Evaluation of Leachate Recirculation as a Stabilisation Strategy for Landfills in Developing Countries

Este estudio evaluó la recirculación de lixiviados (LR) como una estrategia de estabilización para rellenos sanitarios utilizando experimentos de biorreactores con residuos excavados de un relleno sanitario tropical en Colombia. La evaluación experimental se realizó en dos biorreactores de 115 L, un...

Full description

Autores:
Caicedo Concha, Diana Milena
Sandoval Cobo, John J.
Marmolejo Rebellón, Luis Fernando
Torres Lozada, Patricia
Fellner, Johann
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/52732
Acceso en línea:
https://doi.org/10.3390/en15176494
https://hdl.handle.net/20.500.12494/52732
Palabra clave:
Recirculación de lixiviados
Metano
Energía renovable
Biogás
Leachate recirculation
Methane
Renewable energy
Biogas
Rights
openAccess
License
NINGUNA
id COOPER2_239ddbc37300b8731ffc4afec904f789
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/52732
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.none.fl_str_mv Evaluation of Leachate Recirculation as a Stabilisation Strategy for Landfills in Developing Countries
title Evaluation of Leachate Recirculation as a Stabilisation Strategy for Landfills in Developing Countries
spellingShingle Evaluation of Leachate Recirculation as a Stabilisation Strategy for Landfills in Developing Countries
Recirculación de lixiviados
Metano
Energía renovable
Biogás
Leachate recirculation
Methane
Renewable energy
Biogas
title_short Evaluation of Leachate Recirculation as a Stabilisation Strategy for Landfills in Developing Countries
title_full Evaluation of Leachate Recirculation as a Stabilisation Strategy for Landfills in Developing Countries
title_fullStr Evaluation of Leachate Recirculation as a Stabilisation Strategy for Landfills in Developing Countries
title_full_unstemmed Evaluation of Leachate Recirculation as a Stabilisation Strategy for Landfills in Developing Countries
title_sort Evaluation of Leachate Recirculation as a Stabilisation Strategy for Landfills in Developing Countries
dc.creator.fl_str_mv Caicedo Concha, Diana Milena
Sandoval Cobo, John J.
Marmolejo Rebellón, Luis Fernando
Torres Lozada, Patricia
Fellner, Johann
dc.contributor.author.none.fl_str_mv Caicedo Concha, Diana Milena
Sandoval Cobo, John J.
Marmolejo Rebellón, Luis Fernando
Torres Lozada, Patricia
Fellner, Johann
dc.subject.none.fl_str_mv Recirculación de lixiviados
Metano
Energía renovable
Biogás
topic Recirculación de lixiviados
Metano
Energía renovable
Biogás
Leachate recirculation
Methane
Renewable energy
Biogas
dc.subject.other.none.fl_str_mv Leachate recirculation
Methane
Renewable energy
Biogas
description Este estudio evaluó la recirculación de lixiviados (LR) como una estrategia de estabilización para rellenos sanitarios utilizando experimentos de biorreactores con residuos excavados de un relleno sanitario tropical en Colombia. La evaluación experimental se realizó en dos biorreactores de 115 L, uno simulando la operación de un vertedero con LR, Br2, donde el lixiviado producido se recirculó a razón de 0,8 L d−1, y un sistema de control sin LR, Br1. Ambos sistemas alcanzaron valores indicadores de estabilización en base a materia seca (MS) para sólidos volátiles VS (<25% MS) y un potencial bioquímico de metano BMP (≤10 mL CH4 g −1 MS). Asimismo, hacia el final del experimento, el lixiviado generado en Br2 alcanzó valores indicadores de estabilización para DBO5 (<100 mg L-1) y la relación DBO (demanda biológica de oxígeno)/DQO (demanda química de oxígeno) (<0,1). Aunque el criterio de estabilización de DQO no se cumplió en ningún biorreactor (<200 mg L−1), la LR ayudó a liberar un 19% más de materia orgánica oxidable en Br2 que en Br1, lo que indica una reducción del potencial contaminante del residuo en el caso de vertidos incontrolados de lixiviados al medio ambiente. En cuanto a la producción de biogás, la generación de CH4 en Br2 fue más intensa y su producción acumulada fue un 34,5% superior a la de Br1; por lo tanto, Br2 alcanzó tasas de emisión de CH4, lo que indica una estabilización de residuos (<1,0 L CH4 m-2 h-1) antes que Br1, lo que muestra un efecto acelerador de LR sobre la degradación de residuos. Un balance de masa de carbono indicó que la degradación de los residuos, en términos de la mineralización inicial de carbono orgánico total y la descarga de gas C a través de CH4, fue mayor en Br2. Estos resultados demostrar el potencial de LR para acelerar la estabilización de un vertedero pero también para reducir las emisiones de gases de efecto invernadero en los sitios de disposición final donde también se captura y utiliza biogás para la producción de energía; un aspecto clave a la hora de mejorar la sostenibilidad de las operaciones de vertederos en los países en desarrollo.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-09
dc.date.accessioned.none.fl_str_mv 2023-09-21T16:24:22Z
dc.date.available.none.fl_str_mv 2023-09-21T16:24:22Z
dc.type.none.fl_str_mv Artículos Científicos
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 19961073
dc.identifier.uri.none.fl_str_mv https://doi.org/10.3390/en15176494
https://hdl.handle.net/20.500.12494/52732
dc.identifier.bibliographicCitation.none.fl_str_mv Sandoval-Cobo, Caicedo-Concha, D., Marmolejo-Rebellón, L., Torres-Lozada, P., & Fellner, J. (2022). Evaluation of Leachate Recirculation as a Stabilisation Strategy for Landfills in Developing Countries. Energies (Basel), 15(17), 6494–. https://doi.org/10.3390/en15176494
identifier_str_mv 19961073
Sandoval-Cobo, Caicedo-Concha, D., Marmolejo-Rebellón, L., Torres-Lozada, P., & Fellner, J. (2022). Evaluation of Leachate Recirculation as a Stabilisation Strategy for Landfills in Developing Countries. Energies (Basel), 15(17), 6494–. https://doi.org/10.3390/en15176494
url https://doi.org/10.3390/en15176494
https://hdl.handle.net/20.500.12494/52732
dc.relation.isversionof.none.fl_str_mv https://www.mdpi.com/1996-1073/15/17/6494
dc.relation.ispartofjournal.none.fl_str_mv Energies (Basel)
dc.relation.references.none.fl_str_mv Bareither, C.A.; Barlaz, M.A.; Doran, M.; Benson, C.H. Retrospective Analysis of Wisconsin’s Landfill Organic Stability Rule. J. Environ. Eng. 2017, 143, 04017001
Reinhart, D.R.; McCreanor, P.T.; Townsend, T. The bioreactor landfill: Its status and future. Waste Manag. Res. J. Sustain. Circ. Econ. 2002, 20, 172–186.
Townsend, T.G.; Powell, J.; Jain, P.; Xu, Q.; Tolaymat, T.; Reinhart, D. Sustainable Practices for Landfill Design and Operation; Springer: Berlin/Heidelberg, Germany, 2015.
Benson, C.; Barlaz, M.; Lane, D.; Rawe, J. Practice review of five bioreactor/recirculation landfills. Waste Manag. 2007, 27, 13–29.
Kumar, S.; Chiemchaisri, C.; Mudhoo, A. Bioreactor landfill technology in municipal solid waste treatment: An overview. Crit. Rev. Biotechnol. 2010, 31, 77–97.
U.S. EPA. Bioreactor Performance. Report EPA530-R-07-007. 2007. Available online: https://www.epa.gov/sites/production/ files/2016-03/documents/bio-perf.pdf (accessed on 1 July 2021).
Hernández-Berriel, M.C.; Mañón-Salas, C.; Sánchez-Yáñez, J.; La Fuente, J.L.-D.; Marquez-Benavides, L. Influence of Recycling Different Leachate Volumes on Refuse Anaerobic Degradation. Open Waste Manag. J. 2010, 3, 155–166.
Jain, P.; Ko, J.H.; Kumar, D.; Powell, J.; Kim, H.; Maldonado, L.; Townsend, T.; Reinhart, D.R. Case study of landfill leachate recirculation using small-diameter vertical wells. Waste Manag. 2014, 34, 2312–2320
Wang, Y.; Pelkonen, M.; Kaila, J. Optimization of landfill leachate management in the aftercare period. Waste Manag. Res. J. A Sustain. Circ. Econ. 2012, 30, 789–799
Cossu, R. The sustainable landfilling concept. In Eleventh International Waste Management and Landfill Symposium; Environmental Sanitary Engineering Centre: Sardinia, Italy, 2005.
UNEP & ISWA. The Global Waste Management Outlook (GWMO). 2015. Available online: http://www.unep.org/ietc (accessed on 1 January 2021).
Kaza, S.; Yao, L.C.; Bhada-Tata, P.; Van Woerden, F. What A Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; Urban Development Series; World Bank: Washington, DC, USA, 2018.
Patil, B.; Singh, D. Study of Sustainable Engineereed Bioreactor Landfill (SEBL) for Small Communities. J. Solid Waste Technol. Manag. 2015, 41, 2–14.
Reinhart, D.R.; Townsend, T.G. Landfill Bioreactor Design and Operation; Routledge: New York, NY, USA, 2018
Beaven, R.; Knox, K.; Powrie, W. A Technical Assesment of Leachate Recirculation; Report SC030144/R6; Environment Agency: Bristol, UK, 2009.
Caicedo-Concha, D.M.; Sandoval-Cobo, J.J.; Whiting, K. An experimental study on the impact of two dimensional materials in waste disposal sites: What are the implications for engineered landfills? Sustain. Environ. Res. 2016, 26, 255–261.
Liu, L.; Xiong, H.; Ma, J.; Ge, S.; Yu, X.; Zeng, G. Leachate Recirculation for Enhancing Methane Generation within Field Site in China. J. Chem. 2018, 2018, 9056561.
Zheng, W.; Lü, F.; Bolyard, S.C.; Shao, L.; Reinhart, D.R.; He, P. Evaluation of monitoring indicators for the post-closure care of a landfill for MSW characterized with low lignin content. Waste Manag. 2014, 36, 222–229.
Lohchab, R.; Singh, U. Performance evaluation of a landfill leachate recirculation treatment system using quadric model. J. Environ. Biol. 2017, 38, 1313–1320.
Ozkaya, B.; Demir, A.; Basturk, A.; Bilgili, M.S. Investigation of leachate recirculation effects in Istanbul Odayeri Sanitary Landfill. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng. 2004, 39, 873–883.
Patil, B.S.; Anto, C.A.; Singh, D.N. Simulation of municipal solid waste degradation in aerobic and anaerobic bioreactor landfills. Waste Manag. Res. J. Sustain. Circ. Econ. 2016, 35, 301–312
Xu, Q.; Tian, Y.; Wang, S.; Ko, J.H. A comparative study of leachate quality and biogas generation in simulated anaerobic and hybrid bioreactors. Waste Manag. 2015, 41, 94–100
Sandip, T.M.; Kanchan, C.K.; Ashok, H.B. Enhancement of methane production and bio-stabilisation of municipal solid waste in anaerobic bioreactor landfill. Bioresour. Technol. 2012, 110, 10–17.
Swati, M.; Karthikeyan, O.P.; Joseph, K.; Visvanathan, C.; Nagendran, R. Pilot-Scale Simulation of Landfill Bioreactor and Controlled Dumping of Fresh and Partially Stabilized Municipal Solid Waste in a Tropical Developing Country. J. Hazard., Toxic Radioact. Waste 2011, 15, 321–330.
Cossu, R.; Lai, T.; Piovesan, E. Proposal of a methodology for assessing the final storage quality of a landfill. In Proceedings of the 11th International Waste Management and Landfill Symposium, Sardinia, Italy, 1–5 October 2007.
Knox, K.; Braithwaite, P.; Caine, M.; Croft, B. Brogborough landfill test cells: The final chapter. A study of landfill completion in relation to final storage quality (FSQ) criteria. In Sardinia 2005—10th International Waste Management and Landfill Symposium; Cossu, R., Diaz, L., Stegmann, R., Eds.; Environmental Sanitary Engineering Centre: Sardinia, Italy, 2005.
Prantl, R.; Tesar, M.; Huber-Humer, M.; Lechner, P. Changes in carbon and nitrogen pool during in-situ aeration of old landfills under varying conditions. Waste Manag. 2006, 26, 373–380.
Ritzkowski, M.; Stegmann, R. Landfill aeration within the scope of post-closure care and its completion. Waste Manag. 2013, 33, 2074–2082.
Brandstätter, C.; Laner, D.; Fellner, J. Carbon pools and flows during lab-scale degradation of old landfilled waste under different oxygen and water regimes. Waste Manag. 2015, 40, 100–111
Hrad, M.; Gamperling, O.; Huber-Humer, M. Comparison between lab- and full-scale applications of in situ aeration of an old landfill and assessment of long-term emission development after completion. Waste Manag. 2013, 33, 2061–2073.
Valencia, R.; van der Zon, W.; Woelders, H.; Lubberding, H.; Gijzen, H. Achieving “Final Storage Quality” of municipal solid waste in pilot scale bioreactor landfills. Waste Manag. 2009, 29, 78–85.
Shalini, S.S.; Karthikeyan, O.P.; Joseph, K. Biological stability of municipal solid waste from simulated landfills under tropical environment. Bioresour. Technol. 2010, 101, 845–852
Laner, D.; Crest, M.; Scharff, H.; Morris, J.W.; Barlaz, M.A. A review of approaches for the long-term management of municipal solid waste landfills. Waste Manag. 2012, 32, 498–512
Ponsa, S.; Gea, T.; Alerm, L.; Cerezo, J.; Sánchez, A. Comparison of aerobic and anaerobic stability indices through a MSW biological treatment process. Waste Manag. 2008, 28, 2735–2742.
O’Donnell, S.T.; Caldwell, M.D.; Barlaz, M.A.; Morris, J.W. Case study comparison of functional vs. organic stability approaches for assessing threat potential at closed landfills in the USA. Waste Manag. 2018, 75, 415–426.
DNP. Pólítica Nacional para la Gestión Integral de Residuos Sólidos; CONPES 3874; DNP: Bogotá, Colombia, 2016. Available online: https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%C3%B3micos/3874.pdf
Minvivienda. Ministerio de Vivienda Ciudad y Territorio de Colombia; Resolución No. 938 de 2019; Minvivienda: Bogotá, Colombia, 2019.
Boulanger, A.; Pinet, E.; Bouix, M.; Bouchez, T.; Mansour, A.A. Effect of inoculum to substrate ratio (I/S) on municipal solid waste anaerobic degradation kinetics and potential. Waste Manag. 2012, 32, 2258–2265.
Francois, V.; Feuillade, G.; Skhiri, N.; Lagier, T.; Matejka, G. Indicating the parameters of the state of degradation of municipal solid waste. J. Hazard. Mater. 2006, 137, 1008–1015.
Kim, H.; Townsend, T.G. Wet landfill decomposition rate determination using methane yield results for excavated waste samples. Waste Manag. 2012, 32, 1427–1433.
Sandoval, J.J. Characterisation of Saturated & Unsaturated Flow of Liquids in Municipal Solid Waste. Master’s Thesis, University of Southampton, Southampton, UK, 2013. Available online: https://eprints.soton.ac.uk/466854/ (accessed on 1 January 2021).
Caicedo, D. A Study of the Structure in Solid Wastes and Some Implications for Fluid Flow in Landfills. Ph.D. Thesis, University of Southampton, Southampton, UK, 2013.
Minvivienda. Reglamento Técnico del Sector de Agua Potable y Saneamiento Básico—RAS; Minvivienda: Bogotá, Colombia, 2012.
Hudson, A. Evaluation of the Vertical and Horizontal Hydraulic Conductivities of Household Wastes. Ph.D. Thesis, University of Southampton, Southampton, UK, 2007.
Wang, Y.; Pelkonen, M. Impacts of temperature and liquid/solid ratio on anaerobic degradation of municipal solid waste: An emission investigation of landfill simulation reactors. J. Mater. Cycles Waste Manag. 2009, 11, 312–320.
Francois, V.; Feuillade, G.; Matejka, G.; Lagier, T.; Skhiri, N. Leachate recirculation effects on waste degradation: Study on columns. Waste Manag. 2007, 27, 1259–1272.
Wang, Y.-S.; Odle, W.S.; Eleazer, W.E.; Bariaz, M.A. Methane Potential of Food Waste and Anaerobic Toxicity of Leachate Produced During Food Waste Decomposition. Waste Manag. Res. J. Sustain. Circ. Econ. 1997, 15, 149–167.
Brandstätter, C.; Laner, D.; Fellner, J. Nitrogen pools and flows during lab-scale degradation of old landfilled waste under different oxygen and water regimes. Biogeochemistry 2015, 26, 399–414.
Ritzkowski, M.; Heyer, K.-U.; Stegmann, R. Fundamental processes and implications during in situ aeration of old landfills. Waste Manag. 2006, 26, 356–372.
Wu, C.; Shimaoka, T.; Nakayama, H.; Komiya, T.; Chai, X. Stimulation of waste decomposition in an old landfill by air injection. Bioresour. Technol. 2016, 222, 66–74
Walker, M.; Zhang, Y.; Heaven, S.; Banks, C. Potential errors in the quantitative evaluation of biogas production in anaerobic digestion processes. Bioresour. Technol. 2009, 100, 6339–6346.
Ivanova, L. Quantification of Factors Affecting Rate and Magnitude of Secondary Settlement of Landfills. Ph.D. Thesis, University of Southampton, Southampton, UK, 2007. Available online: https://eprints.soton.ac.uk/466251/ (accessed on 1 July 2021).
American Public Health Association. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012
Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597
Sandoval-Cobo, J.J.; Casallas-Ojeda, M.R.; Carabalí-Orejuela, L.; Muñoz-Chávez, A.; Caicedo-Concha, D.M.; Marmolejo-Rebellón, L.F.; Torres-Lozada, P. Methane potential and degradation kinetics of fresh and excavated municipal solid waste from a tropical landfill in Colombia. Sustain. Environ. Res. 2020, 30, 7.
Wang, B.; Björn, A.; Strömberg, S.; Nges, I.A.; Nistor, M.; Liu, J. Evaluating the influences of mixing strategies on the Biochemical Methane Potential test. J. Environ. Manag. 2017, 185, 54–59
El-Fadel, M.; Bou-Zeid, E.; Chahine, W.; Alayli, B. Temporal variation of leachate quality from pre-sorted and baled municipal solid waste with high organic and moisture content. Waste Manag. 2002, 22, 269–282
Jun, D.; Yong-Sheng, Z.; Mei, H.; Wei-Hong, Z. Influence of alkalinity on the stabilization of municipal solid waste in anaerobic simulated bioreactor. J. Hazard. Mater. 2009, 163, 717–722
Gibbons, R.D.; Morris, J.W.; Prucha, C.P.; Caldwell, M.D.; Staley, B.F. Longitudinal data analysis in support of functional stability concepts for leachate management at closed municipal landfills. Waste Manag. 2014, 34, 1674–1682
Kjeldsen, P.; Barlaz, M.A.; Rooker, A.P.; Baun, A.; Ledin, A.; Christensen, T.H. Present and Long-Term Composition of MSW Landfill Leachate: A Review. Crit. Rev. Environ. Sci. Technol. 2002, 32, 297–336.
Cossu, R.; Raga, R. Test methods for assessing the biological stability of biodegradable waste. Waste Manag. 2008, 28, 381–388.
Bolyard, S.C.; Reinhart, D.R. Application of landfill treatment approaches for stabilization of municipal solid waste. Waste Manag. 2016, 55, 22–30.
Berge, N.D.; Reinhart, D.R.; Dietz, J.; Townsend, T. In situ ammonia removal in bioreactor landfill leachate. Waste Manag. 2006, 26, 334–343.
Heyer, K.-U.; Hupe, K.; Stegmann, R. Methane emissions from MBT landfills. Waste Manag. 2013, 33, 1853–1860
Xu, S.Y.; Karthikeyan, O.P.; Selvam, A.; Wong, J.W. Microbial community distribution and extracellular enzyme activities in leach bed reactor treating food waste: Effect of different leachate recirculation practices. Bioresour. Technol. 2014, 168, 41–48.
Tchobanoglous, G.; Theisen, H.; Vigil, S.A. Integrated Solid Waste Management: Engineering Principles and Management Issues; McGraw-Hill: New York, NY, USA, 1993.
Capaccioni, B.; Caramiello, C.; Tatàno, F.; Viscione, A. Effects of a temporary HDPE cover on landfill gas emissions: Multiyear evaluation with the static chamber approach at an Italian landfill. Waste Manag. 2011, 31, 956–965.
Hrad, M.; Huber-Humer, M. Performance and completion assessment of an in-situ aerated municipal solid waste landfill—Final scientific documentation of an Austrian case study. Waste Manag. 2017, 63, 397–409.
U.S. EPA. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2016. EPA 430-R-18-003. Washington, DC, USA, 2016. Available online: https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2011 (accessed on 1 July 2021).
Mahar, R.B.; Liu, J.; Li, H.; Nie, Y. Bio-Pretreatment of municipal solid waste prior to landfilling and its kinetics. Biogeochemistry 2008, 20, 319–330.
Council of the European Union. European Council Decision 2003/33/EC establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of and Annex II to Directive 1999/31/EC. Off. J. Eur. Communities 2003, L11, 27–49.
Kelly, R.J.; Shearer, B.D.; Kim, J.; Goldsmith, C.D.; Hater, G.R.; Novak, J.T. Relationships between analytical methods utilized as tools in the evaluation of landfill waste stability. Waste Manag. 2006, 26, 1349–1356.
Bilgili, M.S.; Demir, A.; Varank, G. Evaluation and modeling of biochemical methane potential (BMP) of landfilled solid waste: A pilot scale study. Bioresour. Technol. 2009, 100, 4976–4980.
Federal Government of Germany. Ordinance on Environmentally Compatible Storage of Waste from Human Settlements and on Biological Waste Treatment Facilities (AbfAblV); Federal Government of Germany: Berlin, Germany, 2001.
U.S. EPA. Federal Register, 40 CFR Part 445, Subpart B: RCRA Subtitle D Non-Hazardous Waste Landfill; Landfills Point Source Category; Office of Federal Register: Washington, DC, USA, 2000.
Bayard, R.; Benbelkacem, H.; Gourdon, R.; Buffière, P. Characterization of selected municipal solid waste components to estimate their biodegradability. J. Environ. Manag. 2018, 216, 4–12.
Machado, S.; Karimpour-Fard, M.; Shariatmadari, N.; Carvalho, M.; do Nascimento, J. Evaluation of the geotechnical properties of MSW in two Brazilian landfills. Waste Manag. 2010, 30, 2579–2591.
Berge, N.D.; Reinhart, D.R.; Batarseh, E.S. An assessment of bioreactor landfill costs and benefits. Waste Manag. 2009, 29, 1558–1567.
EPA/ISWA. International Best Practices Guide for Landfill Gas Energy Project; Global Methane Initiative: Washington, DC, USA, 2012
dc.rights.license.none.fl_str_mv NINGUNA
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv NINGUNA
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 64-94
dc.coverage.temporal.none.fl_str_mv 15 (17)
dc.publisher.none.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, Cali
dc.publisher.program.none.fl_str_mv Ingeniería Industrial
dc.publisher.place.none.fl_str_mv Cali
publisher.none.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, Cali
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/fcf576da-8165-45e8-b92c-96203cc2d4f0/download
https://repository.ucc.edu.co/bitstreams/512404a3-d6de-4ecf-a52f-95df39b5b794/download
https://repository.ucc.edu.co/bitstreams/a4d8c0c5-a953-4ee1-8f00-0977e4109b07/download
https://repository.ucc.edu.co/bitstreams/c7dd33db-291e-4e59-abd7-672d04ea4bbe/download
bitstream.checksum.fl_str_mv 3fc57f38b972295be68227f9d867c64d
3bce4f7ab09dfc588f126e1e36e98a45
eb776464a7ae9ea167e8b8d8128ea947
50a71e2ba9821065d8a130d22f45ecb1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1811565577795272704
spelling Caicedo Concha, Diana MilenaSandoval Cobo, John J.Marmolejo Rebellón, Luis FernandoTorres Lozada, PatriciaFellner, Johann15 (17)2023-09-21T16:24:22Z2023-09-21T16:24:22Z2022-0919961073https://doi.org/10.3390/en15176494https://hdl.handle.net/20.500.12494/52732Sandoval-Cobo, Caicedo-Concha, D., Marmolejo-Rebellón, L., Torres-Lozada, P., & Fellner, J. (2022). Evaluation of Leachate Recirculation as a Stabilisation Strategy for Landfills in Developing Countries. Energies (Basel), 15(17), 6494–. https://doi.org/10.3390/en15176494Este estudio evaluó la recirculación de lixiviados (LR) como una estrategia de estabilización para rellenos sanitarios utilizando experimentos de biorreactores con residuos excavados de un relleno sanitario tropical en Colombia. La evaluación experimental se realizó en dos biorreactores de 115 L, uno simulando la operación de un vertedero con LR, Br2, donde el lixiviado producido se recirculó a razón de 0,8 L d−1, y un sistema de control sin LR, Br1. Ambos sistemas alcanzaron valores indicadores de estabilización en base a materia seca (MS) para sólidos volátiles VS (<25% MS) y un potencial bioquímico de metano BMP (≤10 mL CH4 g −1 MS). Asimismo, hacia el final del experimento, el lixiviado generado en Br2 alcanzó valores indicadores de estabilización para DBO5 (<100 mg L-1) y la relación DBO (demanda biológica de oxígeno)/DQO (demanda química de oxígeno) (<0,1). Aunque el criterio de estabilización de DQO no se cumplió en ningún biorreactor (<200 mg L−1), la LR ayudó a liberar un 19% más de materia orgánica oxidable en Br2 que en Br1, lo que indica una reducción del potencial contaminante del residuo en el caso de vertidos incontrolados de lixiviados al medio ambiente. En cuanto a la producción de biogás, la generación de CH4 en Br2 fue más intensa y su producción acumulada fue un 34,5% superior a la de Br1; por lo tanto, Br2 alcanzó tasas de emisión de CH4, lo que indica una estabilización de residuos (<1,0 L CH4 m-2 h-1) antes que Br1, lo que muestra un efecto acelerador de LR sobre la degradación de residuos. Un balance de masa de carbono indicó que la degradación de los residuos, en términos de la mineralización inicial de carbono orgánico total y la descarga de gas C a través de CH4, fue mayor en Br2. Estos resultados demostrar el potencial de LR para acelerar la estabilización de un vertedero pero también para reducir las emisiones de gases de efecto invernadero en los sitios de disposición final donde también se captura y utiliza biogás para la producción de energía; un aspecto clave a la hora de mejorar la sostenibilidad de las operaciones de vertederos en los países en desarrollo.This study evaluated leachate recirculation (LR) as a stabilisation strategy for landfills using bioreactor experiments with excavated waste from a tropical landfill in Colombia. The experimental evaluation was performed in two 115 L bioreactors, one simulating the operation of a landfill with LR, Br2, where the leachate produced was recirculated at a rate of 0.8 L d−1 , and a control system without LR, Br1. Both systems reached stabilisation indicator values on a dry matter (DM) basis for volatile solids VS (<25% DM) and a biochemical methane potential BMP (≤10 mL CH4 g −1 DM). Likewise, towards the end of the experiment, the leachate generated in Br2 reached stabilisation indicator values for BOD5(<100 mg L−1) and the BOD (biological oxygen demand)/COD (chemical oxygen demand) ratio (<0.1). Although the stabilisation criterion for COD was not met in any bioreactor (<200 mg L−1), LR helped to release 19% more oxidisable organic matter in Br2 than in Br1, indicating a reduction in the contaminating potential of the waste in the case of uncontrolled discharges of leachate to the environment. Regarding biogas production, the generation of CH4 in Br2 was more intense and its cumulative production was 34.5% higher than Br1; thus, Br2 achieved CH4 emission rates, indicating waste stabilisation (<1.0 L CH4 m−2 h−1) sooner than Br1, showing an accelerating effect of LR on waste degradation. A carbon mass balance indicated that waste degradation, in terms of the initial total organic carbon mineralisation and the C gas discharge via CH4 , was greater in Br2. These results demonstrate the LR potential to accelerate the stabilisation of a landfill but also to reduce greenhouse gas emissions in final disposal sites where biogas is also captured and utilised for energy production; a key aspect when improving the sustainability of landfill operations in developing countries.diana.caicedoc@campusucc.edu.co64-94Universidad Cooperativa de Colombia, Facultad de Ingenierías, Ingeniería Industrial, CaliIngeniería IndustrialCalihttps://www.mdpi.com/1996-1073/15/17/6494Energies (Basel)Bareither, C.A.; Barlaz, M.A.; Doran, M.; Benson, C.H. Retrospective Analysis of Wisconsin’s Landfill Organic Stability Rule. J. Environ. Eng. 2017, 143, 04017001Reinhart, D.R.; McCreanor, P.T.; Townsend, T. The bioreactor landfill: Its status and future. Waste Manag. Res. J. Sustain. Circ. Econ. 2002, 20, 172–186.Townsend, T.G.; Powell, J.; Jain, P.; Xu, Q.; Tolaymat, T.; Reinhart, D. Sustainable Practices for Landfill Design and Operation; Springer: Berlin/Heidelberg, Germany, 2015.Benson, C.; Barlaz, M.; Lane, D.; Rawe, J. Practice review of five bioreactor/recirculation landfills. Waste Manag. 2007, 27, 13–29.Kumar, S.; Chiemchaisri, C.; Mudhoo, A. Bioreactor landfill technology in municipal solid waste treatment: An overview. Crit. Rev. Biotechnol. 2010, 31, 77–97.U.S. EPA. Bioreactor Performance. Report EPA530-R-07-007. 2007. Available online: https://www.epa.gov/sites/production/ files/2016-03/documents/bio-perf.pdf (accessed on 1 July 2021).Hernández-Berriel, M.C.; Mañón-Salas, C.; Sánchez-Yáñez, J.; La Fuente, J.L.-D.; Marquez-Benavides, L. Influence of Recycling Different Leachate Volumes on Refuse Anaerobic Degradation. Open Waste Manag. J. 2010, 3, 155–166.Jain, P.; Ko, J.H.; Kumar, D.; Powell, J.; Kim, H.; Maldonado, L.; Townsend, T.; Reinhart, D.R. Case study of landfill leachate recirculation using small-diameter vertical wells. Waste Manag. 2014, 34, 2312–2320Wang, Y.; Pelkonen, M.; Kaila, J. Optimization of landfill leachate management in the aftercare period. Waste Manag. Res. J. A Sustain. Circ. Econ. 2012, 30, 789–799Cossu, R. The sustainable landfilling concept. In Eleventh International Waste Management and Landfill Symposium; Environmental Sanitary Engineering Centre: Sardinia, Italy, 2005.UNEP & ISWA. The Global Waste Management Outlook (GWMO). 2015. Available online: http://www.unep.org/ietc (accessed on 1 January 2021).Kaza, S.; Yao, L.C.; Bhada-Tata, P.; Van Woerden, F. What A Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; Urban Development Series; World Bank: Washington, DC, USA, 2018.Patil, B.; Singh, D. Study of Sustainable Engineereed Bioreactor Landfill (SEBL) for Small Communities. J. Solid Waste Technol. Manag. 2015, 41, 2–14.Reinhart, D.R.; Townsend, T.G. Landfill Bioreactor Design and Operation; Routledge: New York, NY, USA, 2018Beaven, R.; Knox, K.; Powrie, W. A Technical Assesment of Leachate Recirculation; Report SC030144/R6; Environment Agency: Bristol, UK, 2009.Caicedo-Concha, D.M.; Sandoval-Cobo, J.J.; Whiting, K. An experimental study on the impact of two dimensional materials in waste disposal sites: What are the implications for engineered landfills? Sustain. Environ. Res. 2016, 26, 255–261.Liu, L.; Xiong, H.; Ma, J.; Ge, S.; Yu, X.; Zeng, G. Leachate Recirculation for Enhancing Methane Generation within Field Site in China. J. Chem. 2018, 2018, 9056561.Zheng, W.; Lü, F.; Bolyard, S.C.; Shao, L.; Reinhart, D.R.; He, P. Evaluation of monitoring indicators for the post-closure care of a landfill for MSW characterized with low lignin content. Waste Manag. 2014, 36, 222–229.Lohchab, R.; Singh, U. Performance evaluation of a landfill leachate recirculation treatment system using quadric model. J. Environ. Biol. 2017, 38, 1313–1320.Ozkaya, B.; Demir, A.; Basturk, A.; Bilgili, M.S. Investigation of leachate recirculation effects in Istanbul Odayeri Sanitary Landfill. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng. 2004, 39, 873–883.Patil, B.S.; Anto, C.A.; Singh, D.N. Simulation of municipal solid waste degradation in aerobic and anaerobic bioreactor landfills. Waste Manag. Res. J. Sustain. Circ. Econ. 2016, 35, 301–312Xu, Q.; Tian, Y.; Wang, S.; Ko, J.H. A comparative study of leachate quality and biogas generation in simulated anaerobic and hybrid bioreactors. Waste Manag. 2015, 41, 94–100Sandip, T.M.; Kanchan, C.K.; Ashok, H.B. Enhancement of methane production and bio-stabilisation of municipal solid waste in anaerobic bioreactor landfill. Bioresour. Technol. 2012, 110, 10–17.Swati, M.; Karthikeyan, O.P.; Joseph, K.; Visvanathan, C.; Nagendran, R. Pilot-Scale Simulation of Landfill Bioreactor and Controlled Dumping of Fresh and Partially Stabilized Municipal Solid Waste in a Tropical Developing Country. J. Hazard., Toxic Radioact. Waste 2011, 15, 321–330.Cossu, R.; Lai, T.; Piovesan, E. Proposal of a methodology for assessing the final storage quality of a landfill. In Proceedings of the 11th International Waste Management and Landfill Symposium, Sardinia, Italy, 1–5 October 2007.Knox, K.; Braithwaite, P.; Caine, M.; Croft, B. Brogborough landfill test cells: The final chapter. A study of landfill completion in relation to final storage quality (FSQ) criteria. In Sardinia 2005—10th International Waste Management and Landfill Symposium; Cossu, R., Diaz, L., Stegmann, R., Eds.; Environmental Sanitary Engineering Centre: Sardinia, Italy, 2005.Prantl, R.; Tesar, M.; Huber-Humer, M.; Lechner, P. Changes in carbon and nitrogen pool during in-situ aeration of old landfills under varying conditions. Waste Manag. 2006, 26, 373–380.Ritzkowski, M.; Stegmann, R. Landfill aeration within the scope of post-closure care and its completion. Waste Manag. 2013, 33, 2074–2082.Brandstätter, C.; Laner, D.; Fellner, J. Carbon pools and flows during lab-scale degradation of old landfilled waste under different oxygen and water regimes. Waste Manag. 2015, 40, 100–111Hrad, M.; Gamperling, O.; Huber-Humer, M. Comparison between lab- and full-scale applications of in situ aeration of an old landfill and assessment of long-term emission development after completion. Waste Manag. 2013, 33, 2061–2073.Valencia, R.; van der Zon, W.; Woelders, H.; Lubberding, H.; Gijzen, H. Achieving “Final Storage Quality” of municipal solid waste in pilot scale bioreactor landfills. Waste Manag. 2009, 29, 78–85.Shalini, S.S.; Karthikeyan, O.P.; Joseph, K. Biological stability of municipal solid waste from simulated landfills under tropical environment. Bioresour. Technol. 2010, 101, 845–852Laner, D.; Crest, M.; Scharff, H.; Morris, J.W.; Barlaz, M.A. A review of approaches for the long-term management of municipal solid waste landfills. Waste Manag. 2012, 32, 498–512Ponsa, S.; Gea, T.; Alerm, L.; Cerezo, J.; Sánchez, A. Comparison of aerobic and anaerobic stability indices through a MSW biological treatment process. Waste Manag. 2008, 28, 2735–2742.O’Donnell, S.T.; Caldwell, M.D.; Barlaz, M.A.; Morris, J.W. Case study comparison of functional vs. organic stability approaches for assessing threat potential at closed landfills in the USA. Waste Manag. 2018, 75, 415–426.DNP. Pólítica Nacional para la Gestión Integral de Residuos Sólidos; CONPES 3874; DNP: Bogotá, Colombia, 2016. Available online: https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%C3%B3micos/3874.pdfMinvivienda. Ministerio de Vivienda Ciudad y Territorio de Colombia; Resolución No. 938 de 2019; Minvivienda: Bogotá, Colombia, 2019.Boulanger, A.; Pinet, E.; Bouix, M.; Bouchez, T.; Mansour, A.A. Effect of inoculum to substrate ratio (I/S) on municipal solid waste anaerobic degradation kinetics and potential. Waste Manag. 2012, 32, 2258–2265.Francois, V.; Feuillade, G.; Skhiri, N.; Lagier, T.; Matejka, G. Indicating the parameters of the state of degradation of municipal solid waste. J. Hazard. Mater. 2006, 137, 1008–1015.Kim, H.; Townsend, T.G. Wet landfill decomposition rate determination using methane yield results for excavated waste samples. Waste Manag. 2012, 32, 1427–1433.Sandoval, J.J. Characterisation of Saturated & Unsaturated Flow of Liquids in Municipal Solid Waste. Master’s Thesis, University of Southampton, Southampton, UK, 2013. Available online: https://eprints.soton.ac.uk/466854/ (accessed on 1 January 2021).Caicedo, D. A Study of the Structure in Solid Wastes and Some Implications for Fluid Flow in Landfills. Ph.D. Thesis, University of Southampton, Southampton, UK, 2013.Minvivienda. Reglamento Técnico del Sector de Agua Potable y Saneamiento Básico—RAS; Minvivienda: Bogotá, Colombia, 2012.Hudson, A. Evaluation of the Vertical and Horizontal Hydraulic Conductivities of Household Wastes. Ph.D. Thesis, University of Southampton, Southampton, UK, 2007.Wang, Y.; Pelkonen, M. Impacts of temperature and liquid/solid ratio on anaerobic degradation of municipal solid waste: An emission investigation of landfill simulation reactors. J. Mater. Cycles Waste Manag. 2009, 11, 312–320.Francois, V.; Feuillade, G.; Matejka, G.; Lagier, T.; Skhiri, N. Leachate recirculation effects on waste degradation: Study on columns. Waste Manag. 2007, 27, 1259–1272.Wang, Y.-S.; Odle, W.S.; Eleazer, W.E.; Bariaz, M.A. Methane Potential of Food Waste and Anaerobic Toxicity of Leachate Produced During Food Waste Decomposition. Waste Manag. Res. J. Sustain. Circ. Econ. 1997, 15, 149–167.Brandstätter, C.; Laner, D.; Fellner, J. Nitrogen pools and flows during lab-scale degradation of old landfilled waste under different oxygen and water regimes. Biogeochemistry 2015, 26, 399–414.Ritzkowski, M.; Heyer, K.-U.; Stegmann, R. Fundamental processes and implications during in situ aeration of old landfills. Waste Manag. 2006, 26, 356–372.Wu, C.; Shimaoka, T.; Nakayama, H.; Komiya, T.; Chai, X. Stimulation of waste decomposition in an old landfill by air injection. Bioresour. Technol. 2016, 222, 66–74Walker, M.; Zhang, Y.; Heaven, S.; Banks, C. Potential errors in the quantitative evaluation of biogas production in anaerobic digestion processes. Bioresour. Technol. 2009, 100, 6339–6346.Ivanova, L. Quantification of Factors Affecting Rate and Magnitude of Secondary Settlement of Landfills. Ph.D. Thesis, University of Southampton, Southampton, UK, 2007. Available online: https://eprints.soton.ac.uk/466251/ (accessed on 1 July 2021).American Public Health Association. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597Sandoval-Cobo, J.J.; Casallas-Ojeda, M.R.; Carabalí-Orejuela, L.; Muñoz-Chávez, A.; Caicedo-Concha, D.M.; Marmolejo-Rebellón, L.F.; Torres-Lozada, P. Methane potential and degradation kinetics of fresh and excavated municipal solid waste from a tropical landfill in Colombia. Sustain. Environ. Res. 2020, 30, 7.Wang, B.; Björn, A.; Strömberg, S.; Nges, I.A.; Nistor, M.; Liu, J. Evaluating the influences of mixing strategies on the Biochemical Methane Potential test. J. Environ. Manag. 2017, 185, 54–59El-Fadel, M.; Bou-Zeid, E.; Chahine, W.; Alayli, B. Temporal variation of leachate quality from pre-sorted and baled municipal solid waste with high organic and moisture content. Waste Manag. 2002, 22, 269–282Jun, D.; Yong-Sheng, Z.; Mei, H.; Wei-Hong, Z. Influence of alkalinity on the stabilization of municipal solid waste in anaerobic simulated bioreactor. J. Hazard. Mater. 2009, 163, 717–722Gibbons, R.D.; Morris, J.W.; Prucha, C.P.; Caldwell, M.D.; Staley, B.F. Longitudinal data analysis in support of functional stability concepts for leachate management at closed municipal landfills. Waste Manag. 2014, 34, 1674–1682Kjeldsen, P.; Barlaz, M.A.; Rooker, A.P.; Baun, A.; Ledin, A.; Christensen, T.H. Present and Long-Term Composition of MSW Landfill Leachate: A Review. Crit. Rev. Environ. Sci. Technol. 2002, 32, 297–336.Cossu, R.; Raga, R. Test methods for assessing the biological stability of biodegradable waste. Waste Manag. 2008, 28, 381–388.Bolyard, S.C.; Reinhart, D.R. Application of landfill treatment approaches for stabilization of municipal solid waste. Waste Manag. 2016, 55, 22–30.Berge, N.D.; Reinhart, D.R.; Dietz, J.; Townsend, T. In situ ammonia removal in bioreactor landfill leachate. Waste Manag. 2006, 26, 334–343.Heyer, K.-U.; Hupe, K.; Stegmann, R. Methane emissions from MBT landfills. Waste Manag. 2013, 33, 1853–1860Xu, S.Y.; Karthikeyan, O.P.; Selvam, A.; Wong, J.W. Microbial community distribution and extracellular enzyme activities in leach bed reactor treating food waste: Effect of different leachate recirculation practices. Bioresour. Technol. 2014, 168, 41–48.Tchobanoglous, G.; Theisen, H.; Vigil, S.A. Integrated Solid Waste Management: Engineering Principles and Management Issues; McGraw-Hill: New York, NY, USA, 1993.Capaccioni, B.; Caramiello, C.; Tatàno, F.; Viscione, A. Effects of a temporary HDPE cover on landfill gas emissions: Multiyear evaluation with the static chamber approach at an Italian landfill. Waste Manag. 2011, 31, 956–965.Hrad, M.; Huber-Humer, M. Performance and completion assessment of an in-situ aerated municipal solid waste landfill—Final scientific documentation of an Austrian case study. Waste Manag. 2017, 63, 397–409.U.S. EPA. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2016. EPA 430-R-18-003. Washington, DC, USA, 2016. Available online: https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2011 (accessed on 1 July 2021).Mahar, R.B.; Liu, J.; Li, H.; Nie, Y. Bio-Pretreatment of municipal solid waste prior to landfilling and its kinetics. Biogeochemistry 2008, 20, 319–330.Council of the European Union. European Council Decision 2003/33/EC establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of and Annex II to Directive 1999/31/EC. Off. J. Eur. Communities 2003, L11, 27–49.Kelly, R.J.; Shearer, B.D.; Kim, J.; Goldsmith, C.D.; Hater, G.R.; Novak, J.T. Relationships between analytical methods utilized as tools in the evaluation of landfill waste stability. Waste Manag. 2006, 26, 1349–1356.Bilgili, M.S.; Demir, A.; Varank, G. Evaluation and modeling of biochemical methane potential (BMP) of landfilled solid waste: A pilot scale study. Bioresour. Technol. 2009, 100, 4976–4980.Federal Government of Germany. Ordinance on Environmentally Compatible Storage of Waste from Human Settlements and on Biological Waste Treatment Facilities (AbfAblV); Federal Government of Germany: Berlin, Germany, 2001.U.S. EPA. Federal Register, 40 CFR Part 445, Subpart B: RCRA Subtitle D Non-Hazardous Waste Landfill; Landfills Point Source Category; Office of Federal Register: Washington, DC, USA, 2000.Bayard, R.; Benbelkacem, H.; Gourdon, R.; Buffière, P. Characterization of selected municipal solid waste components to estimate their biodegradability. J. Environ. Manag. 2018, 216, 4–12.Machado, S.; Karimpour-Fard, M.; Shariatmadari, N.; Carvalho, M.; do Nascimento, J. Evaluation of the geotechnical properties of MSW in two Brazilian landfills. Waste Manag. 2010, 30, 2579–2591.Berge, N.D.; Reinhart, D.R.; Batarseh, E.S. An assessment of bioreactor landfill costs and benefits. Waste Manag. 2009, 29, 1558–1567.EPA/ISWA. International Best Practices Guide for Landfill Gas Energy Project; Global Methane Initiative: Washington, DC, USA, 2012Recirculación de lixiviadosMetanoEnergía renovableBiogásLeachate recirculationMethaneRenewable energyBiogasEvaluation of Leachate Recirculation as a Stabilisation Strategy for Landfills in Developing CountriesArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionNINGUNAinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINAL2022_leachate_recirculation2022_leachate_recirculationArtículoapplication/pdf2113025https://repository.ucc.edu.co/bitstreams/fcf576da-8165-45e8-b92c-96203cc2d4f0/download3fc57f38b972295be68227f9d867c64dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/512404a3-d6de-4ecf-a52f-95df39b5b794/download3bce4f7ab09dfc588f126e1e36e98a45MD52TEXT2022_leachate_recirculation.txt2022_leachate_recirculation.txtExtracted texttext/plain86762https://repository.ucc.edu.co/bitstreams/a4d8c0c5-a953-4ee1-8f00-0977e4109b07/downloadeb776464a7ae9ea167e8b8d8128ea947MD53THUMBNAIL2022_leachate_recirculation.jpg2022_leachate_recirculation.jpgGenerated Thumbnailimage/jpeg15929https://repository.ucc.edu.co/bitstreams/c7dd33db-291e-4e59-abd7-672d04ea4bbe/download50a71e2ba9821065d8a130d22f45ecb1MD5420.500.12494/52732oai:repository.ucc.edu.co:20.500.12494/527322024-08-10 21:03:12.105restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=