Influence of Cutting Intervals and Transition Periods on Chemical Composition Variability of Selected Tropical Grasses under Flooded Savanna Conditions of Arauca, Colombian Orinoquia.

The floodplain savannah is a tropical ecosystem that sustains grazing livestock, mainly by its grass’s diversity, of which scarce knowledge regarding the chemical composition and influencing factors. The aim was to evaluate the chemical composition variability of some native and introduced grasses g...

Full description

Autores:
Vélez-Terranova, Mauricio
Salamanca-Carreño, Arcesio
Vargas-Corzo, Oscar Mauricio
Parés-Casanova, Pere M.
Pérez-López, Otoniel
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/53544
Acceso en línea:
https://doi.org/10.3390/su152316301
https://hdl.handle.net/20.500.12494/53544
Palabra clave:
Composición química
período climático
pastos nativos
posición fisiográfica
forraje tropical
chemical composition
climatic period
native grasses
physiographic position
tropical forage
Rights
openAccess
License
Atribución – No comercial – Sin Derivar
id COOPER2_1efeed82ca7403ba45666e69c0f1ab28
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/53544
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.none.fl_str_mv Influence of Cutting Intervals and Transition Periods on Chemical Composition Variability of Selected Tropical Grasses under Flooded Savanna Conditions of Arauca, Colombian Orinoquia.
title Influence of Cutting Intervals and Transition Periods on Chemical Composition Variability of Selected Tropical Grasses under Flooded Savanna Conditions of Arauca, Colombian Orinoquia.
spellingShingle Influence of Cutting Intervals and Transition Periods on Chemical Composition Variability of Selected Tropical Grasses under Flooded Savanna Conditions of Arauca, Colombian Orinoquia.
Composición química
período climático
pastos nativos
posición fisiográfica
forraje tropical
chemical composition
climatic period
native grasses
physiographic position
tropical forage
title_short Influence of Cutting Intervals and Transition Periods on Chemical Composition Variability of Selected Tropical Grasses under Flooded Savanna Conditions of Arauca, Colombian Orinoquia.
title_full Influence of Cutting Intervals and Transition Periods on Chemical Composition Variability of Selected Tropical Grasses under Flooded Savanna Conditions of Arauca, Colombian Orinoquia.
title_fullStr Influence of Cutting Intervals and Transition Periods on Chemical Composition Variability of Selected Tropical Grasses under Flooded Savanna Conditions of Arauca, Colombian Orinoquia.
title_full_unstemmed Influence of Cutting Intervals and Transition Periods on Chemical Composition Variability of Selected Tropical Grasses under Flooded Savanna Conditions of Arauca, Colombian Orinoquia.
title_sort Influence of Cutting Intervals and Transition Periods on Chemical Composition Variability of Selected Tropical Grasses under Flooded Savanna Conditions of Arauca, Colombian Orinoquia.
dc.creator.fl_str_mv Vélez-Terranova, Mauricio
Salamanca-Carreño, Arcesio
Vargas-Corzo, Oscar Mauricio
Parés-Casanova, Pere M.
Pérez-López, Otoniel
dc.contributor.author.none.fl_str_mv Vélez-Terranova, Mauricio
Salamanca-Carreño, Arcesio
Vargas-Corzo, Oscar Mauricio
Parés-Casanova, Pere M.
Pérez-López, Otoniel
dc.subject.none.fl_str_mv Composición química
período climático
pastos nativos
posición fisiográfica
forraje tropical
topic Composición química
período climático
pastos nativos
posición fisiográfica
forraje tropical
chemical composition
climatic period
native grasses
physiographic position
tropical forage
dc.subject.other.none.fl_str_mv chemical composition
climatic period
native grasses
physiographic position
tropical forage
description The floodplain savannah is a tropical ecosystem that sustains grazing livestock, mainly by its grass’s diversity, of which scarce knowledge regarding the chemical composition and influencing factors. The aim was to evaluate the chemical composition variability of some native and introduced grasses grown in different physiographic positions of the floodplain savannah at transition periods and different cutting intervals. Five grasses from the “bank” (native species: Paspalum plicatulum, Axonopus compressus, Panicum versicolor, and Paspalum sp.; introduced species: Mulato I) and four from the “low” (native species: Leersia hexandra, Acroceras zizanioides, and Hymenachne amplexicaulis; introduced species: Urochloa humidicola) were sampled at 30, 40, and 50 cutting interval days during the “dry–rainy” and “rainy–dry” transition periods. The cuts were made with a 1 m2 frame to estimate forage biomass. The chemical compositions were analyzed by near-infrared spectroscopy. The influences of the cutting intervals and transition periods on chemical composition variables were evaluated through principal component analysis (PCA). Grass chemical variability was explained by eleven variables, including a digestible fraction, namely crude protein (CP), ash, ether extract (EE), total digestible nutrients (TDN), dry matter digestibility (DMD), metabolic energy (ME), phosphorus (P), and sulfur (S); and a partial digestible or undigestible fraction, namely neutral detergent fiber (NDF), lignin, and hemicellulose (HC). Grasses from the “low” position or with 30 cutting interval days in the rainy–dry transition period presented the highest proportion of the digestible fraction. Introduced grasses showed reduced nutritional value from 40 days onwards, whereas the L. hexandra, H. amplexicaulis, A. zizanioides, and P. versicolor native grasses were the least affected by the studied cutting intervals and transition periods. These native grasses constitute an important sustainable food resource for livestock in the flooded savanna ecosystem.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-11-27T16:12:27Z
dc.date.available.none.fl_str_mv 2023-11-27T16:12:27Z
dc.date.issued.none.fl_str_mv 2023-11-25
dc.type.none.fl_str_mv Artículos Científicos
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2071-1050
dc.identifier.uri.none.fl_str_mv https://doi.org/10.3390/su152316301
https://hdl.handle.net/20.500.12494/53544
dc.identifier.bibliographicCitation.none.fl_str_mv Vélez-Terranova, Salamanca-Carreño, Vargas-Corzo, Parés-Casanova, Pérez-López. 2023. Influence of Cutting Intervals and Transition Periods on Chemical Composition Variability of Selected Tropical Grasses under Flooded Savanna Conditions of Arauca, Colombian Orinoquia. Sustainability, 15 (23): 1-15
identifier_str_mv 2071-1050
Vélez-Terranova, Salamanca-Carreño, Vargas-Corzo, Parés-Casanova, Pérez-López. 2023. Influence of Cutting Intervals and Transition Periods on Chemical Composition Variability of Selected Tropical Grasses under Flooded Savanna Conditions of Arauca, Colombian Orinoquia. Sustainability, 15 (23): 1-15
url https://doi.org/10.3390/su152316301
https://hdl.handle.net/20.500.12494/53544
dc.relation.isversionof.none.fl_str_mv https://www.mdpi.com/2071-1050/15/23/16301
dc.relation.ispartofjournal.none.fl_str_mv Sustainability
dc.relation.references.none.fl_str_mv Moscovici Joubran, A.; Pierce, K.M.; Garvey, N.; Shalloo, L.; O’Callaghan, T.F. Invited review: A 2020 perspective on pasture-based dairy systems and products. J. Dairy Sci. 2021, 104, 7364–7382. [CrossRef] 2. Wróbel, B.; Zielewicz, W.; Staniak, M. Challenges of Pasture Feeding Systems—Opportunities and Constraints. Agriculture 2023, 13, 974. [CrossRef] 3. Boval, M.; Dixon, R.M. The importance of grasslands for animal production and other functions: A review on management and methodological progress in the tropics. Animal 2012, 6, 748–762. [CrossRef] 4. Paul, K.P.; Koge, J.; Maass, B.L.; Notenbaert, A.; Peters, M.; Groot, J.C.J.; Tittonell, P. Tropical forage technologies can deliver multiple benefits in Sub-Saharan Africa. A meta-analysis. Agron. Sustain. Devel. 2020, 40, 22. [CrossRef] 5. Oosting, S.; van der Lee, J.; Verdegem, M.; De Vries, M.; Vernooij, A.; Bonilla-Cedrez, C.; Kabir, K. Farmed animal production in tropical circular food systems. Food Secur. 2022, 14, 273–292. [CrossRef] 6. Peñuela, L.; Fernández, A.P.; Castro, F.; Ocampo, A. Uso y Manejo de Forrajes Nativos en la Sabana Inundable de la Orinoquia; Convenio de Cooperación Interinstitucional; The Nature Conservancy; Fundación Horizonte Verde; Fundación Biodiversidad de España & Corporación Autónoma Regional de la Orinoquia; Universidad de los Llanos: Villavicencio, Colombia, 2011. 7. ICA. Instituto Colombiano Agropecuario. Censos Pecuarios Nacional. 2023. Available online: https://www.ica.gov.co/areas/ pecuaria/servicios/epidemiologia-veterinaria/censos-2016/censo-2018 (accessed on 13 September 2023). 8. Mora-Fernández, C.; Peñuela-Recio, L.; Castro-Lima, F. Estado del conocimiento de los ecosistemas de las sabanas inundables en la Orinoquia Colombiana. Rev. Orinoquia 2015, 19, 253–271. [CrossRef] 9. Sousa Feitosa, O.; Costa Leite, R.; Alexandrino, E.; Saboia Pires, T.J.; Taverny de Oliveira, L.B.; Paula Neto, J.J.; Dos Santos, A.C. Forage performance and cattle production as a function of the seasonality of a Brazilian tropical region. Acta Scient. Anim. Sci. 2022, 44, e53779. [CrossRef] 10. Salamanca-Carreño, A.; Vélez-Terranova, M.; Vargas-Corzo, O.M.; Pérez-López, O.; Castillo-Pérez, A.F.; Parés-Casanova, P.M. Relationship of Physiographic Position to Physicochemical Characteristics of Soils of the Flooded-Savannah Agroecosystem, Colombia. Agriculture 2023, 13, 220. [CrossRef] 11. Salamanca-Carreño, A.; Vélez-Terranova, M.; Vargas-Corzo, O.M.; Parés-Casanova, P.M.; Bentez-Molano, J. Productive and Nutritional Characteristics of Native Grasses from the Floodplain Banks Ecosystem in the Colombian Orinoquia. Sustainability 2022, 14, 15151. [CrossRef], Vélez-Terranova, M.; Salamanca-Carreño, A.; Vargas-Corzo, O.M.; Parés-Casanova, P.M.; Arias-Landazábal, J.N. Chemical Composition and In Vitro Ruminal Fermentation Characteristics of Native Grasses from the Floodplain Lowlands Ecosystem in the Colombian Orinoquia. Animals 2023, 13, 2760. [CrossRef] 13. Pérez Bona, R.A.; Vargas Corzo, O.M. Características de la Sabana Nativa y su Potencial de Producción Bovina en la Llanura Inundable de Arauca; Boleín Técnico N 25; Programa Regional de Investigación Pecuaria, Corpoica: Arauca, Arauca, 2001. 14. USDA. United States Department of Agriculture. Oxisols. In Soil Taxonomy. A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed.; Soil Survey Staff: Washington, DC, USA, 1999; Chapter 17; pp. 655–695. 15. Rangel-Ch, J.O.; Celis, V. Suelos del territorio sabanas y humedales de Arauca, Colombia. In Col. Div. Biótica XX: Suelos Sabanas y Humedales de Arauca; Instituto de Ciencias Naturales, Universidad Nacional de Colombia: Bogotá, Colombia, 2019; pp. 171–197. 16. Holdridge, L.R. Ecología Basada en Zonas de Vida; IICA Biblioteca Venezuela: San Jose de Costa Rica, Costa Rica, 1987; p. 216. 17. Schweizer Lassaga, S. Muestreo y Análisis de Suelos Para Diagnóstico de Fertilidad; Instituto Nacional de Innovación y Transferencia en Tecnología Agropecuaria: San José, Costa Rica, 2011. 18. UN. Universidad Nacional de Colombia, Orinoquía. Guía para el Usuario de los Servicios del Laboratorio de Suelos, Aguas y Foliares; Arauca, Colombia. 2021. Available online: https://bit.ly/3HiscdG (accessed on 14 September 2021). 19. ICONTEC. Instituto Colombiano de Normas Técnicas y Certificación. Sistema Nacional de la Calidad. 2021. Available online: https://bit.ly/3P8u8ax (accessed on 14 September 2021). 20. Cerdas, R. Programa de fertilización de forrajes. Desarrollo de un módulo práctico para técnicos y estudiantes de ganadería de Guanacaste, Costa Rica. InterSedes 2011, 12, 109–128. 21. Ariza-Nieto, C.M.O.L.; Mojica, B.; Parra, D.; Afanador-Tellez, G. Use of LOCAL algorithm with near infrared spectroscopy in forage resources for grazing systems in Colombia. J. Near Infrared Spectr. 2018, 26, 44–52. [CrossRef] 22. InfoStat. Software Estadistico, Versión 30/04/2020; Grupo InfoStat, FCA. Universidad Nacional de Córdoba: Córdoba, Argentina, 2020. 23. Ocampo, A.; Peñuela, L. Manejo y nutrición en sabana inundable como eje de la producción y reproducción de la ganadería de cría. In Fortalecimiento Institucional y de Política Para Incrementar la Conservación de la Biodiversidad en Predios Privados en Colombia; Red Colombiana de Reservas Naturales de la Sociedad; Fundación Natura; World Wildlife Fund; The Nature Conservancy; Parques Nacionales Naturales de Colombia: Bogotá, Colombia, 2014. 24. Reyes-Pérez, J.J.; Méndez-Martínez, Y.; Verdecia, D.M.; Luna-Murillo, R.A.; Hernández Montiel, L.G.; Herrera, R.S. Components of the yield and bromatological composition of three Brachiaria varieties in El Empalme area, Ecuador. Cuban J. Agricult. Sc. 2018, 52, 435–445. 25. Meale, S.J.; Chaves, A.V.; Baah, J.; McAllister, T.A. Methane Production of Different Forages in In vitro Ruminal Fermentation. Asian-Aust. J. Anim. Sci. 2012, 25, 86–91. [CrossRef] 26. Méndez-Martínez, Y.; Verdecia, D.M.; Reyes-Pérez, J.J.; Luna-Murillo, R.A.; Rivero-Herrada, M.; Montenegro-Vivas, L.B.; Herrera, R.S. Quality of three Megathyrsus maximus cultivars in the Empalme area, Ecuador. Cuban J. Agricult. Sci. 2018, 52, 423–433. 27. Gaviria-Uribe, X.; Bolívar-Vergara, D.M.; Chirinda, N.; Molina-Botero, I.C.; Mazabel, J.; Barahona-Rosales, R.; Arango, J. In vitro methane production and ruminal fermentation parameters of tropical grasses and grass-legume associations commonly used for cattle feeding in the tropics. Livest. Res. Rural Devel. 2022, 34, 1–17. 28. Cruz-Hernández, A.; Hernández-Garay, A.; Aranda-Ibañez, E.; Chay-Canul, A.; Márquez-Quiroz, C.; Rojas-Garcia, A.L.; Gómez- Vázquez, A. Nutritive value of Mulato grass under dierent grazing strategies. Esosist. Recur. Agropec. 2017, 4, 65–72. [CrossRef] 29. Cuadrado, H.; Torregroza, L.; Garcés, J. Producción de Carne con Machos de Ceba en Pastoreo de Pasto Híbrido Mulato y Brachiaria decumbens en el Valle del Sinú. MVZ-Córdoba 2005, 10, 573–580. 30. Cruz Hernández, A.; Hernández Garay, A.; Chay Canul, A.J.; Mendoza Pedroza, S.I.; Ramírez Vera, S.; Rojas García, A.R.; Ventura Ríos, J. Components of the yield and nutritional value of Brachiaria humidicola cv Chetumal to different grazing strategies. Rev. Mex. Cienc. Agríc. 2017, 8, 599–610. 31. Van Soest, P.J. Development of comprehensive system of feed analysis and its application to forages. J. Anim. Sc. 1967, 26, 119–128. [CrossRef] 32. Leng, R.A. Evaluation of Tropical Feed Resources for Ruminant Livestock; Tropical Feeds and Feeding Systems; FAO: Rome, Italy, 1995; Available online: https://www.fao.org/ag/aga/agap/frg/econf95/pdf/evalu.pdf (accessed on 20 September 2022). 33. Lee, M.A. A global comparison of the nutritive values of forage plants grown in contrasting environments. J. Plant Res. 2018, 131, 641–654. [CrossRef] [PubMed] 34. Mlay, P.S.; Pereka, A.; Phiri, E.; Balthazary, S.; Igusti, J.; Hvelplund, T.; Weisbjerg, M.R.; Madsen, J. Feed value of selected tropical grasses, legumes and concentrates. Veterinarski Arhiv 2006, 76, 53–63. 35. Jayanegara, A.; Ridla, M.; Nahrowi; Laconi, E.B. Estimation and validation of total digestible nutrient values of forage and concentrate feedstuffs. IOP Conf. Series: Mater. Sci. Engin. 2019, 546, 1–5. [CrossRef] 36. Horne da Cruz, C.; Alvarenga Santos, S.; Pinto de Carvalho, G.G.; Gomes Azevedo, J.A.; Detmann, E.; Valadares Filho, S.C.; Silva Mariz, L.D.; Sales Pereira, E.; Carvalho Nicory, I.M.; Libânio Tosto, M.S.; et al. Estimating digestible nutrients in diets for small rumiants fed with tropical forages. Livest. Sci. 2021, 249, 104532. [CrossRef] 37. Harper, K.J.; McNeill, D.M. The Role iNDF in the Regulation of Feed Intake and the Importance of Its Assessment in Subtropical Ruminant Systems (the Role of iNDF in the Regulation of Forage Intake). Agriculture 2015, 5, 778–790. [CrossRef], Jayasinghe, P.; Ramilan, T.; Donaghy, D.J.; Pembleton, K.G.; Barber, D.G. Comparison of Nutritive Values of Tropical Pasture Species Grown in Different Environments, and Implications for Livestock Methane Production: A Meta-Analysis. Animals 2022, 12, 1806. [CrossRef] 39. Bogale, S.; Melaku, S.; Yami, A. Influence of rainfall pattern on grass/legume composition and nutritive value of natural pasture in Bale Highlands of Ethiopia. Livest. Res. Rural Develop 2008, 20. Available online: http://www.lrrd.org/lrrd20/3/boga20038.htm (accessed on 20 September 2022). 40. Gherardia, L.A.; Sala, O.E. Enhanced precipitation variability decreases grass- and increases shrub-productivity. Proc. Nat. Acad. Sci. USA 2015, 112, 12735–12740. [CrossRef] 41. Garay, J.R.; Joaquin-Cancino, S.; Zárate-Fortuna, P.; Ibarra-Hinojosa, M.A.; Martínez-González, J.C.; González-Dávila, R.P.; Cienfuegos-Rivas, E.G. Dry matter accumulation and crude protein concentration in Brachiaria spp. cultivars in the humid tropics of Ecuador. Trop. Grasslands-Forrajes Tropicales 2017, 5, 66–76. [CrossRef] 42. Ramos-Montaño, C.; García-Conde, M.R. Características Ecosistémicas asociadas a la actividad ganadera en Arauca (Colombia): Desafíos frente al cambio climático. Orinoquia 2016, 20, 28–38. [CrossRef] 43. Melo, C.D.; Maduro Dias, C.S.A.M.; Wallon, S.; Borba, A.E.S.; Madruga, J.; Borges, P.A.V.; Ferreira, M.T.; Elias, R.B. Influence of Climate Variability and Soil Fertility on the Forage Quality and Productivity in Azorean Pastures. Agriculture 2022, 12, 358. [CrossRef] 44. Fonseca-Pereira, G.; Emerenciano-Neto, J.V.; dos Santos-Difante, G.; Cortes-Assis, L.C.S.L.; de Oliveira- Lima, P. Morphogenic and structural characteristics of tropical forage grasses managed under different regrowth periods in the Brazilian semi-arid region. Semina: Ciênc. Agrá. 2019, 40, 283–292. 45. Mwendia, S.W.; Ohmstedt, U.; Nyakundi, F.; Notenbaert, A.; Peters, P. Does harvesting Urochloa and Megathyrsus forages at short intervals confer an advantage on cumulative dry matter yields and quality? J. Sci. Food Agric. 2022, 102, 750–756. [CrossRef] [PubMed] 46. Suttle, N.F. Mineral Nutrition of Livestock, 4th Edition. 2010. Available online: http://www.ucv.ve/fileadmin/user_upload/ facultad_agronomia/Producion_Animal/Minerals_in_Animal_Nutrition.pdf (accessed on 3 September 2023). 47. Liu, J.; Duan, C.; Zhang, X.; Zhu, Y.; Lu, X. Potential of Leersia hexandra Swartz for phytoextraction of Cr from soil. J. Hazard. Mater. 2011, 188, 85–91. [CrossRef] [PubMed] 48. Pinotti, L.; Manoni, M.; Ferrari, L.; Tretola, M.; Cazzola, R.; Givens, I. The Contribution of Dietary Magnesium in Farm Animals and Human Nutrition. Nutrients 2021, 13, 509. [CrossRef]
dc.rights.license.none.fl_str_mv Atribución – No comercial – Sin Derivar
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Sin Derivar
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 1-15
dc.coverage.temporal.none.fl_str_mv 15(23)
dc.publisher.none.fl_str_mv Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia
dc.publisher.program.none.fl_str_mv Medicina veterinaria y zootecnia
dc.publisher.place.none.fl_str_mv Villavicencio
publisher.none.fl_str_mv Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/5c16557e-7e04-427b-ad19-6fcd8ec0d182/download
https://repository.ucc.edu.co/bitstreams/5e6997d8-f30b-490f-8ec3-b0f2d0330b6e/download
https://repository.ucc.edu.co/bitstreams/c225d06d-2a30-4cb0-a0a2-e33df09bc3d7/download
https://repository.ucc.edu.co/bitstreams/af03f82f-f598-4d60-bbd9-669c55e487cd/download
https://repository.ucc.edu.co/bitstreams/107372dd-f114-4c03-9a42-91dddf72c4a4/download
https://repository.ucc.edu.co/bitstreams/5085d5cb-1b46-48b8-98fa-751f8e384d6d/download
https://repository.ucc.edu.co/bitstreams/def92e78-2989-4ba8-9658-1bffb55275e5/download
bitstream.checksum.fl_str_mv abcb9a547e99f21b2189e317c8eda256
6d9c3c1a118da1f67434fac73a610f4a
3bce4f7ab09dfc588f126e1e36e98a45
5fad7fde479aa8b76c7cab2338750f07
898aae89056028263872aef4f7197e0a
5d1006411dd783bf8a2186c36a10bb3a
ab1a9ffc5f9f6381df0425130f11b6f2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1811565225071083520
spelling Vélez-Terranova, MauricioSalamanca-Carreño, ArcesioVargas-Corzo, Oscar MauricioParés-Casanova, Pere M.Pérez-López, Otoniel15(23)2023-11-27T16:12:27Z2023-11-27T16:12:27Z2023-11-252071-1050https://doi.org/10.3390/su152316301https://hdl.handle.net/20.500.12494/53544Vélez-Terranova, Salamanca-Carreño, Vargas-Corzo, Parés-Casanova, Pérez-López. 2023. Influence of Cutting Intervals and Transition Periods on Chemical Composition Variability of Selected Tropical Grasses under Flooded Savanna Conditions of Arauca, Colombian Orinoquia. Sustainability, 15 (23): 1-15The floodplain savannah is a tropical ecosystem that sustains grazing livestock, mainly by its grass’s diversity, of which scarce knowledge regarding the chemical composition and influencing factors. The aim was to evaluate the chemical composition variability of some native and introduced grasses grown in different physiographic positions of the floodplain savannah at transition periods and different cutting intervals. Five grasses from the “bank” (native species: Paspalum plicatulum, Axonopus compressus, Panicum versicolor, and Paspalum sp.; introduced species: Mulato I) and four from the “low” (native species: Leersia hexandra, Acroceras zizanioides, and Hymenachne amplexicaulis; introduced species: Urochloa humidicola) were sampled at 30, 40, and 50 cutting interval days during the “dry–rainy” and “rainy–dry” transition periods. The cuts were made with a 1 m2 frame to estimate forage biomass. The chemical compositions were analyzed by near-infrared spectroscopy. The influences of the cutting intervals and transition periods on chemical composition variables were evaluated through principal component analysis (PCA). Grass chemical variability was explained by eleven variables, including a digestible fraction, namely crude protein (CP), ash, ether extract (EE), total digestible nutrients (TDN), dry matter digestibility (DMD), metabolic energy (ME), phosphorus (P), and sulfur (S); and a partial digestible or undigestible fraction, namely neutral detergent fiber (NDF), lignin, and hemicellulose (HC). Grasses from the “low” position or with 30 cutting interval days in the rainy–dry transition period presented the highest proportion of the digestible fraction. Introduced grasses showed reduced nutritional value from 40 days onwards, whereas the L. hexandra, H. amplexicaulis, A. zizanioides, and P. versicolor native grasses were the least affected by the studied cutting intervals and transition periods. These native grasses constitute an important sustainable food resource for livestock in the flooded savanna ecosystem.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001022903https://orcid.org/0000-0002-5416-5906https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000009387asaca_65@yahoo.eshttps://scholar.google.com/citations?hl=es&user=EqGLQZUAAAAJ1-15Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de ColombiaMedicina veterinaria y zootecniaVillavicenciohttps://www.mdpi.com/2071-1050/15/23/16301SustainabilityMoscovici Joubran, A.; Pierce, K.M.; Garvey, N.; Shalloo, L.; O’Callaghan, T.F. Invited review: A 2020 perspective on pasture-based dairy systems and products. J. Dairy Sci. 2021, 104, 7364–7382. [CrossRef] 2. Wróbel, B.; Zielewicz, W.; Staniak, M. Challenges of Pasture Feeding Systems—Opportunities and Constraints. Agriculture 2023, 13, 974. [CrossRef] 3. Boval, M.; Dixon, R.M. The importance of grasslands for animal production and other functions: A review on management and methodological progress in the tropics. Animal 2012, 6, 748–762. [CrossRef] 4. Paul, K.P.; Koge, J.; Maass, B.L.; Notenbaert, A.; Peters, M.; Groot, J.C.J.; Tittonell, P. Tropical forage technologies can deliver multiple benefits in Sub-Saharan Africa. A meta-analysis. Agron. Sustain. Devel. 2020, 40, 22. [CrossRef] 5. Oosting, S.; van der Lee, J.; Verdegem, M.; De Vries, M.; Vernooij, A.; Bonilla-Cedrez, C.; Kabir, K. Farmed animal production in tropical circular food systems. Food Secur. 2022, 14, 273–292. [CrossRef] 6. Peñuela, L.; Fernández, A.P.; Castro, F.; Ocampo, A. Uso y Manejo de Forrajes Nativos en la Sabana Inundable de la Orinoquia; Convenio de Cooperación Interinstitucional; The Nature Conservancy; Fundación Horizonte Verde; Fundación Biodiversidad de España & Corporación Autónoma Regional de la Orinoquia; Universidad de los Llanos: Villavicencio, Colombia, 2011. 7. ICA. Instituto Colombiano Agropecuario. Censos Pecuarios Nacional. 2023. Available online: https://www.ica.gov.co/areas/ pecuaria/servicios/epidemiologia-veterinaria/censos-2016/censo-2018 (accessed on 13 September 2023). 8. Mora-Fernández, C.; Peñuela-Recio, L.; Castro-Lima, F. Estado del conocimiento de los ecosistemas de las sabanas inundables en la Orinoquia Colombiana. Rev. Orinoquia 2015, 19, 253–271. [CrossRef] 9. Sousa Feitosa, O.; Costa Leite, R.; Alexandrino, E.; Saboia Pires, T.J.; Taverny de Oliveira, L.B.; Paula Neto, J.J.; Dos Santos, A.C. Forage performance and cattle production as a function of the seasonality of a Brazilian tropical region. Acta Scient. Anim. Sci. 2022, 44, e53779. [CrossRef] 10. Salamanca-Carreño, A.; Vélez-Terranova, M.; Vargas-Corzo, O.M.; Pérez-López, O.; Castillo-Pérez, A.F.; Parés-Casanova, P.M. Relationship of Physiographic Position to Physicochemical Characteristics of Soils of the Flooded-Savannah Agroecosystem, Colombia. Agriculture 2023, 13, 220. [CrossRef] 11. Salamanca-Carreño, A.; Vélez-Terranova, M.; Vargas-Corzo, O.M.; Parés-Casanova, P.M.; Bentez-Molano, J. Productive and Nutritional Characteristics of Native Grasses from the Floodplain Banks Ecosystem in the Colombian Orinoquia. Sustainability 2022, 14, 15151. [CrossRef], Vélez-Terranova, M.; Salamanca-Carreño, A.; Vargas-Corzo, O.M.; Parés-Casanova, P.M.; Arias-Landazábal, J.N. Chemical Composition and In Vitro Ruminal Fermentation Characteristics of Native Grasses from the Floodplain Lowlands Ecosystem in the Colombian Orinoquia. Animals 2023, 13, 2760. [CrossRef] 13. Pérez Bona, R.A.; Vargas Corzo, O.M. Características de la Sabana Nativa y su Potencial de Producción Bovina en la Llanura Inundable de Arauca; Boleín Técnico N 25; Programa Regional de Investigación Pecuaria, Corpoica: Arauca, Arauca, 2001. 14. USDA. United States Department of Agriculture. Oxisols. In Soil Taxonomy. A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed.; Soil Survey Staff: Washington, DC, USA, 1999; Chapter 17; pp. 655–695. 15. Rangel-Ch, J.O.; Celis, V. Suelos del territorio sabanas y humedales de Arauca, Colombia. In Col. Div. Biótica XX: Suelos Sabanas y Humedales de Arauca; Instituto de Ciencias Naturales, Universidad Nacional de Colombia: Bogotá, Colombia, 2019; pp. 171–197. 16. Holdridge, L.R. Ecología Basada en Zonas de Vida; IICA Biblioteca Venezuela: San Jose de Costa Rica, Costa Rica, 1987; p. 216. 17. Schweizer Lassaga, S. Muestreo y Análisis de Suelos Para Diagnóstico de Fertilidad; Instituto Nacional de Innovación y Transferencia en Tecnología Agropecuaria: San José, Costa Rica, 2011. 18. UN. Universidad Nacional de Colombia, Orinoquía. Guía para el Usuario de los Servicios del Laboratorio de Suelos, Aguas y Foliares; Arauca, Colombia. 2021. Available online: https://bit.ly/3HiscdG (accessed on 14 September 2021). 19. ICONTEC. Instituto Colombiano de Normas Técnicas y Certificación. Sistema Nacional de la Calidad. 2021. Available online: https://bit.ly/3P8u8ax (accessed on 14 September 2021). 20. Cerdas, R. Programa de fertilización de forrajes. Desarrollo de un módulo práctico para técnicos y estudiantes de ganadería de Guanacaste, Costa Rica. InterSedes 2011, 12, 109–128. 21. Ariza-Nieto, C.M.O.L.; Mojica, B.; Parra, D.; Afanador-Tellez, G. Use of LOCAL algorithm with near infrared spectroscopy in forage resources for grazing systems in Colombia. J. Near Infrared Spectr. 2018, 26, 44–52. [CrossRef] 22. InfoStat. Software Estadistico, Versión 30/04/2020; Grupo InfoStat, FCA. Universidad Nacional de Córdoba: Córdoba, Argentina, 2020. 23. Ocampo, A.; Peñuela, L. Manejo y nutrición en sabana inundable como eje de la producción y reproducción de la ganadería de cría. In Fortalecimiento Institucional y de Política Para Incrementar la Conservación de la Biodiversidad en Predios Privados en Colombia; Red Colombiana de Reservas Naturales de la Sociedad; Fundación Natura; World Wildlife Fund; The Nature Conservancy; Parques Nacionales Naturales de Colombia: Bogotá, Colombia, 2014. 24. Reyes-Pérez, J.J.; Méndez-Martínez, Y.; Verdecia, D.M.; Luna-Murillo, R.A.; Hernández Montiel, L.G.; Herrera, R.S. Components of the yield and bromatological composition of three Brachiaria varieties in El Empalme area, Ecuador. Cuban J. Agricult. Sc. 2018, 52, 435–445. 25. Meale, S.J.; Chaves, A.V.; Baah, J.; McAllister, T.A. Methane Production of Different Forages in In vitro Ruminal Fermentation. Asian-Aust. J. Anim. Sci. 2012, 25, 86–91. [CrossRef] 26. Méndez-Martínez, Y.; Verdecia, D.M.; Reyes-Pérez, J.J.; Luna-Murillo, R.A.; Rivero-Herrada, M.; Montenegro-Vivas, L.B.; Herrera, R.S. Quality of three Megathyrsus maximus cultivars in the Empalme area, Ecuador. Cuban J. Agricult. Sci. 2018, 52, 423–433. 27. Gaviria-Uribe, X.; Bolívar-Vergara, D.M.; Chirinda, N.; Molina-Botero, I.C.; Mazabel, J.; Barahona-Rosales, R.; Arango, J. In vitro methane production and ruminal fermentation parameters of tropical grasses and grass-legume associations commonly used for cattle feeding in the tropics. Livest. Res. Rural Devel. 2022, 34, 1–17. 28. Cruz-Hernández, A.; Hernández-Garay, A.; Aranda-Ibañez, E.; Chay-Canul, A.; Márquez-Quiroz, C.; Rojas-Garcia, A.L.; Gómez- Vázquez, A. Nutritive value of Mulato grass under dierent grazing strategies. Esosist. Recur. Agropec. 2017, 4, 65–72. [CrossRef] 29. Cuadrado, H.; Torregroza, L.; Garcés, J. Producción de Carne con Machos de Ceba en Pastoreo de Pasto Híbrido Mulato y Brachiaria decumbens en el Valle del Sinú. MVZ-Córdoba 2005, 10, 573–580. 30. Cruz Hernández, A.; Hernández Garay, A.; Chay Canul, A.J.; Mendoza Pedroza, S.I.; Ramírez Vera, S.; Rojas García, A.R.; Ventura Ríos, J. Components of the yield and nutritional value of Brachiaria humidicola cv Chetumal to different grazing strategies. Rev. Mex. Cienc. Agríc. 2017, 8, 599–610. 31. Van Soest, P.J. Development of comprehensive system of feed analysis and its application to forages. J. Anim. Sc. 1967, 26, 119–128. [CrossRef] 32. Leng, R.A. Evaluation of Tropical Feed Resources for Ruminant Livestock; Tropical Feeds and Feeding Systems; FAO: Rome, Italy, 1995; Available online: https://www.fao.org/ag/aga/agap/frg/econf95/pdf/evalu.pdf (accessed on 20 September 2022). 33. Lee, M.A. A global comparison of the nutritive values of forage plants grown in contrasting environments. J. Plant Res. 2018, 131, 641–654. [CrossRef] [PubMed] 34. Mlay, P.S.; Pereka, A.; Phiri, E.; Balthazary, S.; Igusti, J.; Hvelplund, T.; Weisbjerg, M.R.; Madsen, J. Feed value of selected tropical grasses, legumes and concentrates. Veterinarski Arhiv 2006, 76, 53–63. 35. Jayanegara, A.; Ridla, M.; Nahrowi; Laconi, E.B. Estimation and validation of total digestible nutrient values of forage and concentrate feedstuffs. IOP Conf. Series: Mater. Sci. Engin. 2019, 546, 1–5. [CrossRef] 36. Horne da Cruz, C.; Alvarenga Santos, S.; Pinto de Carvalho, G.G.; Gomes Azevedo, J.A.; Detmann, E.; Valadares Filho, S.C.; Silva Mariz, L.D.; Sales Pereira, E.; Carvalho Nicory, I.M.; Libânio Tosto, M.S.; et al. Estimating digestible nutrients in diets for small rumiants fed with tropical forages. Livest. Sci. 2021, 249, 104532. [CrossRef] 37. Harper, K.J.; McNeill, D.M. The Role iNDF in the Regulation of Feed Intake and the Importance of Its Assessment in Subtropical Ruminant Systems (the Role of iNDF in the Regulation of Forage Intake). Agriculture 2015, 5, 778–790. [CrossRef], Jayasinghe, P.; Ramilan, T.; Donaghy, D.J.; Pembleton, K.G.; Barber, D.G. Comparison of Nutritive Values of Tropical Pasture Species Grown in Different Environments, and Implications for Livestock Methane Production: A Meta-Analysis. Animals 2022, 12, 1806. [CrossRef] 39. Bogale, S.; Melaku, S.; Yami, A. Influence of rainfall pattern on grass/legume composition and nutritive value of natural pasture in Bale Highlands of Ethiopia. Livest. Res. Rural Develop 2008, 20. Available online: http://www.lrrd.org/lrrd20/3/boga20038.htm (accessed on 20 September 2022). 40. Gherardia, L.A.; Sala, O.E. Enhanced precipitation variability decreases grass- and increases shrub-productivity. Proc. Nat. Acad. Sci. USA 2015, 112, 12735–12740. [CrossRef] 41. Garay, J.R.; Joaquin-Cancino, S.; Zárate-Fortuna, P.; Ibarra-Hinojosa, M.A.; Martínez-González, J.C.; González-Dávila, R.P.; Cienfuegos-Rivas, E.G. Dry matter accumulation and crude protein concentration in Brachiaria spp. cultivars in the humid tropics of Ecuador. Trop. Grasslands-Forrajes Tropicales 2017, 5, 66–76. [CrossRef] 42. Ramos-Montaño, C.; García-Conde, M.R. Características Ecosistémicas asociadas a la actividad ganadera en Arauca (Colombia): Desafíos frente al cambio climático. Orinoquia 2016, 20, 28–38. [CrossRef] 43. Melo, C.D.; Maduro Dias, C.S.A.M.; Wallon, S.; Borba, A.E.S.; Madruga, J.; Borges, P.A.V.; Ferreira, M.T.; Elias, R.B. Influence of Climate Variability and Soil Fertility on the Forage Quality and Productivity in Azorean Pastures. Agriculture 2022, 12, 358. [CrossRef] 44. Fonseca-Pereira, G.; Emerenciano-Neto, J.V.; dos Santos-Difante, G.; Cortes-Assis, L.C.S.L.; de Oliveira- Lima, P. Morphogenic and structural characteristics of tropical forage grasses managed under different regrowth periods in the Brazilian semi-arid region. Semina: Ciênc. Agrá. 2019, 40, 283–292. 45. Mwendia, S.W.; Ohmstedt, U.; Nyakundi, F.; Notenbaert, A.; Peters, P. Does harvesting Urochloa and Megathyrsus forages at short intervals confer an advantage on cumulative dry matter yields and quality? J. Sci. Food Agric. 2022, 102, 750–756. [CrossRef] [PubMed] 46. Suttle, N.F. Mineral Nutrition of Livestock, 4th Edition. 2010. Available online: http://www.ucv.ve/fileadmin/user_upload/ facultad_agronomia/Producion_Animal/Minerals_in_Animal_Nutrition.pdf (accessed on 3 September 2023). 47. Liu, J.; Duan, C.; Zhang, X.; Zhu, Y.; Lu, X. Potential of Leersia hexandra Swartz for phytoextraction of Cr from soil. J. Hazard. Mater. 2011, 188, 85–91. [CrossRef] [PubMed] 48. Pinotti, L.; Manoni, M.; Ferrari, L.; Tretola, M.; Cazzola, R.; Givens, I. The Contribution of Dietary Magnesium in Farm Animals and Human Nutrition. Nutrients 2021, 13, 509. [CrossRef]Composición químicaperíodo climáticopastos nativosposición fisiográficaforraje tropicalchemical compositionclimatic periodnative grassesphysiographic positiontropical forageInfluence of Cutting Intervals and Transition Periods on Chemical Composition Variability of Selected Tropical Grasses under Flooded Savanna Conditions of Arauca, Colombian Orinoquia.Artículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionAtribución – No comercial – Sin Derivarinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINALPeriodos e intervalo cortes pastos nativos sustainability-15-16301.pdfPeriodos e intervalo cortes pastos nativos sustainability-15-16301.pdfapplication/pdf1363545https://repository.ucc.edu.co/bitstreams/5c16557e-7e04-427b-ad19-6fcd8ec0d182/downloadabcb9a547e99f21b2189e317c8eda256MD51Licencia de uso RI Ver5 - 9-07-2021 Periodos e intervalo cortes pastos nativos.pdfLicencia de uso RI Ver5 - 9-07-2021 Periodos e intervalo cortes pastos nativos.pdfapplication/pdf198782https://repository.ucc.edu.co/bitstreams/5e6997d8-f30b-490f-8ec3-b0f2d0330b6e/download6d9c3c1a118da1f67434fac73a610f4aMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/c225d06d-2a30-4cb0-a0a2-e33df09bc3d7/download3bce4f7ab09dfc588f126e1e36e98a45MD53TEXTPeriodos e intervalo cortes pastos nativos sustainability-15-16301.pdf.txtPeriodos e intervalo cortes pastos nativos sustainability-15-16301.pdf.txtExtracted texttext/plain68677https://repository.ucc.edu.co/bitstreams/af03f82f-f598-4d60-bbd9-669c55e487cd/download5fad7fde479aa8b76c7cab2338750f07MD54Licencia de uso RI Ver5 - 9-07-2021 Periodos e intervalo cortes pastos nativos.pdf.txtLicencia de uso RI Ver5 - 9-07-2021 Periodos e intervalo cortes pastos nativos.pdf.txtExtracted texttext/plain6322https://repository.ucc.edu.co/bitstreams/107372dd-f114-4c03-9a42-91dddf72c4a4/download898aae89056028263872aef4f7197e0aMD56THUMBNAILPeriodos e intervalo cortes pastos nativos sustainability-15-16301.pdf.jpgPeriodos e intervalo cortes pastos nativos sustainability-15-16301.pdf.jpgGenerated Thumbnailimage/jpeg15907https://repository.ucc.edu.co/bitstreams/5085d5cb-1b46-48b8-98fa-751f8e384d6d/download5d1006411dd783bf8a2186c36a10bb3aMD55Licencia de uso RI Ver5 - 9-07-2021 Periodos e intervalo cortes pastos nativos.pdf.jpgLicencia de uso RI Ver5 - 9-07-2021 Periodos e intervalo cortes pastos nativos.pdf.jpgGenerated Thumbnailimage/jpeg13360https://repository.ucc.edu.co/bitstreams/def92e78-2989-4ba8-9658-1bffb55275e5/downloadab1a9ffc5f9f6381df0425130f11b6f2MD5720.500.12494/53544oai:repository.ucc.edu.co:20.500.12494/535442024-08-20 16:23:48.269open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=