated Thumbnailimage/jpeg11958https://repository.ucc.edu.co/bitstreams/d1805432-26d1-4523-9888-909b5da7bf6b/download8db353058e1714c14c273e94a197e27cMD5720.500.12494/49022oai:repository.ucc.edu.co:20.500.12494/490222024-08-09 12:27:23.303open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo= |